1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
17 #include "iso14443crc.h"
19 #define RECEIVE_SAMPLES_TIMEOUT 0x0003FFFF
20 #define ISO14443B_DMA_BUFFER_SIZE 256
22 uint8_t PowerOn
= TRUE
;
23 // PCB Block number for APDUs
24 static uint8_t pcb_blocknum
= 0;
26 //=============================================================================
27 // An ISO 14443 Type B tag. We listen for commands from the reader, using
28 // a UART kind of thing that's implemented in software. When we get a
29 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
30 // If it's good, then we can do something appropriate with it, and send
32 //=============================================================================
34 //-----------------------------------------------------------------------------
35 // Code up a string of octets at layer 2 (including CRC, we don't generate
36 // that here) so that they can be transmitted to the reader. Doesn't transmit
37 // them yet, just leaves them ready to send in ToSend[].
38 //-----------------------------------------------------------------------------
39 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
45 // Transmit a burst of ones, as the initial thing that lets the
46 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
47 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
49 for(i
= 0; i
< 20; i
++) {
57 for(i
= 0; i
< 10; i
++) {
63 for(i
= 0; i
< 2; i
++) {
70 for(i
= 0; i
< len
; i
++) {
81 for(j
= 0; j
< 8; j
++) {
104 for(i
= 0; i
< 10; i
++) {
110 for(i
= 0; i
< 2; i
++) {
117 // Convert from last byte pos to length
121 //-----------------------------------------------------------------------------
122 // The software UART that receives commands from the reader, and its state
124 //-----------------------------------------------------------------------------
128 STATE_GOT_FALLING_EDGE_OF_SOF
,
129 STATE_AWAITING_START_BIT
,
140 /* Receive & handle a bit coming from the reader.
142 * This function is called 4 times per bit (every 2 subcarrier cycles).
143 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
146 * LED A -> ON once we have received the SOF and are expecting the rest.
147 * LED A -> OFF once we have received EOF or are in error state or unsynced
149 * Returns: true if we received a EOF
150 * false if we are still waiting for some more
152 static RAMFUNC
int Handle14443bUartBit(uint8_t bit
)
157 // we went low, so this could be the beginning
159 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
165 case STATE_GOT_FALLING_EDGE_OF_SOF
:
167 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
169 if(Uart
.bitCnt
> 9) {
170 // we've seen enough consecutive
171 // zeros that it's a valid SOF
174 Uart
.state
= STATE_AWAITING_START_BIT
;
175 LED_A_ON(); // Indicate we got a valid SOF
177 // didn't stay down long enough
178 // before going high, error
179 Uart
.state
= STATE_UNSYNCD
;
182 // do nothing, keep waiting
186 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
187 if(Uart
.bitCnt
> 12) {
188 // Give up if we see too many zeros without
191 Uart
.state
= STATE_UNSYNCD
;
195 case STATE_AWAITING_START_BIT
:
198 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
199 // stayed high for too long between
201 Uart
.state
= STATE_UNSYNCD
;
204 // falling edge, this starts the data byte
208 Uart
.state
= STATE_RECEIVING_DATA
;
212 case STATE_RECEIVING_DATA
:
214 if(Uart
.posCnt
== 2) {
215 // time to sample a bit
218 Uart
.shiftReg
|= 0x200;
222 if(Uart
.posCnt
>= 4) {
225 if(Uart
.bitCnt
== 10) {
226 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
228 // this is a data byte, with correct
229 // start and stop bits
230 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
233 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
234 // Buffer overflowed, give up
236 Uart
.state
= STATE_UNSYNCD
;
238 // so get the next byte now
240 Uart
.state
= STATE_AWAITING_START_BIT
;
242 } else if (Uart
.shiftReg
== 0x000) {
243 // this is an EOF byte
244 LED_A_OFF(); // Finished receiving
245 Uart
.state
= STATE_UNSYNCD
;
246 if (Uart
.byteCnt
!= 0) {
252 Uart
.state
= STATE_UNSYNCD
;
259 Uart
.state
= STATE_UNSYNCD
;
267 static void UartReset()
269 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
270 Uart
.state
= STATE_UNSYNCD
;
273 memset(Uart
.output
, 0x00, MAX_FRAME_SIZE
);
277 static void UartInit(uint8_t *data
)
284 //-----------------------------------------------------------------------------
285 // Receive a command (from the reader to us, where we are the simulated tag),
286 // and store it in the given buffer, up to the given maximum length. Keeps
287 // spinning, waiting for a well-framed command, until either we get one
288 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
290 // Assume that we're called with the SSC (to the FPGA) and ADC path set
292 //-----------------------------------------------------------------------------
293 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
)
295 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
296 // only, since we are receiving, not transmitting).
297 // Signal field is off with the appropriate LED
299 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
301 // Now run a `software UART' on the stream of incoming samples.
307 if(BUTTON_PRESS()) return FALSE
;
309 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
310 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
311 for(uint8_t mask
= 0x80; mask
!= 0x00; mask
>>= 1) {
312 if(Handle14443bUartBit(b
& mask
)) {
323 //-----------------------------------------------------------------------------
324 // Main loop of simulated tag: receive commands from reader, decide what
325 // response to send, and send it.
326 //-----------------------------------------------------------------------------
327 void SimulateIso14443bTag(void)
329 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
330 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
331 // ... and REQB, AFI=0, Normal Request, N=1:
332 static const uint8_t cmd2
[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
334 static const uint8_t cmd3
[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
336 static const uint8_t cmd4
[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
338 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
339 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
340 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
341 static const uint8_t response1
[] = {
342 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
343 0x00, 0x21, 0x85, 0x5e, 0xd7
345 // response to HLTB and ATTRIB
346 static const uint8_t response2
[] = {0x00, 0x78, 0xF0};
348 uint8_t parity
[MAX_PARITY_SIZE
];
350 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
357 uint16_t respLen
, respCodeLen
;
359 // allocate command receive buffer
361 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
364 uint16_t cmdsRecvd
= 0;
366 // prepare the (only one) tag answer:
367 CodeIso14443bAsTag(response1
, sizeof(response1
));
368 uint8_t *resp1Code
= BigBuf_malloc(ToSendMax
);
369 memcpy(resp1Code
, ToSend
, ToSendMax
);
370 uint16_t resp1CodeLen
= ToSendMax
;
372 // prepare the (other) tag answer:
373 CodeIso14443bAsTag(response2
, sizeof(response2
));
374 uint8_t *resp2Code
= BigBuf_malloc(ToSendMax
);
375 memcpy(resp2Code
, ToSend
, ToSendMax
);
376 uint16_t resp2CodeLen
= ToSendMax
;
378 // We need to listen to the high-frequency, peak-detected path.
379 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
386 if(!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
387 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
392 LogTrace(receivedCmd
, len
, 0, 0, parity
, TRUE
);
395 // Good, look at the command now.
396 if ( (len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
) == 0)
397 || (len
== sizeof(cmd2
) && memcmp(receivedCmd
, cmd2
, len
) == 0) ) {
399 respLen
= sizeof(response1
);
400 respCode
= resp1Code
;
401 respCodeLen
= resp1CodeLen
;
402 } else if ( (len
== sizeof(cmd3
) && receivedCmd
[0] == cmd3
[0])
403 || (len
== sizeof(cmd4
) && receivedCmd
[0] == cmd4
[0]) ) {
405 respLen
= sizeof(response2
);
406 respCode
= resp2Code
;
407 respCodeLen
= resp2CodeLen
;
409 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
410 // And print whether the CRC fails, just for good measure
412 if (len
>= 3){ // if crc exists
413 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
414 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
415 // Not so good, try again.
416 DbpString("+++CRC fail");
419 DbpString("CRC passes");
422 //get rid of compiler warning
426 respCode
= resp1Code
;
427 //don't crash at new command just wait and see if reader will send other new cmds.
433 if(cmdsRecvd
> 0x30) {
434 DbpString("many commands later...");
438 if(respCodeLen
<= 0) continue;
441 // Signal field is off with the appropriate LED
443 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
444 AT91C_BASE_SSC
->SSC_THR
= 0xff;
448 // clear receiving shift register and holding register
449 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
450 c
= AT91C_BASE_SSC
->SSC_RHR
; (void) c
;
451 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
452 c
= AT91C_BASE_SSC
->SSC_RHR
; (void) c
;
455 AT91C_BASE_SSC
->SSC_THR
= 0x00;
457 // Transmit the response.
458 uint16_t FpgaSendQueueDelay
= 0;
460 for(;i
< respCodeLen
; ) {
461 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
462 AT91C_BASE_SSC
->SSC_THR
= respCode
[i
++];
463 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
465 if(BUTTON_PRESS()) break;
468 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
469 uint8_t fpga_queued_bits
= FpgaSendQueueDelay
>> 3;
470 for (i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
471 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
472 AT91C_BASE_SSC
->SSC_THR
= 0x00;
473 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
478 // trace the response:
479 if (tracing
) LogTrace(resp
, respLen
, 0, 0, parity
, FALSE
);
484 //=============================================================================
485 // An ISO 14443 Type B reader. We take layer two commands, code them
486 // appropriately, and then send them to the tag. We then listen for the
487 // tag's response, which we leave in the buffer to be demodulated on the
489 //=============================================================================
494 DEMOD_PHASE_REF_TRAINING
,
495 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
496 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
497 DEMOD_AWAITING_START_BIT
,
503 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
515 * Handles reception of a bit from the tag
517 * This function is called 2 times per bit (every 4 subcarrier cycles).
518 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
521 * LED C -> ON once we have received the SOF and are expecting the rest.
522 * LED C -> OFF once we have received EOF or are unsynced
524 * Returns: true if we received a EOF
525 * false if we are still waiting for some more
528 static RAMFUNC
int Handle14443bSamplesDemod(int ci
, int cq
)
532 // The soft decision on the bit uses an estimate of just the
533 // quadrant of the reference angle, not the exact angle.
534 #define MAKE_SOFT_DECISION() { \
535 if(Demod.sumI > 0) { \
540 if(Demod.sumQ > 0) { \
547 #define SUBCARRIER_DETECT_THRESHOLD 8
549 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
550 /* #define CHECK_FOR_SUBCARRIER() { \
560 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
561 #define CHECK_FOR_SUBCARRIER() { \
563 if(cq < 0) { /* ci < 0, cq < 0 */ \
565 v = -cq - (ci >> 1); \
567 v = -ci - (cq >> 1); \
569 } else { /* ci < 0, cq >= 0 */ \
571 v = -ci + (cq >> 1); \
573 v = cq - (ci >> 1); \
577 if(cq < 0) { /* ci >= 0, cq < 0 */ \
579 v = ci - (cq >> 1); \
581 v = -cq + (ci >> 1); \
583 } else { /* ci >= 0, cq >= 0 */ \
585 v = ci + (cq >> 1); \
587 v = cq + (ci >> 1); \
593 switch(Demod
.state
) {
595 CHECK_FOR_SUBCARRIER();
596 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
597 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
604 case DEMOD_PHASE_REF_TRAINING
:
605 if(Demod
.posCount
< 10*2) {
606 CHECK_FOR_SUBCARRIER();
607 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
608 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
609 // note: synchronization time > 80 1/fs
613 } else { // subcarrier lost
614 Demod
.state
= DEMOD_UNSYNCD
;
617 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
621 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
622 MAKE_SOFT_DECISION();
623 if(v
< 0) { // logic '0' detected
624 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
625 Demod
.posCount
= 0; // start of SOF sequence
627 //if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
628 if(Demod
.posCount
> 25*2) { // maximum length of TR1 = 200 1/fs
629 Demod
.state
= DEMOD_UNSYNCD
;
635 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
637 MAKE_SOFT_DECISION();
639 if(Demod
.posCount
< 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
640 Demod
.state
= DEMOD_UNSYNCD
;
642 LED_C_ON(); // Got SOF
643 Demod
.state
= DEMOD_AWAITING_START_BIT
;
646 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
652 if(Demod
.posCount
> 13*2) { // low phase of SOF too long (> 12 etu)
653 Demod
.state
= DEMOD_UNSYNCD
;
659 case DEMOD_AWAITING_START_BIT
:
661 MAKE_SOFT_DECISION();
663 if(Demod
.posCount
> 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
664 Demod
.state
= DEMOD_UNSYNCD
;
667 } else { // start bit detected
669 Demod
.posCount
= 1; // this was the first half
672 Demod
.state
= DEMOD_RECEIVING_DATA
;
676 case DEMOD_RECEIVING_DATA
:
677 MAKE_SOFT_DECISION();
678 if(Demod
.posCount
== 0) { // first half of bit
681 } else { // second half of bit
684 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
685 if(Demod.thisBit > 0) {
686 Demod.metric += Demod.thisBit;
688 Demod.metric -= Demod.thisBit;
693 Demod
.shiftReg
>>= 1;
694 if(Demod
.thisBit
> 0) { // logic '1'
695 Demod
.shiftReg
|= 0x200;
699 if(Demod
.bitCount
== 10) {
700 uint16_t s
= Demod
.shiftReg
;
701 if((s
& 0x200) && !(s
& 0x001)) { // stop bit == '1', start bit == '0'
702 uint8_t b
= (s
>> 1);
703 Demod
.output
[Demod
.len
] = b
;
705 Demod
.state
= DEMOD_AWAITING_START_BIT
;
707 Demod
.state
= DEMOD_UNSYNCD
;
710 // This is EOF (start, stop and all data bits == '0'
720 Demod
.state
= DEMOD_UNSYNCD
;
728 static void DemodReset()
730 // Clear out the state of the "UART" that receives from the tag.
732 Demod
.state
= DEMOD_UNSYNCD
;
734 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
738 static void DemodInit(uint8_t *data
)
746 * Demodulate the samples we received from the tag, also log to tracebuffer
747 * quiet: set to 'TRUE' to disable debug output
749 static void GetSamplesFor14443bDemod(int n
, bool quiet
)
752 bool gotFrame
= FALSE
;
753 int lastRxCounter
, ci
, cq
, samples
= 0;
755 // Allocate memory from BigBuf for some buffers
756 // free all previous allocations first
759 // And put the FPGA in the appropriate mode
760 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
762 // The response (tag -> reader) that we're receiving.
763 uint8_t *resp
= BigBuf_malloc(MAX_FRAME_SIZE
);
765 // Set up the demodulator for tag -> reader responses.
768 // The DMA buffer, used to stream samples from the FPGA
769 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
772 int8_t *upTo
= dmaBuf
;
773 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
775 // Signal field is ON with the appropriate LED:
778 // Setup and start DMA.
779 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
783 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
784 if(behindBy
> max
) max
= behindBy
;
786 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1)) > 2) {
790 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
792 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
793 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
796 if(lastRxCounter
<= 0) {
797 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
802 if(Handle14443bSamplesDemod(ci
, cq
)) {
808 if(samples
> n
|| gotFrame
) {
813 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
815 if (!quiet
&& Demod
.len
== 0) {
816 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
827 if (tracing
&& Demod
.len
> 0) {
828 uint8_t parity
[MAX_PARITY_SIZE
];
829 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
834 //-----------------------------------------------------------------------------
835 // Transmit the command (to the tag) that was placed in ToSend[].
836 //-----------------------------------------------------------------------------
837 static void TransmitFor14443b(void)
846 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
847 AT91C_BASE_SSC
->SSC_THR
= 0xff;
850 // Signal field is ON with the appropriate Red LED
852 // Signal we are transmitting with the Green LED
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
858 for(c
= 0; c
< 10;) {
859 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
860 AT91C_BASE_SSC
->SSC_THR
= 0xff;
863 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
864 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
872 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
873 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
879 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
880 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
885 LED_B_OFF(); // Finished sending
889 //-----------------------------------------------------------------------------
890 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
891 // so that it is ready to transmit to the tag using TransmitFor14443b().
892 //-----------------------------------------------------------------------------
893 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
900 // Establish initial reference level
901 for(i
= 0; i
< 80; i
++) {
905 for(i
= 0; i
< 11; i
++) {
909 for(i
= 0; i
< len
; i
++) {
917 for(j
= 0; j
< 8; j
++) {
928 for(i
= 0; i
< 11; i
++) {
931 for(i
= 0; i
< 8; i
++) {
935 // And then a little more, to make sure that the last character makes
936 // it out before we switch to rx mode.
937 for(i
= 0; i
< 10; i
++) {
941 // Convert from last character reference to length
947 Convenience function to encode, transmit and trace iso 14443b comms
949 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
)
951 CodeIso14443bAsReader(cmd
, len
);
954 uint8_t parity
[MAX_PARITY_SIZE
];
955 LogTrace(cmd
,len
, 0, 0, parity
, TRUE
);
959 /* Sends an APDU to the tag
960 * TODO: check CRC and preamble
962 int iso14443b_apdu(uint8_t const *message
, size_t message_length
, uint8_t *response
)
964 uint8_t message_frame
[message_length
+ 4];
966 message_frame
[0] = 0x0A | pcb_blocknum
;
969 message_frame
[1] = 0;
971 memcpy(message_frame
+ 2, message
, message_length
);
973 ComputeCrc14443(CRC_14443_B
, message_frame
, message_length
+ 2, &message_frame
[message_length
+ 2], &message_frame
[message_length
+ 3]);
975 CodeAndTransmit14443bAsReader(message_frame
, message_length
+ 4);
977 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
*100, TRUE
);
983 // copy response contents
986 memcpy(response
, Demod
.output
, Demod
.len
);
991 /* Perform the ISO 14443 B Card Selection procedure
992 * Currently does NOT do any collision handling.
993 * It expects 0-1 cards in the device's range.
994 * TODO: Support multiple cards (perform anticollision)
995 * TODO: Verify CRC checksums
997 int iso14443b_select_card()
999 // WUPB command (including CRC)
1000 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
1001 static const uint8_t wupb
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
1002 // ATTRIB command (with space for CRC)
1003 uint8_t attrib
[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
1005 // first, wake up the tag
1006 CodeAndTransmit14443bAsReader(wupb
, sizeof(wupb
));
1007 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1015 // copy the PUPI to ATTRIB
1016 memcpy(attrib
+ 1, Demod
.output
+ 1, 4);
1017 /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
1019 attrib
[7] = Demod
.output
[10] & 0x0F;
1020 ComputeCrc14443(CRC_14443_B
, attrib
, 9, attrib
+ 9, attrib
+ 10);
1021 CodeAndTransmit14443bAsReader(attrib
, sizeof(attrib
));
1022 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1023 // Answer to ATTRIB too short?
1028 // reset PCB block number
1033 // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
1034 void iso14443b_setup() {
1035 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1037 // Set up the synchronous serial port
1039 // connect Demodulated Signal to ADC:
1040 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1042 // Signal field is on with the appropriate LED
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1053 //-----------------------------------------------------------------------------
1054 // Read a SRI512 ISO 14443B tag.
1056 // SRI512 tags are just simple memory tags, here we're looking at making a dump
1057 // of the contents of the memory. No anticollision algorithm is done, we assume
1058 // we have a single tag in the field.
1060 // I tried to be systematic and check every answer of the tag, every CRC, etc...
1061 //-----------------------------------------------------------------------------
1062 void ReadSTMemoryIso14443b(uint32_t dwLast
)
1064 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1072 // Make sure that we start from off, since the tags are stateful;
1073 // confusing things will happen if we don't reset them between reads.
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1078 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1081 // Now give it time to spin up.
1082 // Signal field is on with the appropriate LED
1084 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
1087 // First command: wake up the tag using the INITIATE command
1088 uint8_t cmd1
[] = {0x06, 0x00, 0x97, 0x5b};
1089 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1090 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1092 if (Demod
.len
== 0) {
1093 DbpString("No response from tag");
1096 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1097 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
1100 // There is a response, SELECT the uid
1101 DbpString("Now SELECT tag:");
1102 cmd1
[0] = 0x0E; // 0x0E is SELECT
1103 cmd1
[1] = Demod
.output
[0];
1104 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1105 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1106 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1107 if (Demod
.len
!= 3) {
1108 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
1111 // Check the CRC of the answer:
1112 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
1113 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
1114 DbpString("CRC Error reading select response.");
1117 // Check response from the tag: should be the same UID as the command we just sent:
1118 if (cmd1
[1] != Demod
.output
[0]) {
1119 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
1123 // Tag is now selected,
1124 // First get the tag's UID:
1126 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1127 CodeAndTransmit14443bAsReader(cmd1
, 3); // Only first three bytes for this one
1128 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1129 if (Demod
.len
!= 10) {
1130 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1133 // The check the CRC of the answer (use cmd1 as temporary variable):
1134 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1135 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1136 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1137 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1138 // Do not return;, let's go on... (we should retry, maybe ?)
1140 Dbprintf("Tag UID (64 bits): %08x %08x",
1141 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1142 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1144 // Now loop to read all 16 blocks, address from 0 to last block
1145 Dbprintf("Tag memory dump, block 0 to %d", dwLast
);
1151 DbpString("System area block (0xff):");
1155 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1156 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1157 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1158 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
1159 DbpString("Expected 6 bytes from tag, got less...");
1162 // The check the CRC of the answer (use cmd1 as temporary variable):
1163 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1164 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1165 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1166 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1167 // Do not return;, let's go on... (we should retry, maybe ?)
1169 // Now print out the memory location:
1170 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1171 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1172 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1181 //=============================================================================
1182 // Finally, the `sniffer' combines elements from both the reader and
1183 // simulated tag, to show both sides of the conversation.
1184 //=============================================================================
1186 //-----------------------------------------------------------------------------
1187 // Record the sequence of commands sent by the reader to the tag, with
1188 // triggering so that we start recording at the point that the tag is moved
1190 //-----------------------------------------------------------------------------
1192 * Memory usage for this function, (within BigBuf)
1193 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1194 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1195 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1196 * Demodulated samples received - all the rest
1198 void RAMFUNC
SnoopIso14443b(void)
1200 // We won't start recording the frames that we acquire until we trigger;
1201 // a good trigger condition to get started is probably when we see a
1202 // response from the tag.
1203 int triggered
= TRUE
; // TODO: set and evaluate trigger condition
1205 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1211 // The DMA buffer, used to stream samples from the FPGA
1212 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
1216 int maxBehindBy
= 0;
1218 // Count of samples received so far, so that we can include timing
1219 // information in the trace buffer.
1222 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1223 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1225 // Print some debug information about the buffer sizes
1226 Dbprintf("Snooping buffers initialized:");
1227 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1228 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1229 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1230 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1232 // Signal field is off, no reader signal, no tag signal
1235 // And put the FPGA in the appropriate mode
1236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
1237 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1239 // Setup for the DMA.
1242 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1243 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
1244 uint8_t parity
[MAX_PARITY_SIZE
];
1246 bool TagIsActive
= FALSE
;
1247 bool ReaderIsActive
= FALSE
;
1249 // And now we loop, receiving samples.
1251 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1252 (ISO14443B_DMA_BUFFER_SIZE
-1);
1253 if(behindBy
> maxBehindBy
) {
1254 maxBehindBy
= behindBy
;
1257 if(behindBy
< 2) continue;
1263 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
1265 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1266 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
1267 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
1269 if(behindBy
> (9*ISO14443B_DMA_BUFFER_SIZE
/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1270 Dbprintf("blew circular buffer! behindBy=%d", behindBy
);
1274 DbpString("Reached trace limit");
1277 if(BUTTON_PRESS()) {
1278 DbpString("cancelled");
1285 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1286 if(Handle14443bUartBit(ci
& 0x01)) {
1287 if(triggered
&& tracing
) {
1288 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1290 /* And ready to receive another command. */
1292 /* And also reset the demod code, which might have been */
1293 /* false-triggered by the commands from the reader. */
1296 if(Handle14443bUartBit(cq
& 0x01)) {
1297 if(triggered
&& tracing
) {
1298 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1300 /* And ready to receive another command. */
1302 /* And also reset the demod code, which might have been */
1303 /* false-triggered by the commands from the reader. */
1306 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1309 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1310 if(Handle14443bSamplesDemod(ci
| 0x01, cq
| 0x01)) {
1312 //Use samples as a time measurement
1315 //uint8_t parity[MAX_PARITY_SIZE];
1316 LogTrace(Demod
.output
, Demod
.len
, samples
, samples
, parity
, FALSE
);
1320 // And ready to receive another response.
1323 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1328 FpgaDisableSscDma();
1330 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1331 DbpString("Snoop statistics:");
1332 Dbprintf(" Max behind by: %i", maxBehindBy
);
1333 Dbprintf(" Uart State: %x", Uart
.state
);
1334 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1335 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1336 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1341 * Send raw command to tag ISO14443B
1343 * datalen len of buffer data
1344 * recv bool when true wait for data from tag and send to client
1345 * powerfield bool leave the field on when true
1346 * data buffer with byte to send
1352 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
, uint8_t powerfield
, uint8_t data
[])
1355 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1360 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1368 if ( datalen
== 0 && recv
== 0 && powerfield
== 0){
1372 CodeAndTransmit14443bAsReader(data
, datalen
);
1376 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, FALSE
);
1377 uint16_t iLen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1378 cmd_send(CMD_ACK
, iLen
, 0, 0, Demod
.output
, iLen
);
1382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1383 FpgaDisableSscDma();