1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuning(void)
185 uint8_t LF_Results
[256];
186 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
187 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
202 for (i
=255; i
>=19; i
--) {
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
206 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
207 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
208 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
210 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results
[i
] > peak
) {
213 peak
= LF_Results
[i
];
219 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
235 void MeasureAntennaTuningHf(void)
237 int vHf
= 0; // in mV
239 DbpString("Measuring HF antenna, press button to exit");
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
247 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 Dbprintf("%d mV",vHf
);
250 if (BUTTON_PRESS()) break;
252 DbpString("cancelled");
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void ReadMem(int addr
)
261 const uint8_t *data
= ((uint8_t *)addr
);
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
267 /* osimage version information is linked in */
268 extern struct version_information version_information
;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
271 void SendVersion(void)
273 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
274 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
280 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
298 uint32_t compressed_data_section_size
= common_area
.arg1
;
299 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
302 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
304 void printUSBSpeed(uint32_t SpeedTestBufferSize
)
306 Dbprintf("USB Speed:");
307 Dbprintf(" Sending %d bytes payload...", SpeedTestBufferSize
);
309 uint8_t *test_data
= BigBuf_get_addr();
311 uint32_t start_time
= GetTickCount();
314 for(size_t i
=0; i
< SpeedTestBufferSize
; i
+= USB_CMD_DATA_SIZE
) {
315 size_t len
= MIN((SpeedTestBufferSize
- i
), USB_CMD_DATA_SIZE
);
316 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,0,len
,0,test_data
,len
);
320 uint32_t end_time
= GetTickCount();
322 Dbprintf(" Time elapsed: %dms, USB Transfer Speed PM3 -> Client = %d Bytes/s",
323 end_time
- start_time
,
324 1000* SpeedTestBufferSize
/ (end_time
- start_time
));
329 * Prints runtime information about the PM3.
331 void SendStatus(uint32_t SpeedTestBufferSize
)
333 BigBuf_print_status();
335 printConfig(); //LF Sampling config
336 printUSBSpeed(SpeedTestBufferSize
);
338 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
339 Dbprintf(" ToSendMax..........%d", ToSendMax
);
340 Dbprintf(" ToSendBit..........%d", ToSendBit
);
341 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
343 cmd_send(CMD_ACK
,1,0,0,0,0);
346 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
350 void StandAloneMode()
352 DbpString("Stand-alone mode! No PC necessary.");
353 // Oooh pretty -- notify user we're in elite samy mode now
355 LED(LED_ORANGE
, 200);
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
361 LED(LED_ORANGE
, 200);
370 #ifdef WITH_ISO14443a_StandAlone
371 void StandAloneMode14a()
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
377 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
378 int cardRead
[OPTS
] = {0};
379 uint8_t readUID
[10] = {0};
380 uint32_t uid_1st
[OPTS
]={0};
381 uint32_t uid_2nd
[OPTS
]={0};
382 uint32_t uid_tmp1
= 0;
383 uint32_t uid_tmp2
= 0;
384 iso14a_card_select_t hi14a_card
[OPTS
];
386 LED(selected
+ 1, 0);
394 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
398 LED(selected
+ 1, 0);
402 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
403 /* need this delay to prevent catching some weird data */
405 /* Code for reading from 14a tag */
406 uint8_t uid
[10] ={0};
408 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
413 if (BUTTON_PRESS()) {
414 if (cardRead
[selected
]) {
415 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
418 else if (cardRead
[(selected
+1)%OPTS
]) {
419 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
420 selected
= (selected
+1)%OPTS
;
421 break; // playing = 1;
424 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
428 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
432 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
433 memcpy(readUID
,uid
,10*sizeof(uint8_t));
434 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
435 // Set UID byte order
436 for (int i
=0; i
<4; i
++)
438 dst
= (uint8_t *)&uid_tmp2
;
439 for (int i
=0; i
<4; i
++)
441 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
442 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
446 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
447 uid_1st
[selected
] = (uid_tmp1
)>>8;
448 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
451 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
452 uid_1st
[selected
] = uid_tmp1
;
453 uid_2nd
[selected
] = uid_tmp2
;
459 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
460 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
463 LED(LED_ORANGE
, 200);
465 LED(LED_ORANGE
, 200);
468 LED(selected
+ 1, 0);
470 // Next state is replay:
473 cardRead
[selected
] = 1;
475 /* MF Classic UID clone */
476 else if (iGotoClone
==1)
480 LED(selected
+ 1, 0);
481 LED(LED_ORANGE
, 250);
485 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
487 // wait for button to be released
488 while(BUTTON_PRESS())
490 // Delay cloning until card is in place
493 Dbprintf("Starting clone. [Bank: %u]", selected
);
494 // need this delay to prevent catching some weird data
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
499 memcpy(c.d.asBytes, data, 16);
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
504 We need to imitate that call with blockNo 0 to set a uid.
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
524 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
525 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
526 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
527 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
533 memcpy(newBlock0
,oldBlock0
,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
536 newBlock0
[0] = uid_1st
[selected
]>>24;
537 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
538 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
539 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
540 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
541 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
542 MifareCSetBlock(0, 0xFF,0, newBlock0
);
543 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
544 if (memcmp(testBlock0
,newBlock0
,16)==0)
546 DbpString("Cloned successfull!");
547 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
550 selected
= (selected
+ 1) % OPTS
;
553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
558 LED(selected
+ 1, 0);
561 // Change where to record (or begin playing)
562 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
565 LED(selected
+ 1, 0);
567 // Begin transmitting
571 DbpString("Playing");
574 int button_action
= BUTTON_HELD(1000);
575 if (button_action
== 0) { // No button action, proceed with sim
576 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
577 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
578 num_to_bytes(uid_1st
[selected
], 3, data
);
579 num_to_bytes(uid_2nd
[selected
], 4, data
);
581 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
582 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
583 DbpString("Mifare Classic");
584 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
586 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
587 DbpString("Mifare Ultralight");
588 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
590 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
591 DbpString("Mifare DESFire");
592 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
595 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
596 SimulateIso14443aTag(1, flags
, data
);
599 else if (button_action
== BUTTON_SINGLE_CLICK
) {
600 selected
= (selected
+ 1) % OPTS
;
601 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
605 else if (button_action
== BUTTON_HOLD
) {
606 Dbprintf("Playtime over. Begin cloning...");
613 /* We pressed a button so ignore it here with a delay */
616 LED(selected
+ 1, 0);
619 while(BUTTON_PRESS())
625 // samy's sniff and repeat routine
629 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
631 int high
[OPTS
], low
[OPTS
];
636 // Turn on selected LED
637 LED(selected
+ 1, 0);
644 // Was our button held down or pressed?
645 int button_pressed
= BUTTON_HELD(1000);
648 // Button was held for a second, begin recording
649 if (button_pressed
> 0 && cardRead
== 0)
652 LED(selected
+ 1, 0);
656 DbpString("Starting recording");
658 // wait for button to be released
659 while(BUTTON_PRESS())
662 /* need this delay to prevent catching some weird data */
665 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
666 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
669 LED(selected
+ 1, 0);
670 // Finished recording
672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
680 else if (button_pressed
> 0 && cardRead
== 1)
683 LED(selected
+ 1, 0);
687 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
689 // wait for button to be released
690 while(BUTTON_PRESS())
693 /* need this delay to prevent catching some weird data */
696 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
697 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
700 LED(selected
+ 1, 0);
701 // Finished recording
703 // If we were previously playing, set playing off
704 // so next button push begins playing what we recorded
711 // Change where to record (or begin playing)
712 else if (button_pressed
)
714 // Next option if we were previously playing
716 selected
= (selected
+ 1) % OPTS
;
720 LED(selected
+ 1, 0);
722 // Begin transmitting
726 DbpString("Playing");
727 // wait for button to be released
728 while(BUTTON_PRESS())
730 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
731 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
732 DbpString("Done playing");
733 if (BUTTON_HELD(1000) > 0)
735 DbpString("Exiting");
740 /* We pressed a button so ignore it here with a delay */
743 // when done, we're done playing, move to next option
744 selected
= (selected
+ 1) % OPTS
;
747 LED(selected
+ 1, 0);
750 while(BUTTON_PRESS())
759 Listen and detect an external reader. Determine the best location
763 Inside the ListenReaderField() function, there is two mode.
764 By default, when you call the function, you will enter mode 1.
765 If you press the PM3 button one time, you will enter mode 2.
766 If you press the PM3 button a second time, you will exit the function.
768 DESCRIPTION OF MODE 1:
769 This mode just listens for an external reader field and lights up green
770 for HF and/or red for LF. This is the original mode of the detectreader
773 DESCRIPTION OF MODE 2:
774 This mode will visually represent, using the LEDs, the actual strength of the
775 current compared to the maximum current detected. Basically, once you know
776 what kind of external reader is present, it will help you spot the best location to place
777 your antenna. You will probably not get some good results if there is a LF and a HF reader
778 at the same place! :-)
782 static const char LIGHT_SCHEME
[] = {
783 0x0, /* ---- | No field detected */
784 0x1, /* X--- | 14% of maximum current detected */
785 0x2, /* -X-- | 29% of maximum current detected */
786 0x4, /* --X- | 43% of maximum current detected */
787 0x8, /* ---X | 57% of maximum current detected */
788 0xC, /* --XX | 71% of maximum current detected */
789 0xE, /* -XXX | 86% of maximum current detected */
790 0xF, /* XXXX | 100% of maximum current detected */
792 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
794 void ListenReaderField(int limit
)
796 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
797 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
798 int mode
=1, display_val
, display_max
, i
;
802 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
805 // switch off FPGA - we don't want to measure our own signal
806 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
807 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
811 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
813 if(limit
!= HF_ONLY
) {
814 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
818 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
820 if (limit
!= LF_ONLY
) {
821 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
826 if (BUTTON_PRESS()) {
831 DbpString("Signal Strength Mode");
835 DbpString("Stopped");
843 if (limit
!= HF_ONLY
) {
845 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
851 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
852 // see if there's a significant change
853 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
854 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
861 if (limit
!= LF_ONLY
) {
863 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
869 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
870 // see if there's a significant change
871 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
872 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
880 if (limit
== LF_ONLY
) {
882 display_max
= lf_max
;
883 } else if (limit
== HF_ONLY
) {
885 display_max
= hf_max
;
886 } else { /* Pick one at random */
887 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
889 display_max
= hf_max
;
892 display_max
= lf_max
;
895 for (i
=0; i
<LIGHT_LEN
; i
++) {
896 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
897 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
898 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
899 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
900 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
908 void UsbPacketReceived(uint8_t *packet
, int len
)
910 UsbCommand
*c
= (UsbCommand
*)packet
;
912 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
916 case CMD_SET_LF_SAMPLING_CONFIG
:
917 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
919 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
920 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
922 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
923 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
925 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
926 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
928 case CMD_HID_DEMOD_FSK
:
929 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
931 case CMD_HID_SIM_TAG
:
932 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
934 case CMD_FSK_SIM_TAG
:
935 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
937 case CMD_ASK_SIM_TAG
:
938 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
940 case CMD_PSK_SIM_TAG
:
941 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
943 case CMD_HID_CLONE_TAG
:
944 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
946 case CMD_IO_DEMOD_FSK
:
947 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
949 case CMD_IO_CLONE_TAG
:
950 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
952 case CMD_EM410X_DEMOD
:
953 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
955 case CMD_EM410X_WRITE_TAG
:
956 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
958 case CMD_READ_TI_TYPE
:
961 case CMD_WRITE_TI_TYPE
:
962 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
964 case CMD_SIMULATE_TAG_125K
:
966 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
969 case CMD_LF_SIMULATE_BIDIR
:
970 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
972 case CMD_INDALA_CLONE_TAG
:
973 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
975 case CMD_INDALA_CLONE_TAG_L
:
976 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
978 case CMD_T55XX_READ_BLOCK
:
979 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
981 case CMD_T55XX_WRITE_BLOCK
:
982 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
983 cmd_send(CMD_ACK
,0,0,0,0,0);
985 case CMD_T55XX_READ_TRACE
:
988 case CMD_PCF7931_READ
:
990 cmd_send(CMD_ACK
,0,0,0,0,0);
992 case CMD_EM4X_READ_WORD
:
993 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
995 case CMD_EM4X_WRITE_WORD
:
996 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
998 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
999 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1004 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1005 SnoopHitag(c
->arg
[0]);
1007 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1008 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1010 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1011 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1015 #ifdef WITH_ISO15693
1016 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1017 AcquireRawAdcSamplesIso15693();
1019 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1020 RecordRawAdcSamplesIso15693();
1023 case CMD_ISO_15693_COMMAND
:
1024 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1027 case CMD_ISO_15693_FIND_AFI
:
1028 BruteforceIso15693Afi(c
->arg
[0]);
1031 case CMD_ISO_15693_DEBUG
:
1032 SetDebugIso15693(c
->arg
[0]);
1035 case CMD_READER_ISO_15693
:
1036 ReaderIso15693(c
->arg
[0]);
1038 case CMD_SIMTAG_ISO_15693
:
1039 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1044 case CMD_SIMULATE_TAG_LEGIC_RF
:
1045 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1048 case CMD_WRITER_LEGIC_RF
:
1049 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1052 case CMD_READER_LEGIC_RF
:
1053 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1057 #ifdef WITH_ISO14443b
1058 case CMD_READ_SRI512_TAG
:
1059 ReadSTMemoryIso14443b(0x0F);
1061 case CMD_READ_SRIX4K_TAG
:
1062 ReadSTMemoryIso14443b(0x7F);
1064 case CMD_SNOOP_ISO_14443B
:
1067 case CMD_SIMULATE_TAG_ISO_14443B
:
1068 SimulateIso14443bTag();
1070 case CMD_ISO_14443B_COMMAND
:
1071 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1075 #ifdef WITH_ISO14443a
1076 case CMD_SNOOP_ISO_14443a
:
1077 SniffIso14443a(c
->arg
[0]);
1079 case CMD_READER_ISO_14443a
:
1082 case CMD_SIMULATE_TAG_ISO_14443a
:
1083 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1086 case CMD_EPA_PACE_COLLECT_NONCE
:
1087 EPA_PACE_Collect_Nonce(c
);
1089 case CMD_EPA_PACE_REPLAY
:
1093 case CMD_READER_MIFARE
:
1094 ReaderMifare(c
->arg
[0]);
1096 case CMD_MIFARE_READBL
:
1097 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1099 case CMD_MIFAREU_READBL
:
1100 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1102 case CMD_MIFAREUC_AUTH
:
1103 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1105 case CMD_MIFAREU_READCARD
:
1106 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1108 case CMD_MIFAREUC_SETPWD
:
1109 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1111 case CMD_MIFARE_READSC
:
1112 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1114 case CMD_MIFARE_WRITEBL
:
1115 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1117 //case CMD_MIFAREU_WRITEBL_COMPAT:
1118 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1120 case CMD_MIFAREU_WRITEBL
:
1121 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1123 case CMD_MIFARE_NESTED
:
1124 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1126 case CMD_MIFARE_CHKKEYS
:
1127 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1129 case CMD_SIMULATE_MIFARE_CARD
:
1130 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1134 case CMD_MIFARE_SET_DBGMODE
:
1135 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1137 case CMD_MIFARE_EML_MEMCLR
:
1138 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1140 case CMD_MIFARE_EML_MEMSET
:
1141 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1143 case CMD_MIFARE_EML_MEMGET
:
1144 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1146 case CMD_MIFARE_EML_CARDLOAD
:
1147 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1150 // Work with "magic Chinese" card
1151 case CMD_MIFARE_CSETBLOCK
:
1152 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1154 case CMD_MIFARE_CGETBLOCK
:
1155 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_MIFARE_CIDENT
:
1162 case CMD_MIFARE_SNIFFER
:
1163 SniffMifare(c
->arg
[0]);
1167 case CMD_MIFARE_DESFIRE_READBL
: break;
1168 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1169 case CMD_MIFARE_DESFIRE_AUTH1
:
1170 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1172 case CMD_MIFARE_DESFIRE_AUTH2
:
1173 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1175 case CMD_MIFARE_DES_READER
:
1176 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1178 case CMD_MIFARE_DESFIRE_INFO
:
1179 MifareDesfireGetInformation();
1181 case CMD_MIFARE_DESFIRE
:
1182 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1185 case CMD_MIFARE_COLLECT_NONCES
:
1186 MifareCollectNonces(c
->arg
[0], c
->arg
[1]);
1191 // Makes use of ISO14443a FPGA Firmware
1192 case CMD_SNOOP_ICLASS
:
1195 case CMD_SIMULATE_TAG_ICLASS
:
1196 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1198 case CMD_READER_ICLASS
:
1199 ReaderIClass(c
->arg
[0]);
1201 case CMD_READER_ICLASS_REPLAY
:
1202 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1204 case CMD_ICLASS_EML_MEMSET
:
1205 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1209 case CMD_BUFF_CLEAR
:
1213 case CMD_MEASURE_ANTENNA_TUNING
:
1214 MeasureAntennaTuning();
1217 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1218 MeasureAntennaTuningHf();
1221 case CMD_LISTEN_READER_FIELD
:
1222 ListenReaderField(c
->arg
[0]);
1225 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1226 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1228 LED_D_OFF(); // LED D indicates field ON or OFF
1231 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1234 uint8_t *BigBuf
= BigBuf_get_addr();
1235 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1236 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1237 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1239 // Trigger a finish downloading signal with an ACK frame
1240 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1244 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1245 uint8_t *b
= BigBuf_get_addr();
1246 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1247 cmd_send(CMD_ACK
,0,0,0,0,0);
1254 case CMD_SET_LF_DIVISOR
:
1255 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1256 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1259 case CMD_SET_ADC_MUX
:
1261 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1262 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1263 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1264 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1272 SendStatus(c
->arg
[0]);
1275 cmd_send(CMD_ACK
,0,0,0,0,0);
1285 case CMD_SETUP_WRITE
:
1286 case CMD_FINISH_WRITE
:
1287 case CMD_HARDWARE_RESET
:
1290 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1292 // We're going to reset, and the bootrom will take control.
1296 case CMD_START_FLASH
:
1297 if(common_area
.flags
.bootrom_present
) {
1298 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1301 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1305 case CMD_DEVICE_INFO
: {
1306 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1307 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1308 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1312 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1317 void __attribute__((noreturn
)) AppMain(void)
1321 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1322 /* Initialize common area */
1323 memset(&common_area
, 0, sizeof(common_area
));
1324 common_area
.magic
= COMMON_AREA_MAGIC
;
1325 common_area
.version
= 1;
1327 common_area
.flags
.osimage_present
= 1;
1337 // The FPGA gets its clock from us from PCK0 output, so set that up.
1338 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1339 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1340 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1341 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1342 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1343 AT91C_PMC_PRES_CLK_4
;
1344 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1347 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1349 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1351 // Load the FPGA image, which we have stored in our flash.
1352 // (the HF version by default)
1353 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1361 byte_t rx
[sizeof(UsbCommand
)];
1366 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1368 UsbPacketReceived(rx
,rx_len
);
1374 #ifndef WITH_ISO14443a_StandAlone
1375 if (BUTTON_HELD(1000) > 0)
1379 #ifdef WITH_ISO14443a
1380 #ifdef WITH_ISO14443a_StandAlone
1381 if (BUTTON_HELD(1000) > 0)
1382 StandAloneMode14a();