1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
13 static struct legic_frame
{
24 static crc_t legic_crc
;
25 static int legic_read_count
;
26 static uint32_t legic_prng_bc
;
27 static uint32_t legic_prng_iv
;
29 static int legic_phase_drift
;
30 static int legic_frame_drift
;
31 static int legic_reqresp_drift
;
37 static void setup_timer(void) {
38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
71 // At TIMER_CLOCK3 (MCK/32)
72 //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */
73 //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
74 //#define RWD_TIME_PAUSE 30 /* 20us */
76 // testing calculating in ticks instead of (us) microseconds.
77 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
78 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
79 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
80 #define TAG_BIT_PERIOD 150 // 100us == 100 * 1.5 == 150ticks
81 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
83 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
85 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
86 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
88 #define OFFSET_LOG 1024
90 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
93 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
94 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
97 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
98 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
101 uint32_t sendFrameStop
= 0;
103 // Pause pulse, off in 20us / 30ticks,
104 // ONE / ZERO bit pulse,
105 // one == 80us / 120ticks
106 // zero == 40us / 60ticks
108 # define COIL_PULSE(x) { \
110 Wait(RWD_TIME_PAUSE); \
116 # define GET_TICKS AT91C_BASE_TC0->TC_CV
119 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
120 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
121 #define LEGIC_CARD_MEMSIZE 1024
122 static uint8_t* cardmem
;
124 static void Wait(uint32_t time
){
125 if ( time
== 0 ) return;
127 while (GET_TICKS
< time
);
129 // Starts Clock and waits until its reset
130 static void Reset(AT91PS_TC clock
){
131 clock
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
132 while(clock
->TC_CV
> 1) ;
135 // Starts Clock and waits until its reset
136 static void ResetClock(void){
140 static void frame_append_bit(struct legic_frame
* const f
, int bit
) {
141 // Overflow, won't happen
142 if (f
->bits
>= 31) return;
144 f
->data
|= (bit
<< f
->bits
);
148 static void frame_clean(struct legic_frame
* const f
) {
153 // Prng works when waiting in 99.1us cycles.
154 // and while sending/receiving in bit frames (100, 60)
155 /*static void CalibratePrng( uint32_t time){
156 // Calculate Cycles based on timer 100us
157 uint32_t i = (time - sendFrameStop) / 100 ;
159 // substract cycles of finished frames
160 int k = i - legic_prng_count()+1;
162 // substract current frame length, rewind to beginning
164 legic_prng_forward(k);
168 /* Generate Keystream */
169 static uint32_t get_key_stream(int skip
, int count
)
174 // Use int to enlarge timer tc to 32bit
175 legic_prng_bc
+= prng_timer
->TC_CV
;
177 // reset the prng timer.
180 /* If skip == -1, forward prng time based */
182 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
183 i
-= legic_prng_count(); /* substract cycles of finished frames */
184 i
-= count
; /* substract current frame length, rewind to beginning */
185 legic_prng_forward(i
);
187 legic_prng_forward(skip
);
190 i
= (count
== 6) ? -1 : legic_read_count
;
192 /* Write Time Data into LOG */
193 // uint8_t *BigBuf = BigBuf_get_addr();
194 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
195 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
196 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
197 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
198 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
199 // BigBuf[OFFSET_LOG+384+i] = count;
201 /* Generate KeyStream */
202 for(i
=0; i
<count
; i
++) {
203 key
|= legic_prng_get_bit() << i
;
204 legic_prng_forward(1);
209 /* Send a frame in tag mode, the FPGA must have been set up by
212 static void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) {
213 /* Bitbang the response */
215 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
216 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
218 /* Use time to crypt frame */
220 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
221 response
^= legic_prng_get_bits(bits
);
224 /* Wait for the frame start */
225 Wait( TAG_FRAME_WAIT
);
228 for(int i
= 0; i
< bits
; i
++) {
243 /* Send a frame in reader mode, the FPGA must have been set up by
246 static void frame_sendAsReader(uint32_t data
, uint8_t bits
){
248 uint32_t starttime
= GET_TICKS
, send
= 0;
250 uint8_t prng1
= legic_prng_count() ;
252 // xor lsfr onto data.
253 send
= data
^ legic_prng_get_bits(bits
);
255 for (; mask
< BITMASK(bits
); mask
<<= 1) {
257 COIL_PULSE(RWD_TIME_1
);
259 COIL_PULSE(RWD_TIME_0
);
263 // Final pause to mark the end of the frame
266 sendFrameStop
= GET_TICKS
;
267 uint8_t cmdbytes
[] = {
274 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, sendFrameStop
, NULL
, TRUE
);
277 /* Receive a frame from the card in reader emulation mode, the FPGA and
278 * timer must have been set up by LegicRfReader and frame_sendAsReader.
280 * The LEGIC RF protocol from card to reader does not include explicit
281 * frame start/stop information or length information. The reader must
282 * know beforehand how many bits it wants to receive. (Notably: a card
283 * sending a stream of 0-bits is indistinguishable from no card present.)
285 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
286 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
287 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
288 * for edges. Count the edges in each bit interval. If they are approximately
289 * 0 this was a 0-bit, if they are approximately equal to the number of edges
290 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
291 * timer that's still running from frame_sendAsReader in order to get a synchronization
292 * with the frame that we just sent.
294 * FIXME: Because we're relying on the hysteresis to just do the right thing
295 * the range is severely reduced (and you'll probably also need a good antenna).
296 * So this should be fixed some time in the future for a proper receiver.
298 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
302 uint8_t i
= 0, edges
= 0;
304 uint32_t the_bit
= 1, next_bit_at
= 0, data
;
305 int old_level
= 0, level
= 0;
307 if(bits
> 32) bits
= 32;
309 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
310 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
312 // calibrate the prng.
313 legic_prng_forward(2);
315 // precompute the cipher
316 uint8_t prng_before
= legic_prng_count() ;
318 lsfr
= legic_prng_get_bits(bits
);
322 //FIXED time between sending frame and now listening frame. 330us
323 Wait( TAG_FRAME_WAIT
- ( GET_TICKS
- sendFrameStop
) );
324 //Wait( TAG_FRAME_WAIT );
326 uint32_t starttime
= GET_TICKS
;
328 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
330 for( i
= 0; i
< bits
; i
++) {
332 while ( GET_TICKS
< next_bit_at
) {
334 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
336 if (level
!= old_level
)
341 next_bit_at
+= TAG_BIT_PERIOD
;
343 // We expect 42 edges == ONE
344 if(edges
> 20 && edges
< 64)
355 sendFrameStop
= GET_TICKS
;
357 uint8_t cmdbytes
[] = {
363 BYTEx(data
, 0) ^ BYTEx(lsfr
,0),
364 BYTEx(data
, 1) ^ BYTEx(lsfr
,1),
368 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, sendFrameStop
, NULL
, FALSE
);
371 // Setup pm3 as a Legic Reader
372 static uint32_t setup_phase_reader(uint8_t iv
) {
374 // Switch on carrier and let the tag charge for 1ms
384 frame_sendAsReader(iv
, 7);
386 // Now both tag and reader has same IV. Prng can start.
389 frame_receiveAsReader(¤t_frame
, 6);
391 // fixed delay before sending ack.
392 Wait(360); // 240us = 360tick
393 legic_prng_forward(2); //240us / 100 == 2.4 iterations
395 // Send obsfuscated acknowledgment frame.
396 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
397 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
398 switch ( current_frame
.data
) {
399 case 0x0D: frame_sendAsReader(0x19, 6); break;
401 case 0x3D: frame_sendAsReader(0x39, 6); break;
404 return current_frame
.data
;
406 // fixed delay after setup phase.
407 Wait(375); // 260us == 375 ticks
408 legic_prng_forward(2);// 260us / 100 == 2.6 iterations
411 static void LegicCommonInit(void) {
412 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
413 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
414 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
417 /* Bitbang the transmitter */
419 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
420 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
422 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
423 cardmem
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
);
424 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
428 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
433 // Switch off carrier, make sure tag is reset
434 static void switch_off_tag_rwd(void) {
440 // calculate crc4 for a legic READ command
441 // 5,8,10 address size.
442 static uint32_t legic4Crc(uint8_t legicCmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
443 crc_clear(&legic_crc
);
444 //uint32_t temp = (value << cmd_sz) | (byte_index << 1) | legicCmd;
445 //crc_update(&legic_crc, temp, cmd_sz + 8 );
446 crc_update(&legic_crc
, 1, 1); /* CMD_READ */
447 crc_update(&legic_crc
, byte_index
, cmd_sz
-1);
448 crc_update(&legic_crc
, value
, 8);
449 return crc_finish(&legic_crc
);
452 int legic_read_byte(int byte_index
, int cmd_sz
) {
454 uint8_t byte
= 0, crc
= 0, calcCrc
= 0;
455 uint32_t cmd
= (byte_index
<< 1) | LEGIC_READ
;
457 frame_sendAsReader(cmd
, cmd_sz
);
458 frame_receiveAsReader(¤t_frame
, 12);
460 byte
= BYTEx(current_frame
.data
, 0);
461 calcCrc
= legic4Crc(LEGIC_READ
, byte_index
, byte
, cmd_sz
);
462 crc
= BYTEx(current_frame
.data
, 1);
464 if( calcCrc
!= crc
) {
465 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc
, crc
);
469 Wait(690); // 460us == 690ticks
470 legic_prng_forward(4); // 460 / 100 = 4.6 iterations
476 * - assemble a write_cmd_frame with crc and send it
477 * - wait until the tag sends back an ACK ('1' bit unencrypted)
478 * - forward the prng based on the timing
480 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
481 int legic_write_byte(uint8_t byte
, uint16_t addr
, uint8_t addr_sz
) {
483 //do not write UID, CRC at offset 0-4.
484 if (addr
<= 4) return 0;
487 crc_clear(&legic_crc
);
488 crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */
489 crc_update(&legic_crc
, addr
, addr_sz
);
490 crc_update(&legic_crc
, byte
, 8);
491 uint32_t crc
= crc_finish(&legic_crc
);
493 uint32_t crc2
= legic4Crc(LEGIC_WRITE
, addr
, byte
, addr_sz
+1);
495 Dbprintf("crc is missmatch");
497 // send write command
498 uint32_t cmd
= ((crc
<<(addr_sz
+1+8)) //CRC
499 |(byte
<<(addr_sz
+1)) //Data
500 |(addr
<<1) //Address
501 | LEGIC_WRITE
); //CMD = Write
503 uint32_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd
505 legic_prng_forward(2); /* we wait anyways */
507 Wait(TAG_FRAME_WAIT
);
509 frame_sendAsReader(cmd
, cmd_sz
);
511 // wllm-rbnt doesnt have these
512 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
513 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
516 int t
, old_level
= 0, edges
= 0;
519 Wait(TAG_FRAME_WAIT
);
521 for( t
= 0; t
< 80; ++t
) {
523 next_bit_at
+= TAG_BIT_PERIOD
;
524 while(timer
->TC_CV
< next_bit_at
) {
525 int level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
526 if(level
!= old_level
)
531 if(edges
> 20 && edges
< 60) { /* expected are 42 edges */
532 int t
= timer
->TC_CV
;
533 int c
= t
/ TAG_BIT_PERIOD
;
536 legic_prng_forward(c
);
545 int LegicRfReader(int offset
, int bytes
, int iv
) {
547 uint16_t byte_index
= 0;
552 if ( MF_DBGLEVEL
>= 2)
553 Dbprintf("setting up legic card, IV = 0x%02x", iv
);
557 uint32_t tag_type
= setup_phase_reader(iv
);
559 //we lose to mutch time with dprintf
560 switch_off_tag_rwd();
564 if ( MF_DBGLEVEL
>= 2) DbpString("MIM22 card found, reading card");
569 if ( MF_DBGLEVEL
>= 2) DbpString("MIM256 card found, reading card");
574 if ( MF_DBGLEVEL
>= 2) DbpString("MIM1024 card found, reading card");
579 if ( MF_DBGLEVEL
>= 1) Dbprintf("Unknown card format: %x", tag_type
);
587 if (bytes
+ offset
>= card_sz
)
588 bytes
= card_sz
- offset
;
590 // Start setup and read bytes.
591 setup_phase_reader(iv
);
594 while (byte_index
< bytes
) {
595 int r
= legic_read_byte(byte_index
+ offset
, cmd_sz
);
597 if (r
== -1 || BUTTON_PRESS()) {
598 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
602 cardmem
[++byte_index
] = r
;
608 switch_off_tag_rwd();
610 uint8_t len
= (bytes
& 0x3FF);
611 cmd_send(CMD_ACK
,isOK
,len
,0,cardmem
,len
);
615 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
619 setup_phase_reader(iv);
620 //legic_prng_forward(2);
621 while(byte_index < bytes) {
624 //check if the DCF should be changed
625 if ( (offset == 0x05) && (bytes == 0x02) ) {
626 //write DCF in reverse order (addr 0x06 before 0x05)
627 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
628 //legic_prng_forward(1);
631 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
633 //legic_prng_forward(1);
636 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
638 if((r != 0) || BUTTON_PRESS()) {
639 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
640 switch_off_tag_rwd();
648 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
652 DbpString("write successful");
656 void LegicRfWriter(int offset
, int bytes
, int iv
) {
658 int byte_index
= 0, addr_sz
= 0;
662 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
664 uint32_t tag_type
= setup_phase_reader(iv
);
666 switch_off_tag_rwd();
670 if(offset
+bytes
> 22) {
671 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+ bytes
);
675 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
678 if(offset
+bytes
> 0x100) {
679 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+ bytes
);
683 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+ bytes
);
686 if(offset
+bytes
> 0x400) {
687 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+ bytes
);
691 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+ bytes
);
694 Dbprintf("No or unknown card found, aborting");
699 setup_phase_reader(iv
);
701 while(byte_index
< bytes
) {
703 //check if the DCF should be changed
704 if ( ((byte_index
+offset
) == 0x05) && (bytes
>= 0x02) ) {
705 //write DCF in reverse order (addr 0x06 before 0x05)
706 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
708 // write second byte on success...
711 r
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
);
715 r
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
);
718 if ((r
!= 0) || BUTTON_PRESS()) {
719 Dbprintf("operation aborted @ 0x%03.3x", byte_index
);
720 switch_off_tag_rwd();
729 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
732 void LegicRfRawWriter(int address
, int byte
, int iv
) {
734 int byte_index
= 0, addr_sz
= 0;
738 if ( MF_DBGLEVEL
>= 2) DbpString("setting up legic card");
740 uint32_t tag_type
= setup_phase_reader(iv
);
742 switch_off_tag_rwd();
747 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
);
751 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
754 if(address
> 0x100) {
755 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
);
759 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
);
762 if(address
> 0x400) {
763 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
);
767 if ( MF_DBGLEVEL
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
);
770 Dbprintf("No or unknown card found, aborting");
774 Dbprintf("integer value: %d address: %d addr_sz: %d", byte
, address
, addr_sz
);
777 setup_phase_reader(iv
);
779 int r
= legic_write_byte(byte
, address
, addr_sz
);
781 if((r
!= 0) || BUTTON_PRESS()) {
782 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
);
783 switch_off_tag_rwd();
789 if ( MF_DBGLEVEL
>= 1) DbpString("write successful");
792 /* Handle (whether to respond) a frame in tag mode
793 * Only called when simulating a tag.
795 static void frame_handle_tag(struct legic_frame
const * const f
)
797 uint8_t *BigBuf
= BigBuf_get_addr();
799 /* First Part of Handshake (IV) */
807 legic_prng_init(f
->data
);
808 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
809 legic_state
= STATE_IV
;
810 legic_read_count
= 0;
812 legic_prng_iv
= f
->data
;
821 if(legic_state
== STATE_IV
) {
822 int local_key
= get_key_stream(3, 6);
823 int xored
= 0x39 ^ local_key
;
824 if((f
->bits
== 6) && (f
->data
== xored
)) {
825 legic_state
= STATE_CON
;
832 legic_state
= STATE_DISCON
;
834 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
841 if(legic_state
== STATE_CON
) {
842 int key
= get_key_stream(2, 11); //legic_phase_drift, 11);
843 int addr
= f
->data
^ key
; addr
= addr
>> 1;
844 int data
= BigBuf
[addr
];
845 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
846 BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
;
849 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
850 legic_prng_forward(legic_reqresp_drift
);
852 frame_send_tag(hash
| data
, 12, 1);
855 legic_prng_forward(2);
863 int key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
864 int addr
= f
->data
^ key
; addr
= addr
>> 1; addr
= addr
& 0x3ff;
865 int data
= f
->data
^ key
; data
= data
>> 11; data
= data
& 0xff;
868 legic_state
= STATE_DISCON
;
870 Dbprintf("write - addr: %x, data: %x", addr
, data
);
874 if(legic_state
!= STATE_DISCON
) {
875 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
877 Dbprintf("IV: %03.3x", legic_prng_iv
);
878 for(i
= 0; i
<legic_read_count
; i
++) {
879 Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]);
882 for(i
= -1; i
<legic_read_count
; i
++) {
884 t
= BigBuf
[OFFSET_LOG
+256+i
*4];
885 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8;
886 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16;
887 t
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24;
889 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
890 BigBuf
[OFFSET_LOG
+128+i
],
891 BigBuf
[OFFSET_LOG
+384+i
],
895 legic_state
= STATE_DISCON
;
896 legic_read_count
= 0;
902 /* Read bit by bit untill full frame is received
903 * Call to process frame end answer
905 static void emit(int bit
) {
909 frame_append_bit(¤t_frame
, 1);
912 frame_append_bit(¤t_frame
, 0);
915 if(current_frame
.bits
<= 4) {
916 frame_clean(¤t_frame
);
918 frame_handle_tag(¤t_frame
);
919 frame_clean(¤t_frame
);
926 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
928 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
929 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
930 * envelope waveform on DIN and should send our response on DOUT.
932 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
933 * measure the time between two rising edges on DIN, and no encoding on the
934 * subcarrier from card to reader, so we'll just shift out our verbatim data
935 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
936 * seems to be 300us-ish.
939 legic_phase_drift
= phase
;
940 legic_frame_drift
= frame
;
941 legic_reqresp_drift
= reqresp
;
943 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
944 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
946 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
948 /* Bitbang the receiver */
949 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
950 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DIN
;
953 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
957 legic_state
= STATE_DISCON
;
960 DbpString("Starting Legic emulator, press button to end");
962 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
963 int level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
964 int time
= timer
->TC_CV
;
966 if(level
!= old_level
) {
968 timer
->TC_CCR
= AT91C_TC_CLKEN
| AT91C_TC_SWTRG
;
970 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
975 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
990 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
996 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
)) {
997 timer
->TC_CCR
= AT91C_TC_CLKDIS
;
1003 if ( MF_DBGLEVEL
>= 1) DbpString("Stopped");
1007 //-----------------------------------------------------------------------------
1008 //-----------------------------------------------------------------------------
1011 //-----------------------------------------------------------------------------
1012 // Code up a string of octets at layer 2 (including CRC, we don't generate
1013 // that here) so that they can be transmitted to the reader. Doesn't transmit
1014 // them yet, just leaves them ready to send in ToSend[].
1015 //-----------------------------------------------------------------------------
1016 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
1022 // // Transmit a burst of ones, as the initial thing that lets the
1023 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1024 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1025 // // so I will too.
1026 // for(i = 0; i < 20; i++) {
1027 // ToSendStuffBit(1);
1028 // ToSendStuffBit(1);
1029 // ToSendStuffBit(1);
1030 // ToSendStuffBit(1);
1034 // for(i = 0; i < 10; i++) {
1035 // ToSendStuffBit(0);
1036 // ToSendStuffBit(0);
1037 // ToSendStuffBit(0);
1038 // ToSendStuffBit(0);
1040 // for(i = 0; i < 2; i++) {
1041 // ToSendStuffBit(1);
1042 // ToSendStuffBit(1);
1043 // ToSendStuffBit(1);
1044 // ToSendStuffBit(1);
1047 // for(i = 0; i < len; i++) {
1049 // uint8_t b = cmd[i];
1052 // ToSendStuffBit(0);
1053 // ToSendStuffBit(0);
1054 // ToSendStuffBit(0);
1055 // ToSendStuffBit(0);
1058 // for(j = 0; j < 8; j++) {
1060 // ToSendStuffBit(1);
1061 // ToSendStuffBit(1);
1062 // ToSendStuffBit(1);
1063 // ToSendStuffBit(1);
1065 // ToSendStuffBit(0);
1066 // ToSendStuffBit(0);
1067 // ToSendStuffBit(0);
1068 // ToSendStuffBit(0);
1074 // ToSendStuffBit(1);
1075 // ToSendStuffBit(1);
1076 // ToSendStuffBit(1);
1077 // ToSendStuffBit(1);
1081 // for(i = 0; i < 10; i++) {
1082 // ToSendStuffBit(0);
1083 // ToSendStuffBit(0);
1084 // ToSendStuffBit(0);
1085 // ToSendStuffBit(0);
1087 // for(i = 0; i < 2; i++) {
1088 // ToSendStuffBit(1);
1089 // ToSendStuffBit(1);
1090 // ToSendStuffBit(1);
1091 // ToSendStuffBit(1);
1094 // // Convert from last byte pos to length
1098 //-----------------------------------------------------------------------------
1099 // The software UART that receives commands from the reader, and its state
1101 //-----------------------------------------------------------------------------
1105 STATE_GOT_FALLING_EDGE_OF_SOF
,
1106 STATE_AWAITING_START_BIT
,
1107 STATE_RECEIVING_DATA
1117 /* Receive & handle a bit coming from the reader.
1119 * This function is called 4 times per bit (every 2 subcarrier cycles).
1120 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1123 * LED A -> ON once we have received the SOF and are expecting the rest.
1124 * LED A -> OFF once we have received EOF or are in error state or unsynced
1126 * Returns: true if we received a EOF
1127 * false if we are still waiting for some more
1129 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1131 // switch(Uart.state) {
1132 // case STATE_UNSYNCD:
1134 // // we went low, so this could be the beginning of an SOF
1135 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1141 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1143 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1145 // if(Uart.bitCnt > 9) {
1146 // // we've seen enough consecutive
1147 // // zeros that it's a valid SOF
1149 // Uart.byteCnt = 0;
1150 // Uart.state = STATE_AWAITING_START_BIT;
1151 // LED_A_ON(); // Indicate we got a valid SOF
1153 // // didn't stay down long enough
1154 // // before going high, error
1155 // Uart.state = STATE_UNSYNCD;
1158 // // do nothing, keep waiting
1162 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1163 // if(Uart.bitCnt > 12) {
1164 // // Give up if we see too many zeros without
1167 // Uart.state = STATE_UNSYNCD;
1171 // case STATE_AWAITING_START_BIT:
1174 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1175 // // stayed high for too long between
1176 // // characters, error
1177 // Uart.state = STATE_UNSYNCD;
1180 // // falling edge, this starts the data byte
1183 // Uart.shiftReg = 0;
1184 // Uart.state = STATE_RECEIVING_DATA;
1188 // case STATE_RECEIVING_DATA:
1190 // if(Uart.posCnt == 2) {
1191 // // time to sample a bit
1192 // Uart.shiftReg >>= 1;
1194 // Uart.shiftReg |= 0x200;
1198 // if(Uart.posCnt >= 4) {
1201 // if(Uart.bitCnt == 10) {
1202 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1204 // // this is a data byte, with correct
1205 // // start and stop bits
1206 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1209 // if(Uart.byteCnt >= Uart.byteCntMax) {
1210 // // Buffer overflowed, give up
1212 // Uart.state = STATE_UNSYNCD;
1214 // // so get the next byte now
1216 // Uart.state = STATE_AWAITING_START_BIT;
1218 // } else if (Uart.shiftReg == 0x000) {
1219 // // this is an EOF byte
1220 // LED_A_OFF(); // Finished receiving
1221 // Uart.state = STATE_UNSYNCD;
1222 // if (Uart.byteCnt != 0) {
1226 // // this is an error
1228 // Uart.state = STATE_UNSYNCD;
1235 // Uart.state = STATE_UNSYNCD;
1243 static void UartReset() {
1244 Uart
.byteCntMax
= 3;
1245 Uart
.state
= STATE_UNSYNCD
;
1249 memset(Uart
.output
, 0x00, 3);
1252 // static void UartInit(uint8_t *data) {
1253 // Uart.output = data;
1257 //=============================================================================
1258 // An LEGIC reader. We take layer two commands, code them
1259 // appropriately, and then send them to the tag. We then listen for the
1260 // tag's response, which we leave in the buffer to be demodulated on the
1262 //=============================================================================
1267 DEMOD_PHASE_REF_TRAINING
,
1268 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
1269 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
1270 DEMOD_AWAITING_START_BIT
,
1271 DEMOD_RECEIVING_DATA
1284 * Handles reception of a bit from the tag
1286 * This function is called 2 times per bit (every 4 subcarrier cycles).
1287 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1290 * LED C -> ON once we have received the SOF and are expecting the rest.
1291 * LED C -> OFF once we have received EOF or are unsynced
1293 * Returns: true if we received a EOF
1294 * false if we are still waiting for some more
1298 #ifndef SUBCARRIER_DETECT_THRESHOLD
1299 # define SUBCARRIER_DETECT_THRESHOLD 8
1302 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1303 #ifndef CHECK_FOR_SUBCARRIER
1304 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
1307 // The soft decision on the bit uses an estimate of just the
1308 // quadrant of the reference angle, not the exact angle.
1309 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1310 #define MAKE_SOFT_DECISION() { \
1311 if(Demod.sumI > 0) \
1316 if(Demod.sumQ > 0) \
1323 static RAMFUNC
int HandleLegicSamplesDemod(int ci
, int cq
)
1328 int halfci
= (ai
>> 1);
1329 int halfcq
= (aq
>> 1);
1331 switch(Demod
.state
) {
1334 CHECK_FOR_SUBCARRIER()
1336 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
1337 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
1344 case DEMOD_PHASE_REF_TRAINING
:
1345 if(Demod
.posCount
< 8) {
1347 CHECK_FOR_SUBCARRIER()
1349 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
1350 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1351 // note: synchronization time > 80 1/fs
1357 Demod
.state
= DEMOD_UNSYNCD
;
1360 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
1364 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
1366 MAKE_SOFT_DECISION()
1368 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1369 // logic '0' detected
1372 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
1374 // start of SOF sequence
1377 // maximum length of TR1 = 200 1/fs
1378 if(Demod
.posCount
> 25*2) Demod
.state
= DEMOD_UNSYNCD
;
1383 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
1386 MAKE_SOFT_DECISION()
1389 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1390 if(Demod
.posCount
< 10*2) {
1391 Demod
.state
= DEMOD_UNSYNCD
;
1393 LED_C_ON(); // Got SOF
1394 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1399 // low phase of SOF too long (> 12 etu)
1400 if(Demod
.posCount
> 13*2) {
1401 Demod
.state
= DEMOD_UNSYNCD
;
1407 case DEMOD_AWAITING_START_BIT
:
1410 MAKE_SOFT_DECISION()
1413 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1414 if(Demod
.posCount
> 3*2) {
1415 Demod
.state
= DEMOD_UNSYNCD
;
1419 // start bit detected
1421 Demod
.posCount
= 1; // this was the first half
1424 Demod
.state
= DEMOD_RECEIVING_DATA
;
1428 case DEMOD_RECEIVING_DATA
:
1430 MAKE_SOFT_DECISION()
1432 if(Demod
.posCount
== 0) {
1433 // first half of bit
1437 // second half of bit
1439 Demod
.shiftReg
>>= 1;
1441 if(Demod
.thisBit
> 0)
1442 Demod
.shiftReg
|= 0x200;
1446 if(Demod
.bitCount
== 10) {
1448 uint16_t s
= Demod
.shiftReg
;
1450 if((s
& 0x200) && !(s
& 0x001)) {
1451 // stop bit == '1', start bit == '0'
1452 uint8_t b
= (s
>> 1);
1453 Demod
.output
[Demod
.len
] = b
;
1455 Demod
.state
= DEMOD_AWAITING_START_BIT
;
1457 Demod
.state
= DEMOD_UNSYNCD
;
1461 // This is EOF (start, stop and all data bits == '0'
1471 Demod
.state
= DEMOD_UNSYNCD
;
1478 // Clear out the state of the "UART" that receives from the tag.
1479 static void DemodReset() {
1481 Demod
.state
= DEMOD_UNSYNCD
;
1488 memset(Demod
.output
, 0x00, 3);
1491 static void DemodInit(uint8_t *data
) {
1492 Demod
.output
= data
;
1497 * Demodulate the samples we received from the tag, also log to tracebuffer
1498 * quiet: set to 'TRUE' to disable debug output
1500 #define LEGIC_DMA_BUFFER_SIZE 256
1501 static void GetSamplesForLegicDemod(int n
, bool quiet
)
1504 bool gotFrame
= FALSE
;
1505 int lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1506 int ci
, cq
, samples
= 0;
1510 // And put the FPGA in the appropriate mode
1511 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
);
1513 // The response (tag -> reader) that we're receiving.
1514 // Set up the demodulator for tag -> reader responses.
1515 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1517 // The DMA buffer, used to stream samples from the FPGA
1518 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
);
1519 int8_t *upTo
= dmaBuf
;
1521 // Setup and start DMA.
1522 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){
1523 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1527 // Signal field is ON with the appropriate LED:
1530 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
1531 if(behindBy
> max
) max
= behindBy
;
1533 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) {
1537 if(upTo
>= dmaBuf
+ LEGIC_DMA_BUFFER_SIZE
) {
1539 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
1540 AT91C_BASE_PDC_SSC
->PDC_RNCR
= LEGIC_DMA_BUFFER_SIZE
;
1543 if(lastRxCounter
<= 0)
1544 lastRxCounter
= LEGIC_DMA_BUFFER_SIZE
;
1548 gotFrame
= HandleLegicSamplesDemod(ci
, cq
);
1553 if(samples
> n
|| gotFrame
)
1557 FpgaDisableSscDma();
1559 if (!quiet
&& Demod
.len
== 0) {
1560 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1571 if (Demod
.len
> 0) {
1572 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00};
1573 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
1576 //-----------------------------------------------------------------------------
1577 // Transmit the command (to the tag) that was placed in ToSend[].
1578 //-----------------------------------------------------------------------------
1579 static void TransmitForLegic(void)
1585 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))
1586 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1588 // Signal field is ON with the appropriate Red LED
1591 // Signal we are transmitting with the Green LED
1593 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1595 for(c
= 0; c
< 10;) {
1596 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1597 AT91C_BASE_SSC
->SSC_THR
= 0xff;
1600 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1601 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1609 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1610 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
1611 legic_prng_forward(1); // forward the lfsr
1613 if(c
>= ToSendMax
) {
1617 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1618 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1627 //-----------------------------------------------------------------------------
1628 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1629 // so that it is ready to transmit to the tag using TransmitForLegic().
1630 //-----------------------------------------------------------------------------
1631 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1639 for(i
= 0; i
< 7; i
++)
1643 for(i
= 0; i
< cmdlen
; i
++) {
1649 for(j
= 0; j
< bits
; j
++) {
1659 // Convert from last character reference to length
1664 Convenience function to encode, transmit and trace Legic comms
1666 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
)
1668 CodeLegicBitsAsReader(cmd
, cmdlen
, bits
);
1671 uint8_t parity
[1] = {0x00};
1672 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
);
1676 int ice_legic_select_card()
1678 //int cmd_size=0, card_size=0;
1679 uint8_t wakeup
[] = { 0x7F };
1680 uint8_t getid
[] = {0x19};
1682 //legic_prng_init(SESSION_IV);
1684 // first, wake up the tag, 7bits
1685 CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7);
1687 GetSamplesForLegicDemod(1000, TRUE
);
1689 //frame_receiveAsReader(¤t_frame, 6, 1);
1691 legic_prng_forward(1); /* we wait anyways */
1693 //while(timer->TC_CV < 387) ; /* ~ 258us */
1694 //frame_sendAsReader(0x19, 6);
1695 CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8);
1696 GetSamplesForLegicDemod(1000, TRUE
);
1698 //if (Demod.len < 14) return 2;
1699 Dbprintf("CARD TYPE: %02x LEN: %d", Demod
.output
[0], Demod
.len
);
1701 switch(Demod
.output
[0]) {
1703 DbpString("MIM 256 card found");
1708 DbpString("MIM 1024 card found");
1710 // card_size = 1024;
1717 // bytes = card_size;
1719 // if(bytes + offset >= card_size)
1720 // bytes = card_size - offset;
1722 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1727 // Set up LEGIC communication
1728 void ice_legic_setup() {
1731 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1732 BigBuf_free(); BigBuf_Clear_ext(false);
1738 // Set up the synchronous serial port
1741 // connect Demodulated Signal to ADC:
1742 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1744 // Signal field is on with the appropriate LED
1746 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1749 //StartCountSspClk();
1752 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);