]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
2eb280e18677689ec19560b68e13411d6ed27742
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22 #include "BigBuf.h"
23 #include "parity.h"
24
25 static uint32_t iso14a_timeout;
26 int rsamples = 0;
27 uint8_t trigger = 0;
28 // the block number for the ISO14443-4 PCB
29 static uint8_t iso14_pcb_blocknum = 0;
30
31 //
32 // ISO14443 timing:
33 //
34 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
35 #define REQUEST_GUARD_TIME (7000/16 + 1)
36 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
37 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
38 // bool LastCommandWasRequest = FALSE;
39
40 //
41 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
42 //
43 // When the PM acts as reader and is receiving tag data, it takes
44 // 3 ticks delay in the AD converter
45 // 16 ticks until the modulation detector completes and sets curbit
46 // 8 ticks until bit_to_arm is assigned from curbit
47 // 8*16 ticks for the transfer from FPGA to ARM
48 // 4*16 ticks until we measure the time
49 // - 8*16 ticks because we measure the time of the previous transfer
50 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
51
52 // When the PM acts as a reader and is sending, it takes
53 // 4*16 ticks until we can write data to the sending hold register
54 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
55 // 8 ticks until the first transfer starts
56 // 8 ticks later the FPGA samples the data
57 // 1 tick to assign mod_sig_coil
58 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
59
60 // When the PM acts as tag and is receiving it takes
61 // 2 ticks delay in the RF part (for the first falling edge),
62 // 3 ticks for the A/D conversion,
63 // 8 ticks on average until the start of the SSC transfer,
64 // 8 ticks until the SSC samples the first data
65 // 7*16 ticks to complete the transfer from FPGA to ARM
66 // 8 ticks until the next ssp_clk rising edge
67 // 4*16 ticks until we measure the time
68 // - 8*16 ticks because we measure the time of the previous transfer
69 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
70
71 // The FPGA will report its internal sending delay in
72 uint16_t FpgaSendQueueDelay;
73 // the 5 first bits are the number of bits buffered in mod_sig_buf
74 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
75 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
76
77 // When the PM acts as tag and is sending, it takes
78 // 4*16 ticks until we can write data to the sending hold register
79 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
80 // 8 ticks until the first transfer starts
81 // 8 ticks later the FPGA samples the data
82 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
83 // + 1 tick to assign mod_sig_coil
84 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
85
86 // When the PM acts as sniffer and is receiving tag data, it takes
87 // 3 ticks A/D conversion
88 // 14 ticks to complete the modulation detection
89 // 8 ticks (on average) until the result is stored in to_arm
90 // + the delays in transferring data - which is the same for
91 // sniffing reader and tag data and therefore not relevant
92 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
93
94 // When the PM acts as sniffer and is receiving reader data, it takes
95 // 2 ticks delay in analogue RF receiver (for the falling edge of the
96 // start bit, which marks the start of the communication)
97 // 3 ticks A/D conversion
98 // 8 ticks on average until the data is stored in to_arm.
99 // + the delays in transferring data - which is the same for
100 // sniffing reader and tag data and therefore not relevant
101 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
102
103 //variables used for timing purposes:
104 //these are in ssp_clk cycles:
105 static uint32_t NextTransferTime;
106 static uint32_t LastTimeProxToAirStart;
107 static uint32_t LastProxToAirDuration;
108
109
110
111 // CARD TO READER - manchester
112 // Sequence D: 11110000 modulation with subcarrier during first half
113 // Sequence E: 00001111 modulation with subcarrier during second half
114 // Sequence F: 00000000 no modulation with subcarrier
115 // READER TO CARD - miller
116 // Sequence X: 00001100 drop after half a period
117 // Sequence Y: 00000000 no drop
118 // Sequence Z: 11000000 drop at start
119 #define SEC_D 0xf0
120 #define SEC_E 0x0f
121 #define SEC_F 0x00
122 #define SEC_X 0x0c
123 #define SEC_Y 0x00
124 #define SEC_Z 0xc0
125
126 void iso14a_set_trigger(bool enable) {
127 trigger = enable;
128 }
129
130
131 void iso14a_set_timeout(uint32_t timeout) {
132 iso14a_timeout = timeout;
133 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
134 }
135
136
137 void iso14a_set_ATS_timeout(uint8_t *ats) {
138
139 uint8_t tb1;
140 uint8_t fwi;
141 uint32_t fwt;
142
143 if (ats[0] > 1) { // there is a format byte T0
144 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
145 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
146 tb1 = ats[3];
147 } else {
148 tb1 = ats[2];
149 }
150 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
151 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
152
153 iso14a_set_timeout(fwt/(8*16));
154 }
155 }
156 }
157
158
159 //-----------------------------------------------------------------------------
160 // Generate the parity value for a byte sequence
161 //
162 //-----------------------------------------------------------------------------
163 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
164 {
165 uint16_t paritybit_cnt = 0;
166 uint16_t paritybyte_cnt = 0;
167 uint8_t parityBits = 0;
168
169 for (uint16_t i = 0; i < iLen; i++) {
170 // Generate the parity bits
171 parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
172 if (paritybit_cnt == 7) {
173 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
174 parityBits = 0; // and advance to next Parity Byte
175 paritybyte_cnt++;
176 paritybit_cnt = 0;
177 } else {
178 paritybit_cnt++;
179 }
180 }
181
182 // save remaining parity bits
183 par[paritybyte_cnt] = parityBits;
184
185 }
186
187 void AppendCrc14443a(uint8_t* data, int len)
188 {
189 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
190 }
191
192 void AppendCrc14443b(uint8_t* data, int len)
193 {
194 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
195 }
196
197
198 //=============================================================================
199 // ISO 14443 Type A - Miller decoder
200 //=============================================================================
201 // Basics:
202 // This decoder is used when the PM3 acts as a tag.
203 // The reader will generate "pauses" by temporarily switching of the field.
204 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
205 // The FPGA does a comparison with a threshold and would deliver e.g.:
206 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
207 // The Miller decoder needs to identify the following sequences:
208 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
209 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
210 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
211 // Note 1: the bitstream may start at any time. We therefore need to sync.
212 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
213 //-----------------------------------------------------------------------------
214 static tUart Uart;
215
216 // Lookup-Table to decide if 4 raw bits are a modulation.
217 // We accept the following:
218 // 0001 - a 3 tick wide pause
219 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
220 // 0111 - a 2 tick wide pause shifted left
221 // 1001 - a 2 tick wide pause shifted right
222 const bool Mod_Miller_LUT[] = {
223 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
224 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
225 };
226 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
227 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
228
229 void UartReset()
230 {
231 Uart.state = STATE_UNSYNCD;
232 Uart.bitCount = 0;
233 Uart.len = 0; // number of decoded data bytes
234 Uart.parityLen = 0; // number of decoded parity bytes
235 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
236 Uart.parityBits = 0; // holds 8 parity bits
237 Uart.startTime = 0;
238 Uart.endTime = 0;
239
240 Uart.byteCntMax = 0;
241 Uart.posCnt = 0;
242 Uart.syncBit = 9999;
243 }
244
245 void UartInit(uint8_t *data, uint8_t *parity)
246 {
247 Uart.output = data;
248 Uart.parity = parity;
249 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
250 UartReset();
251 }
252
253 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
254 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
255 {
256
257 Uart.fourBits = (Uart.fourBits << 8) | bit;
258
259 if (Uart.state == STATE_UNSYNCD) { // not yet synced
260
261 Uart.syncBit = 9999; // not set
262
263 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
264 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
265 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
266
267 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
268 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
269 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
270 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
271 //
272 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
273 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
274
275 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
276 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
277 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
278 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
279 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
280 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
281 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
282 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
283
284 if (Uart.syncBit != 9999) { // found a sync bit
285 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
286 Uart.startTime -= Uart.syncBit;
287 Uart.endTime = Uart.startTime;
288 Uart.state = STATE_START_OF_COMMUNICATION;
289 }
290
291 } else {
292
293 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
294 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
295 UartReset();
296 } else { // Modulation in first half = Sequence Z = logic "0"
297 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
298 UartReset();
299 } else {
300 Uart.bitCount++;
301 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
302 Uart.state = STATE_MILLER_Z;
303 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
304 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
305 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
306 Uart.parityBits <<= 1; // make room for the parity bit
307 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
308 Uart.bitCount = 0;
309 Uart.shiftReg = 0;
310 if((Uart.len&0x0007) == 0) { // every 8 data bytes
311 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
312 Uart.parityBits = 0;
313 }
314 }
315 }
316 }
317 } else {
318 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
319 Uart.bitCount++;
320 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
321 Uart.state = STATE_MILLER_X;
322 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
323 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
324 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
325 Uart.parityBits <<= 1; // make room for the new parity bit
326 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
327 Uart.bitCount = 0;
328 Uart.shiftReg = 0;
329 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
330 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
331 Uart.parityBits = 0;
332 }
333 }
334 } else { // no modulation in both halves - Sequence Y
335 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
336 Uart.state = STATE_UNSYNCD;
337 Uart.bitCount--; // last "0" was part of EOC sequence
338 Uart.shiftReg <<= 1; // drop it
339 if(Uart.bitCount > 0) { // if we decoded some bits
340 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
341 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
342 Uart.parityBits <<= 1; // add a (void) parity bit
343 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
344 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
345 return TRUE;
346 } else if (Uart.len & 0x0007) { // there are some parity bits to store
347 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
348 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
349 }
350 if (Uart.len) {
351 return TRUE; // we are finished with decoding the raw data sequence
352 } else {
353 UartReset(); // Nothing received - start over
354 }
355 }
356 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
357 UartReset();
358 } else { // a logic "0"
359 Uart.bitCount++;
360 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
361 Uart.state = STATE_MILLER_Y;
362 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
363 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
364 Uart.parityBits <<= 1; // make room for the parity bit
365 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
366 Uart.bitCount = 0;
367 Uart.shiftReg = 0;
368 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
369 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
370 Uart.parityBits = 0;
371 }
372 }
373 }
374 }
375 }
376
377 }
378
379 return FALSE; // not finished yet, need more data
380 }
381
382
383
384 //=============================================================================
385 // ISO 14443 Type A - Manchester decoder
386 //=============================================================================
387 // Basics:
388 // This decoder is used when the PM3 acts as a reader.
389 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
390 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
391 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
392 // The Manchester decoder needs to identify the following sequences:
393 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
394 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
395 // 8 ticks unmodulated: Sequence F = end of communication
396 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
397 // Note 1: the bitstream may start at any time. We therefore need to sync.
398 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
399 static tDemod Demod;
400
401 // Lookup-Table to decide if 4 raw bits are a modulation.
402 // We accept three or four "1" in any position
403 const bool Mod_Manchester_LUT[] = {
404 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
405 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
406 };
407
408 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
409 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
410
411
412 void DemodReset()
413 {
414 Demod.state = DEMOD_UNSYNCD;
415 Demod.len = 0; // number of decoded data bytes
416 Demod.parityLen = 0;
417 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
418 Demod.parityBits = 0; //
419 Demod.collisionPos = 0; // Position of collision bit
420 Demod.twoBits = 0xffff; // buffer for 2 Bits
421 Demod.highCnt = 0;
422 Demod.startTime = 0;
423 Demod.endTime = 0;
424
425 //
426 Demod.bitCount = 0;
427 Demod.syncBit = 0xFFFF;
428 Demod.samples = 0;
429 }
430
431 void DemodInit(uint8_t *data, uint8_t *parity)
432 {
433 Demod.output = data;
434 Demod.parity = parity;
435 DemodReset();
436 }
437
438 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
439 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
440 {
441
442 Demod.twoBits = (Demod.twoBits << 8) | bit;
443
444 if (Demod.state == DEMOD_UNSYNCD) {
445
446 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
447 if (Demod.twoBits == 0x0000) {
448 Demod.highCnt++;
449 } else {
450 Demod.highCnt = 0;
451 }
452 } else {
453 Demod.syncBit = 0xFFFF; // not set
454 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
455 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
456 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
457 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
458 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
459 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
460 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
461 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
462 if (Demod.syncBit != 0xFFFF) {
463 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
464 Demod.startTime -= Demod.syncBit;
465 Demod.bitCount = offset; // number of decoded data bits
466 Demod.state = DEMOD_MANCHESTER_DATA;
467 }
468 }
469
470 } else {
471
472 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
473 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
474 if (!Demod.collisionPos) {
475 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
476 }
477 } // modulation in first half only - Sequence D = 1
478 Demod.bitCount++;
479 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
480 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
481 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
482 Demod.parityBits <<= 1; // make room for the parity bit
483 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
484 Demod.bitCount = 0;
485 Demod.shiftReg = 0;
486 if((Demod.len&0x0007) == 0) { // every 8 data bytes
487 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
488 Demod.parityBits = 0;
489 }
490 }
491 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
492 } else { // no modulation in first half
493 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
494 Demod.bitCount++;
495 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
496 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
497 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
498 Demod.parityBits <<= 1; // make room for the new parity bit
499 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
500 Demod.bitCount = 0;
501 Demod.shiftReg = 0;
502 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
503 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
504 Demod.parityBits = 0;
505 }
506 }
507 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
508 } else { // no modulation in both halves - End of communication
509 if(Demod.bitCount > 0) { // there are some remaining data bits
510 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
511 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
512 Demod.parityBits <<= 1; // add a (void) parity bit
513 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
514 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
515 return TRUE;
516 } else if (Demod.len & 0x0007) { // there are some parity bits to store
517 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
518 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
519 }
520 if (Demod.len) {
521 return TRUE; // we are finished with decoding the raw data sequence
522 } else { // nothing received. Start over
523 DemodReset();
524 }
525 }
526 }
527 }
528 return FALSE; // not finished yet, need more data
529 }
530
531 //=============================================================================
532 // Finally, a `sniffer' for ISO 14443 Type A
533 // Both sides of communication!
534 //=============================================================================
535
536 //-----------------------------------------------------------------------------
537 // Record the sequence of commands sent by the reader to the tag, with
538 // triggering so that we start recording at the point that the tag is moved
539 // near the reader.
540 //-----------------------------------------------------------------------------
541 void RAMFUNC SniffIso14443a(uint8_t param) {
542 // param:
543 // bit 0 - trigger from first card answer
544 // bit 1 - trigger from first reader 7-bit request
545 LEDsoff();
546
547 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
548
549 // Allocate memory from BigBuf for some buffers
550 // free all previous allocations first
551 BigBuf_free();
552
553 // init trace buffer
554 clear_trace();
555 set_tracing(TRUE);
556
557 // The command (reader -> tag) that we're receiving.
558 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
559 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
560
561 // The response (tag -> reader) that we're receiving.
562 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
563 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
564
565 // The DMA buffer, used to stream samples from the FPGA
566 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
567
568 uint8_t *data = dmaBuf;
569 uint8_t previous_data = 0;
570 int maxDataLen = 0;
571 int dataLen = 0;
572 bool TagIsActive = FALSE;
573 bool ReaderIsActive = FALSE;
574
575 // Set up the demodulator for tag -> reader responses.
576 DemodInit(receivedResponse, receivedResponsePar);
577
578 // Set up the demodulator for the reader -> tag commands
579 UartInit(receivedCmd, receivedCmdPar);
580
581 // Setup and start DMA.
582 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
583
584 // We won't start recording the frames that we acquire until we trigger;
585 // a good trigger condition to get started is probably when we see a
586 // response from the tag.
587 // triggered == FALSE -- to wait first for card
588 bool triggered = !(param & 0x03);
589
590 // And now we loop, receiving samples.
591 for(uint32_t rsamples = 0; TRUE; ) {
592
593 if(BUTTON_PRESS()) {
594 DbpString("cancelled by button");
595 break;
596 }
597
598 LED_A_ON();
599 WDT_HIT();
600
601 int register readBufDataP = data - dmaBuf;
602 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
603 if (readBufDataP <= dmaBufDataP){
604 dataLen = dmaBufDataP - readBufDataP;
605 } else {
606 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
607 }
608 // test for length of buffer
609 if(dataLen > maxDataLen) {
610 maxDataLen = dataLen;
611 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
612 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
613 break;
614 }
615 }
616 if(dataLen < 1) continue;
617
618 // primary buffer was stopped( <-- we lost data!
619 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
620 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
621 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
622 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
623 }
624 // secondary buffer sets as primary, secondary buffer was stopped
625 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
626 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
627 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
628 }
629
630 LED_A_OFF();
631
632 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
633
634 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
635 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
636 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
637 LED_C_ON();
638
639 // check - if there is a short 7bit request from reader
640 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
641
642 if(triggered) {
643 if (!LogTrace(receivedCmd,
644 Uart.len,
645 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
646 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
647 Uart.parity,
648 TRUE)) break;
649 }
650 /* And ready to receive another command. */
651 UartReset();
652 /* And also reset the demod code, which might have been */
653 /* false-triggered by the commands from the reader. */
654 DemodReset();
655 LED_B_OFF();
656 }
657 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
658 }
659
660 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
661 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
662 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
663 LED_B_ON();
664
665 if (!LogTrace(receivedResponse,
666 Demod.len,
667 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
668 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
669 Demod.parity,
670 FALSE)) break;
671
672 if ((!triggered) && (param & 0x01)) triggered = TRUE;
673
674 // And ready to receive another response.
675 DemodReset();
676 // And reset the Miller decoder including itS (now outdated) input buffer
677 UartInit(receivedCmd, receivedCmdPar);
678
679 LED_C_OFF();
680 }
681 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
682 }
683 }
684
685 previous_data = *data;
686 rsamples++;
687 data++;
688 if(data == dmaBuf + DMA_BUFFER_SIZE) {
689 data = dmaBuf;
690 }
691 } // main cycle
692
693 FpgaDisableSscDma();
694 LEDsoff();
695
696 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
697 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
698
699 set_tracing(FALSE);
700 }
701
702 //-----------------------------------------------------------------------------
703 // Prepare tag messages
704 //-----------------------------------------------------------------------------
705 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
706 {
707 ToSendReset();
708
709 // Correction bit, might be removed when not needed
710 ToSendStuffBit(0);
711 ToSendStuffBit(0);
712 ToSendStuffBit(0);
713 ToSendStuffBit(0);
714 ToSendStuffBit(1); // 1
715 ToSendStuffBit(0);
716 ToSendStuffBit(0);
717 ToSendStuffBit(0);
718
719 // Send startbit
720 ToSend[++ToSendMax] = SEC_D;
721 LastProxToAirDuration = 8 * ToSendMax - 4;
722
723 for(uint16_t i = 0; i < len; i++) {
724 uint8_t b = cmd[i];
725
726 // Data bits
727 for(uint16_t j = 0; j < 8; j++) {
728 if(b & 1) {
729 ToSend[++ToSendMax] = SEC_D;
730 } else {
731 ToSend[++ToSendMax] = SEC_E;
732 }
733 b >>= 1;
734 }
735
736 // Get the parity bit
737 if (parity[i>>3] & (0x80>>(i&0x0007))) {
738 ToSend[++ToSendMax] = SEC_D;
739 LastProxToAirDuration = 8 * ToSendMax - 4;
740 } else {
741 ToSend[++ToSendMax] = SEC_E;
742 LastProxToAirDuration = 8 * ToSendMax;
743 }
744 }
745
746 // Send stopbit
747 ToSend[++ToSendMax] = SEC_F;
748
749 // Convert from last byte pos to length
750 ToSendMax++;
751 }
752
753 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
754 {
755 uint8_t par[MAX_PARITY_SIZE];
756
757 GetParity(cmd, len, par);
758 CodeIso14443aAsTagPar(cmd, len, par);
759 }
760
761
762 static void Code4bitAnswerAsTag(uint8_t cmd)
763 {
764 int i;
765
766 ToSendReset();
767
768 // Correction bit, might be removed when not needed
769 ToSendStuffBit(0);
770 ToSendStuffBit(0);
771 ToSendStuffBit(0);
772 ToSendStuffBit(0);
773 ToSendStuffBit(1); // 1
774 ToSendStuffBit(0);
775 ToSendStuffBit(0);
776 ToSendStuffBit(0);
777
778 // Send startbit
779 ToSend[++ToSendMax] = SEC_D;
780
781 uint8_t b = cmd;
782 for(i = 0; i < 4; i++) {
783 if(b & 1) {
784 ToSend[++ToSendMax] = SEC_D;
785 LastProxToAirDuration = 8 * ToSendMax - 4;
786 } else {
787 ToSend[++ToSendMax] = SEC_E;
788 LastProxToAirDuration = 8 * ToSendMax;
789 }
790 b >>= 1;
791 }
792
793 // Send stopbit
794 ToSend[++ToSendMax] = SEC_F;
795
796 // Convert from last byte pos to length
797 ToSendMax++;
798 }
799
800 //-----------------------------------------------------------------------------
801 // Wait for commands from reader
802 // Stop when button is pressed
803 // Or return TRUE when command is captured
804 //-----------------------------------------------------------------------------
805 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
806 {
807 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
808 // only, since we are receiving, not transmitting).
809 // Signal field is off with the appropriate LED
810 LED_D_OFF();
811 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
812
813 // Now run a `software UART' on the stream of incoming samples.
814 UartInit(received, parity);
815
816 // clear RXRDY:
817 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
818
819 for(;;) {
820 WDT_HIT();
821
822 if(BUTTON_PRESS()) return FALSE;
823
824 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
825 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
826 if(MillerDecoding(b, 0)) {
827 *len = Uart.len;
828 return TRUE;
829 }
830 }
831 }
832 }
833
834 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
835 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
836 int EmSend4bit(uint8_t resp);
837 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
838 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
839 int EmSendCmd(uint8_t *resp, uint16_t respLen);
840 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
841 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
842 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
843
844 static uint8_t* free_buffer_pointer;
845
846 typedef struct {
847 uint8_t* response;
848 size_t response_n;
849 uint8_t* modulation;
850 size_t modulation_n;
851 uint32_t ProxToAirDuration;
852 } tag_response_info_t;
853
854 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
855 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
856 // This will need the following byte array for a modulation sequence
857 // 144 data bits (18 * 8)
858 // 18 parity bits
859 // 2 Start and stop
860 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
861 // 1 just for the case
862 // ----------- +
863 // 166 bytes, since every bit that needs to be send costs us a byte
864 //
865
866
867 // Prepare the tag modulation bits from the message
868 CodeIso14443aAsTag(response_info->response,response_info->response_n);
869
870 // Make sure we do not exceed the free buffer space
871 if (ToSendMax > max_buffer_size) {
872 Dbprintf("Out of memory, when modulating bits for tag answer:");
873 Dbhexdump(response_info->response_n,response_info->response,false);
874 return false;
875 }
876
877 // Copy the byte array, used for this modulation to the buffer position
878 memcpy(response_info->modulation,ToSend,ToSendMax);
879
880 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
881 response_info->modulation_n = ToSendMax;
882 response_info->ProxToAirDuration = LastProxToAirDuration;
883
884 return true;
885 }
886
887
888 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
889 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
890 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
891 // -> need 273 bytes buffer
892 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
893 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
894 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
895
896 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
897 // Retrieve and store the current buffer index
898 response_info->modulation = free_buffer_pointer;
899
900 // Determine the maximum size we can use from our buffer
901 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
902
903 // Forward the prepare tag modulation function to the inner function
904 if (prepare_tag_modulation(response_info, max_buffer_size)) {
905 // Update the free buffer offset
906 free_buffer_pointer += ToSendMax;
907 return true;
908 } else {
909 return false;
910 }
911 }
912
913 //-----------------------------------------------------------------------------
914 // Main loop of simulated tag: receive commands from reader, decide what
915 // response to send, and send it.
916 //-----------------------------------------------------------------------------
917 void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
918 {
919 uint32_t counters[] = {0,0,0};
920 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
921 // This can be used in a reader-only attack.
922 // (it can also be retrieved via 'hf 14a list', but hey...
923 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
924 uint8_t ar_nr_collected = 0;
925
926 uint8_t sak;
927
928 // PACK response to PWD AUTH for EV1/NTAG
929 uint8_t response8[4] = {0,0,0,0};
930
931 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
932 uint8_t response1[2] = {0,0};
933
934 switch (tagType) {
935 case 1: { // MIFARE Classic
936 // Says: I am Mifare 1k - original line
937 response1[0] = 0x04;
938 response1[1] = 0x00;
939 sak = 0x08;
940 } break;
941 case 2: { // MIFARE Ultralight
942 // Says: I am a stupid memory tag, no crypto
943 response1[0] = 0x44;
944 response1[1] = 0x00;
945 sak = 0x00;
946 } break;
947 case 3: { // MIFARE DESFire
948 // Says: I am a DESFire tag, ph33r me
949 response1[0] = 0x04;
950 response1[1] = 0x03;
951 sak = 0x20;
952 } break;
953 case 4: { // ISO/IEC 14443-4
954 // Says: I am a javacard (JCOP)
955 response1[0] = 0x04;
956 response1[1] = 0x00;
957 sak = 0x28;
958 } break;
959 case 5: { // MIFARE TNP3XXX
960 // Says: I am a toy
961 response1[0] = 0x01;
962 response1[1] = 0x0f;
963 sak = 0x01;
964 } break;
965 case 6: { // MIFARE Mini
966 // Says: I am a Mifare Mini, 320b
967 response1[0] = 0x44;
968 response1[1] = 0x00;
969 sak = 0x09;
970 } break;
971 case 7: { // NTAG?
972 // Says: I am a NTAG,
973 response1[0] = 0x44;
974 response1[1] = 0x00;
975 sak = 0x00;
976 // PACK
977 response8[0] = 0x80;
978 response8[1] = 0x80;
979 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
980 } break;
981 default: {
982 Dbprintf("Error: unkown tagtype (%d)",tagType);
983 return;
984 } break;
985 }
986
987 // The second response contains the (mandatory) first 24 bits of the UID
988 uint8_t response2[5] = {0x00};
989
990 // Check if the uid uses the (optional) part
991 uint8_t response2a[5] = {0x00};
992
993 if (flags & FLAG_7B_UID_IN_DATA) {
994 response2[0] = 0x88;
995 response2[1] = data[0];
996 response2[2] = data[1];
997 response2[3] = data[2];
998
999 response2a[0] = data[3];
1000 response2a[1] = data[4];
1001 response2a[2] = data[5];
1002 response2a[3] = data[6]; //??
1003 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1004
1005 // Configure the ATQA and SAK accordingly
1006 response1[0] |= 0x40;
1007 sak |= 0x04;
1008 } else {
1009 memcpy(response2, data, 4);
1010 //num_to_bytes(uid_1st,4,response2);
1011 // Configure the ATQA and SAK accordingly
1012 response1[0] &= 0xBF;
1013 sak &= 0xFB;
1014 }
1015
1016 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1017 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1018
1019 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1020 uint8_t response3[3] = {0x00};
1021 response3[0] = sak;
1022 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1023
1024 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1025 uint8_t response3a[3] = {0x00};
1026 response3a[0] = sak & 0xFB;
1027 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1028
1029 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1030 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1031 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1032 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1033 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1034 // TC(1) = 0x02: CID supported, NAD not supported
1035 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1036
1037 // Prepare GET_VERSION (different for EV-1 / NTAG)
1038 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1039 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1040
1041 // Prepare CHK_TEARING
1042 uint8_t response9[] = {0xBD,0x90,0x3f};
1043
1044 #define TAG_RESPONSE_COUNT 10
1045 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1046 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1047 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1048 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1049 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1050 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1051 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1052 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1053 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1054 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
1055 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1056 };
1057
1058 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1059 // Such a response is less time critical, so we can prepare them on the fly
1060 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1061 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1062 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1063 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1064 tag_response_info_t dynamic_response_info = {
1065 .response = dynamic_response_buffer,
1066 .response_n = 0,
1067 .modulation = dynamic_modulation_buffer,
1068 .modulation_n = 0
1069 };
1070
1071 // We need to listen to the high-frequency, peak-detected path.
1072 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1073
1074 BigBuf_free_keep_EM();
1075
1076 // allocate buffers:
1077 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1078 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1079 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1080
1081 // clear trace
1082 clear_trace();
1083 set_tracing(TRUE);
1084
1085 // Prepare the responses of the anticollision phase
1086 // there will be not enough time to do this at the moment the reader sends it REQA
1087 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1088 prepare_allocated_tag_modulation(&responses[i]);
1089 }
1090
1091 int len = 0;
1092
1093 // To control where we are in the protocol
1094 int order = 0;
1095 int lastorder;
1096
1097 // Just to allow some checks
1098 int happened = 0;
1099 int happened2 = 0;
1100 int cmdsRecvd = 0;
1101
1102 cmdsRecvd = 0;
1103 tag_response_info_t* p_response;
1104
1105 LED_A_ON();
1106 for(;;) {
1107 // Clean receive command buffer
1108
1109 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1110 DbpString("Button press");
1111 break;
1112 }
1113
1114 p_response = NULL;
1115
1116 // Okay, look at the command now.
1117 lastorder = order;
1118 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1119 p_response = &responses[0]; order = 1;
1120 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1121 p_response = &responses[0]; order = 6;
1122 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1123 p_response = &responses[1]; order = 2;
1124 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1125 p_response = &responses[2]; order = 20;
1126 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1127 p_response = &responses[3]; order = 3;
1128 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1129 p_response = &responses[4]; order = 30;
1130 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1131 uint8_t block = receivedCmd[1];
1132 if ( tagType == 7 ) {
1133 uint16_t start = 4 * block;
1134
1135 /*if ( block < 4 ) {
1136 //NTAG 215
1137 uint8_t blockdata[50] = {
1138 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1139 data[3],data[4],data[5],data[6],
1140 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1141 0xe1,0x10,0x12,0x00,
1142 0x03,0x00,0xfe,0x00,
1143 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1144 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1145 0x00,0x00,0x00,0x00,
1146 0x00,0x00};
1147 AppendCrc14443a(blockdata+start, 16);
1148 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1149 } else {*/
1150 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1151 emlGetMemBt( emdata, start, 16);
1152 AppendCrc14443a(emdata, 16);
1153 EmSendCmdEx(emdata, sizeof(emdata), false);
1154 //}
1155 p_response = NULL;
1156
1157 } else {
1158 EmSendCmdEx(data+(4*block),16,false);
1159 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1160 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1161 p_response = NULL;
1162 }
1163 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
1164
1165 uint8_t emdata[MAX_FRAME_SIZE];
1166 int start = receivedCmd[1] * 4;
1167 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
1168 emlGetMemBt( emdata, start, len);
1169 AppendCrc14443a(emdata, len);
1170 EmSendCmdEx(emdata, len+2, false);
1171 p_response = NULL;
1172
1173 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1174 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1175 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1176 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1177 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1178 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1179 0x00,0x00};
1180 AppendCrc14443a(data, sizeof(data)-2);
1181 EmSendCmdEx(data,sizeof(data),false);
1182 p_response = NULL;
1183 } else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
1184 uint8_t index = receivedCmd[1];
1185 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
1186 if ( counters[index] > 0) {
1187 num_to_bytes(counters[index], 3, data);
1188 AppendCrc14443a(data, sizeof(data)-2);
1189 }
1190 EmSendCmdEx(data,sizeof(data),false);
1191 p_response = NULL;
1192 } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
1193 // number of counter
1194 uint8_t counter = receivedCmd[1];
1195 uint32_t val = bytes_to_num(receivedCmd+2,4);
1196 counters[counter] = val;
1197
1198 // send ACK
1199 uint8_t ack[] = {0x0a};
1200 EmSendCmdEx(ack,sizeof(ack),false);
1201 p_response = NULL;
1202
1203 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1204 p_response = &responses[9];
1205 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1206
1207 if (tracing) {
1208 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1209 }
1210 p_response = NULL;
1211 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1212
1213 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1214 p_response = &responses[7];
1215 } else {
1216 p_response = &responses[5]; order = 7;
1217 }
1218 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1219 if (tagType == 1 || tagType == 2) { // RATS not supported
1220 EmSend4bit(CARD_NACK_NA);
1221 p_response = NULL;
1222 } else {
1223 p_response = &responses[6]; order = 70;
1224 }
1225 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1226 if (tracing) {
1227 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1228 }
1229 uint32_t nonce = bytes_to_num(response5,4);
1230 uint32_t nr = bytes_to_num(receivedCmd,4);
1231 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1232 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1233
1234 if(flags & FLAG_NR_AR_ATTACK )
1235 {
1236 if(ar_nr_collected < 2){
1237 // Avoid duplicates... probably not necessary, nr should vary.
1238 //if(ar_nr_responses[3] != nr){
1239 ar_nr_responses[ar_nr_collected*5] = 0;
1240 ar_nr_responses[ar_nr_collected*5+1] = 0;
1241 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1242 ar_nr_responses[ar_nr_collected*5+3] = nr;
1243 ar_nr_responses[ar_nr_collected*5+4] = ar;
1244 ar_nr_collected++;
1245 //}
1246 }
1247
1248 if(ar_nr_collected > 1 ) {
1249
1250 if (MF_DBGLEVEL >= 2) {
1251 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1252 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1253 ar_nr_responses[0], // UID1
1254 ar_nr_responses[1], // UID2
1255 ar_nr_responses[2], // NT
1256 ar_nr_responses[3], // AR1
1257 ar_nr_responses[4], // NR1
1258 ar_nr_responses[8], // AR2
1259 ar_nr_responses[9] // NR2
1260 );
1261 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
1262 ar_nr_responses[0], // UID1
1263 ar_nr_responses[1], // UID2
1264 ar_nr_responses[2], // NT1
1265 ar_nr_responses[3], // AR1
1266 ar_nr_responses[4], // NR1
1267 ar_nr_responses[7], // NT2
1268 ar_nr_responses[8], // AR2
1269 ar_nr_responses[9] // NR2
1270 );
1271 }
1272 uint8_t len = ar_nr_collected*5*4;
1273 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1274 ar_nr_collected = 0;
1275 memset(ar_nr_responses, 0x00, len);
1276 }
1277 }
1278 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1279 {
1280
1281 }
1282 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1283 {
1284 if ( tagType == 7 ) {
1285 p_response = &responses[8]; // PACK response
1286 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
1287
1288 if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd);
1289 }
1290 }
1291 else {
1292 // Check for ISO 14443A-4 compliant commands, look at left nibble
1293 switch (receivedCmd[0]) {
1294 case 0x02:
1295 case 0x03: { // IBlock (command no CID)
1296 dynamic_response_info.response[0] = receivedCmd[0];
1297 dynamic_response_info.response[1] = 0x90;
1298 dynamic_response_info.response[2] = 0x00;
1299 dynamic_response_info.response_n = 3;
1300 } break;
1301 case 0x0B:
1302 case 0x0A: { // IBlock (command CID)
1303 dynamic_response_info.response[0] = receivedCmd[0];
1304 dynamic_response_info.response[1] = 0x00;
1305 dynamic_response_info.response[2] = 0x90;
1306 dynamic_response_info.response[3] = 0x00;
1307 dynamic_response_info.response_n = 4;
1308 } break;
1309
1310 case 0x1A:
1311 case 0x1B: { // Chaining command
1312 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1313 dynamic_response_info.response_n = 2;
1314 } break;
1315
1316 case 0xaa:
1317 case 0xbb: {
1318 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1319 dynamic_response_info.response_n = 2;
1320 } break;
1321
1322 case 0xBA: { // ping / pong
1323 dynamic_response_info.response[0] = 0xAB;
1324 dynamic_response_info.response[1] = 0x00;
1325 dynamic_response_info.response_n = 2;
1326 } break;
1327
1328 case 0xCA:
1329 case 0xC2: { // Readers sends deselect command
1330 dynamic_response_info.response[0] = 0xCA;
1331 dynamic_response_info.response[1] = 0x00;
1332 dynamic_response_info.response_n = 2;
1333 } break;
1334
1335 default: {
1336 // Never seen this command before
1337 if (tracing) {
1338 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1339 }
1340 Dbprintf("Received unknown command (len=%d):",len);
1341 Dbhexdump(len,receivedCmd,false);
1342 // Do not respond
1343 dynamic_response_info.response_n = 0;
1344 } break;
1345 }
1346
1347 if (dynamic_response_info.response_n > 0) {
1348 // Copy the CID from the reader query
1349 dynamic_response_info.response[1] = receivedCmd[1];
1350
1351 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1352 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1353 dynamic_response_info.response_n += 2;
1354
1355 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1356 Dbprintf("Error preparing tag response");
1357 if (tracing) {
1358 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1359 }
1360 break;
1361 }
1362 p_response = &dynamic_response_info;
1363 }
1364 }
1365
1366 // Count number of wakeups received after a halt
1367 if(order == 6 && lastorder == 5) { happened++; }
1368
1369 // Count number of other messages after a halt
1370 if(order != 6 && lastorder == 5) { happened2++; }
1371
1372 if(cmdsRecvd > 999) {
1373 DbpString("1000 commands later...");
1374 break;
1375 }
1376 cmdsRecvd++;
1377
1378 if (p_response != NULL) {
1379 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1380 // do the tracing for the previous reader request and this tag answer:
1381 uint8_t par[MAX_PARITY_SIZE];
1382 GetParity(p_response->response, p_response->response_n, par);
1383
1384 EmLogTrace(Uart.output,
1385 Uart.len,
1386 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1387 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1388 Uart.parity,
1389 p_response->response,
1390 p_response->response_n,
1391 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1392 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1393 par);
1394 }
1395
1396 if (!tracing) {
1397 Dbprintf("Trace Full. Simulation stopped.");
1398 break;
1399 }
1400 }
1401
1402 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1403 set_tracing(FALSE);
1404 BigBuf_free_keep_EM();
1405 LED_A_OFF();
1406
1407 if (MF_DBGLEVEL >= 4){
1408 Dbprintf("-[ Wake ups after halt [%d]", happened);
1409 Dbprintf("-[ Messages after halt [%d]", happened2);
1410 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1411 }
1412 }
1413
1414
1415 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1416 // of bits specified in the delay parameter.
1417 void PrepareDelayedTransfer(uint16_t delay)
1418 {
1419 uint8_t bitmask = 0;
1420 uint8_t bits_to_shift = 0;
1421 uint8_t bits_shifted = 0;
1422
1423 delay &= 0x07;
1424 if (delay) {
1425 for (uint16_t i = 0; i < delay; i++) {
1426 bitmask |= (0x01 << i);
1427 }
1428 ToSend[ToSendMax++] = 0x00;
1429 for (uint16_t i = 0; i < ToSendMax; i++) {
1430 bits_to_shift = ToSend[i] & bitmask;
1431 ToSend[i] = ToSend[i] >> delay;
1432 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1433 bits_shifted = bits_to_shift;
1434 }
1435 }
1436 }
1437
1438
1439 //-------------------------------------------------------------------------------------
1440 // Transmit the command (to the tag) that was placed in ToSend[].
1441 // Parameter timing:
1442 // if NULL: transfer at next possible time, taking into account
1443 // request guard time and frame delay time
1444 // if == 0: transfer immediately and return time of transfer
1445 // if != 0: delay transfer until time specified
1446 //-------------------------------------------------------------------------------------
1447 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1448 {
1449
1450 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1451
1452 uint32_t ThisTransferTime = 0;
1453
1454 if (timing) {
1455 if(*timing == 0) { // Measure time
1456 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1457 } else {
1458 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1459 }
1460 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1461 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1462 LastTimeProxToAirStart = *timing;
1463 } else {
1464 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1465 while(GetCountSspClk() < ThisTransferTime);
1466 LastTimeProxToAirStart = ThisTransferTime;
1467 }
1468
1469 // clear TXRDY
1470 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1471
1472 uint16_t c = 0;
1473 for(;;) {
1474 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1475 AT91C_BASE_SSC->SSC_THR = cmd[c];
1476 c++;
1477 if(c >= len) {
1478 break;
1479 }
1480 }
1481 }
1482
1483 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1484 }
1485
1486
1487 //-----------------------------------------------------------------------------
1488 // Prepare reader command (in bits, support short frames) to send to FPGA
1489 //-----------------------------------------------------------------------------
1490 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1491 {
1492 int i, j;
1493 int last;
1494 uint8_t b;
1495
1496 ToSendReset();
1497
1498 // Start of Communication (Seq. Z)
1499 ToSend[++ToSendMax] = SEC_Z;
1500 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1501 last = 0;
1502
1503 size_t bytecount = nbytes(bits);
1504 // Generate send structure for the data bits
1505 for (i = 0; i < bytecount; i++) {
1506 // Get the current byte to send
1507 b = cmd[i];
1508 size_t bitsleft = MIN((bits-(i*8)),8);
1509
1510 for (j = 0; j < bitsleft; j++) {
1511 if (b & 1) {
1512 // Sequence X
1513 ToSend[++ToSendMax] = SEC_X;
1514 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1515 last = 1;
1516 } else {
1517 if (last == 0) {
1518 // Sequence Z
1519 ToSend[++ToSendMax] = SEC_Z;
1520 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1521 } else {
1522 // Sequence Y
1523 ToSend[++ToSendMax] = SEC_Y;
1524 last = 0;
1525 }
1526 }
1527 b >>= 1;
1528 }
1529
1530 // Only transmit parity bit if we transmitted a complete byte
1531 if (j == 8 && parity != NULL) {
1532 // Get the parity bit
1533 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1534 // Sequence X
1535 ToSend[++ToSendMax] = SEC_X;
1536 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1537 last = 1;
1538 } else {
1539 if (last == 0) {
1540 // Sequence Z
1541 ToSend[++ToSendMax] = SEC_Z;
1542 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1543 } else {
1544 // Sequence Y
1545 ToSend[++ToSendMax] = SEC_Y;
1546 last = 0;
1547 }
1548 }
1549 }
1550 }
1551
1552 // End of Communication: Logic 0 followed by Sequence Y
1553 if (last == 0) {
1554 // Sequence Z
1555 ToSend[++ToSendMax] = SEC_Z;
1556 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1557 } else {
1558 // Sequence Y
1559 ToSend[++ToSendMax] = SEC_Y;
1560 last = 0;
1561 }
1562 ToSend[++ToSendMax] = SEC_Y;
1563
1564 // Convert to length of command:
1565 ToSendMax++;
1566 }
1567
1568 //-----------------------------------------------------------------------------
1569 // Prepare reader command to send to FPGA
1570 //-----------------------------------------------------------------------------
1571 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1572 {
1573 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1574 }
1575
1576
1577 //-----------------------------------------------------------------------------
1578 // Wait for commands from reader
1579 // Stop when button is pressed (return 1) or field was gone (return 2)
1580 // Or return 0 when command is captured
1581 //-----------------------------------------------------------------------------
1582 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1583 {
1584 *len = 0;
1585
1586 uint32_t timer = 0, vtime = 0;
1587 int analogCnt = 0;
1588 int analogAVG = 0;
1589
1590 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1591 // only, since we are receiving, not transmitting).
1592 // Signal field is off with the appropriate LED
1593 LED_D_OFF();
1594 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1595
1596 // Set ADC to read field strength
1597 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1598 AT91C_BASE_ADC->ADC_MR =
1599 ADC_MODE_PRESCALE(63) |
1600 ADC_MODE_STARTUP_TIME(1) |
1601 ADC_MODE_SAMPLE_HOLD_TIME(15);
1602 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1603 // start ADC
1604 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1605
1606 // Now run a 'software UART' on the stream of incoming samples.
1607 UartInit(received, parity);
1608
1609 // Clear RXRDY:
1610 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1611
1612 for(;;) {
1613 WDT_HIT();
1614
1615 if (BUTTON_PRESS()) return 1;
1616
1617 // test if the field exists
1618 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1619 analogCnt++;
1620 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1621 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1622 if (analogCnt >= 32) {
1623 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1624 vtime = GetTickCount();
1625 if (!timer) timer = vtime;
1626 // 50ms no field --> card to idle state
1627 if (vtime - timer > 50) return 2;
1628 } else
1629 if (timer) timer = 0;
1630 analogCnt = 0;
1631 analogAVG = 0;
1632 }
1633 }
1634
1635 // receive and test the miller decoding
1636 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1637 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1638 if(MillerDecoding(b, 0)) {
1639 *len = Uart.len;
1640 return 0;
1641 }
1642 }
1643
1644 }
1645 }
1646
1647
1648 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1649 {
1650 uint8_t b;
1651 uint16_t i = 0;
1652 uint32_t ThisTransferTime;
1653
1654 // Modulate Manchester
1655 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1656
1657 // include correction bit if necessary
1658 if (Uart.parityBits & 0x01) {
1659 correctionNeeded = TRUE;
1660 }
1661 if(correctionNeeded) {
1662 // 1236, so correction bit needed
1663 i = 0;
1664 } else {
1665 i = 1;
1666 }
1667
1668 // clear receiving shift register and holding register
1669 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1670 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1671 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1672 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1673
1674 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1675 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1676 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1677 if (AT91C_BASE_SSC->SSC_RHR) break;
1678 }
1679
1680 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1681
1682 // Clear TXRDY:
1683 AT91C_BASE_SSC->SSC_THR = SEC_F;
1684
1685 // send cycle
1686 for(; i < respLen; ) {
1687 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1688 AT91C_BASE_SSC->SSC_THR = resp[i++];
1689 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1690 }
1691
1692 if(BUTTON_PRESS()) break;
1693 }
1694
1695 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1696 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1697 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1698 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1699 AT91C_BASE_SSC->SSC_THR = SEC_F;
1700 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1701 i++;
1702 }
1703 }
1704
1705 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1706
1707 return 0;
1708 }
1709
1710 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1711 Code4bitAnswerAsTag(resp);
1712 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1713 // do the tracing for the previous reader request and this tag answer:
1714 uint8_t par[1];
1715 GetParity(&resp, 1, par);
1716 EmLogTrace(Uart.output,
1717 Uart.len,
1718 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1719 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1720 Uart.parity,
1721 &resp,
1722 1,
1723 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1724 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1725 par);
1726 return res;
1727 }
1728
1729 int EmSend4bit(uint8_t resp){
1730 return EmSend4bitEx(resp, false);
1731 }
1732
1733 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1734 CodeIso14443aAsTagPar(resp, respLen, par);
1735 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1736 // do the tracing for the previous reader request and this tag answer:
1737 EmLogTrace(Uart.output,
1738 Uart.len,
1739 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1740 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1741 Uart.parity,
1742 resp,
1743 respLen,
1744 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1745 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1746 par);
1747 return res;
1748 }
1749
1750 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1751 uint8_t par[MAX_PARITY_SIZE];
1752 GetParity(resp, respLen, par);
1753 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1754 }
1755
1756 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1757 uint8_t par[MAX_PARITY_SIZE];
1758 GetParity(resp, respLen, par);
1759 return EmSendCmdExPar(resp, respLen, false, par);
1760 }
1761
1762 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1763 return EmSendCmdExPar(resp, respLen, false, par);
1764 }
1765
1766 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1767 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1768 {
1769 if (tracing) {
1770 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1771 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1772 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1773 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1774 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1775 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1776 reader_EndTime = tag_StartTime - exact_fdt;
1777 reader_StartTime = reader_EndTime - reader_modlen;
1778 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1779 return FALSE;
1780 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1781 } else {
1782 return TRUE;
1783 }
1784 }
1785
1786 //-----------------------------------------------------------------------------
1787 // Wait a certain time for tag response
1788 // If a response is captured return TRUE
1789 // If it takes too long return FALSE
1790 //-----------------------------------------------------------------------------
1791 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1792 {
1793 uint32_t c = 0x00;
1794
1795 // Set FPGA mode to "reader listen mode", no modulation (listen
1796 // only, since we are receiving, not transmitting).
1797 // Signal field is on with the appropriate LED
1798 LED_D_ON();
1799 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1800
1801 // Now get the answer from the card
1802 DemodInit(receivedResponse, receivedResponsePar);
1803
1804 // clear RXRDY:
1805 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1806
1807 for(;;) {
1808 WDT_HIT();
1809
1810 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1811 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1812 if(ManchesterDecoding(b, offset, 0)) {
1813 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1814 return TRUE;
1815 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1816 return FALSE;
1817 }
1818 }
1819 }
1820 }
1821
1822 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1823 {
1824 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1825
1826 // Send command to tag
1827 TransmitFor14443a(ToSend, ToSendMax, timing);
1828 if(trigger)
1829 LED_A_ON();
1830
1831 // Log reader command in trace buffer
1832 if (tracing) {
1833 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1834 }
1835 }
1836
1837 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1838 {
1839 ReaderTransmitBitsPar(frame, len*8, par, timing);
1840 }
1841
1842 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1843 {
1844 // Generate parity and redirect
1845 uint8_t par[MAX_PARITY_SIZE];
1846 GetParity(frame, len/8, par);
1847 ReaderTransmitBitsPar(frame, len, par, timing);
1848 }
1849
1850 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1851 {
1852 // Generate parity and redirect
1853 uint8_t par[MAX_PARITY_SIZE];
1854 GetParity(frame, len, par);
1855 ReaderTransmitBitsPar(frame, len*8, par, timing);
1856 }
1857
1858 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1859 {
1860 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1861 if (tracing) {
1862 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1863 }
1864 return Demod.len;
1865 }
1866
1867 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1868 {
1869 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1870 if (tracing) {
1871 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1872 }
1873 return Demod.len;
1874 }
1875
1876 // performs iso14443a anticollision (optional) and card select procedure
1877 // fills the uid and cuid pointer unless NULL
1878 // fills the card info record unless NULL
1879 // if anticollision is false, then the UID must be provided in uid_ptr[]
1880 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1881 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) {
1882 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1883 uint8_t sel_all[] = { 0x93,0x20 };
1884 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1885 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1886 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1887 uint8_t resp_par[MAX_PARITY_SIZE];
1888 byte_t uid_resp[4];
1889 size_t uid_resp_len;
1890
1891 uint8_t sak = 0x04; // cascade uid
1892 int cascade_level = 0;
1893 int len;
1894
1895 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1896 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
1897
1898 // Receive the ATQA
1899 if(!ReaderReceive(resp, resp_par)) return 0;
1900
1901 if(p_hi14a_card) {
1902 memcpy(p_hi14a_card->atqa, resp, 2);
1903 p_hi14a_card->uidlen = 0;
1904 memset(p_hi14a_card->uid,0,10);
1905 }
1906
1907 if (anticollision) {
1908 // clear uid
1909 if (uid_ptr) {
1910 memset(uid_ptr,0,10);
1911 }
1912 }
1913
1914 // check for proprietary anticollision:
1915 if ((resp[0] & 0x1F) == 0) {
1916 return 3;
1917 }
1918
1919 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1920 // which case we need to make a cascade 2 request and select - this is a long UID
1921 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1922 for(; sak & 0x04; cascade_level++) {
1923 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1924 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1925
1926 if (anticollision) {
1927 // SELECT_ALL
1928 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1929 if (!ReaderReceive(resp, resp_par)) return 0;
1930
1931 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1932 memset(uid_resp, 0, 4);
1933 uint16_t uid_resp_bits = 0;
1934 uint16_t collision_answer_offset = 0;
1935 // anti-collision-loop:
1936 while (Demod.collisionPos) {
1937 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1938 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1939 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1940 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1941 }
1942 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1943 uid_resp_bits++;
1944 // construct anticollosion command:
1945 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1946 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1947 sel_uid[2+i] = uid_resp[i];
1948 }
1949 collision_answer_offset = uid_resp_bits%8;
1950 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1951 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1952 }
1953 // finally, add the last bits and BCC of the UID
1954 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1955 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1956 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1957 }
1958
1959 } else { // no collision, use the response to SELECT_ALL as current uid
1960 memcpy(uid_resp, resp, 4);
1961 }
1962 } else {
1963 if (cascade_level < num_cascades - 1) {
1964 uid_resp[0] = 0x88;
1965 memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
1966 } else {
1967 memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
1968 }
1969 }
1970 uid_resp_len = 4;
1971
1972 // calculate crypto UID. Always use last 4 Bytes.
1973 if(cuid_ptr) {
1974 *cuid_ptr = bytes_to_num(uid_resp, 4);
1975 }
1976
1977 // Construct SELECT UID command
1978 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1979 memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
1980 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1981 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1982 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1983
1984 // Receive the SAK
1985 if (!ReaderReceive(resp, resp_par)) return 0;
1986 sak = resp[0];
1987
1988 // Test if more parts of the uid are coming
1989 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1990 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1991 // http://www.nxp.com/documents/application_note/AN10927.pdf
1992 uid_resp[0] = uid_resp[1];
1993 uid_resp[1] = uid_resp[2];
1994 uid_resp[2] = uid_resp[3];
1995 uid_resp_len = 3;
1996 }
1997
1998 if(uid_ptr && anticollision) {
1999 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
2000 }
2001
2002 if(p_hi14a_card) {
2003 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
2004 p_hi14a_card->uidlen += uid_resp_len;
2005 }
2006 }
2007
2008 if(p_hi14a_card) {
2009 p_hi14a_card->sak = sak;
2010 p_hi14a_card->ats_len = 0;
2011 }
2012
2013 // non iso14443a compliant tag
2014 if( (sak & 0x20) == 0) return 2;
2015
2016 // Request for answer to select
2017 AppendCrc14443a(rats, 2);
2018 ReaderTransmit(rats, sizeof(rats), NULL);
2019
2020 if (!(len = ReaderReceive(resp, resp_par))) return 0;
2021
2022
2023 if(p_hi14a_card) {
2024 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2025 p_hi14a_card->ats_len = len;
2026 }
2027
2028 // reset the PCB block number
2029 iso14_pcb_blocknum = 0;
2030
2031 // set default timeout based on ATS
2032 iso14a_set_ATS_timeout(resp);
2033
2034 return 1;
2035 }
2036
2037 void iso14443a_setup(uint8_t fpga_minor_mode) {
2038 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
2039 // Set up the synchronous serial port
2040 FpgaSetupSsc();
2041 // connect Demodulated Signal to ADC:
2042 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2043
2044 // Signal field is on with the appropriate LED
2045 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2046 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2047 LED_D_ON();
2048 } else {
2049 LED_D_OFF();
2050 }
2051 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2052
2053 // Start the timer
2054 StartCountSspClk();
2055
2056 DemodReset();
2057 UartReset();
2058 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
2059 iso14a_set_timeout(10*106); // 10ms default
2060 }
2061
2062 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2063 uint8_t parity[MAX_PARITY_SIZE];
2064 uint8_t real_cmd[cmd_len+4];
2065 real_cmd[0] = 0x0a; //I-Block
2066 // put block number into the PCB
2067 real_cmd[0] |= iso14_pcb_blocknum;
2068 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2069 memcpy(real_cmd+2, cmd, cmd_len);
2070 AppendCrc14443a(real_cmd,cmd_len+2);
2071
2072 ReaderTransmit(real_cmd, cmd_len+4, NULL);
2073 size_t len = ReaderReceive(data, parity);
2074 uint8_t *data_bytes = (uint8_t *) data;
2075 if (!len)
2076 return 0; //DATA LINK ERROR
2077 // if we received an I- or R(ACK)-Block with a block number equal to the
2078 // current block number, toggle the current block number
2079 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2080 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2081 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2082 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2083 {
2084 iso14_pcb_blocknum ^= 1;
2085 }
2086
2087 return len;
2088 }
2089
2090 //-----------------------------------------------------------------------------
2091 // Read an ISO 14443a tag. Send out commands and store answers.
2092 //
2093 //-----------------------------------------------------------------------------
2094 void ReaderIso14443a(UsbCommand *c)
2095 {
2096 iso14a_command_t param = c->arg[0];
2097 uint8_t *cmd = c->d.asBytes;
2098 size_t len = c->arg[1] & 0xffff;
2099 size_t lenbits = c->arg[1] >> 16;
2100 uint32_t timeout = c->arg[2];
2101 uint32_t arg0 = 0;
2102 byte_t buf[USB_CMD_DATA_SIZE];
2103 uint8_t par[MAX_PARITY_SIZE];
2104
2105 if(param & ISO14A_CONNECT) {
2106 clear_trace();
2107 }
2108
2109 set_tracing(TRUE);
2110
2111 if(param & ISO14A_REQUEST_TRIGGER) {
2112 iso14a_set_trigger(TRUE);
2113 }
2114
2115 if(param & ISO14A_CONNECT) {
2116 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2117 if(!(param & ISO14A_NO_SELECT)) {
2118 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2119 arg0 = iso14443a_select_card(NULL,card,NULL, true, 0);
2120 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2121 }
2122 }
2123
2124 if(param & ISO14A_SET_TIMEOUT) {
2125 iso14a_set_timeout(timeout);
2126 }
2127
2128 if(param & ISO14A_APDU) {
2129 arg0 = iso14_apdu(cmd, len, buf);
2130 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2131 }
2132
2133 if(param & ISO14A_RAW) {
2134 if(param & ISO14A_APPEND_CRC) {
2135 if(param & ISO14A_TOPAZMODE) {
2136 AppendCrc14443b(cmd,len);
2137 } else {
2138 AppendCrc14443a(cmd,len);
2139 }
2140 len += 2;
2141 if (lenbits) lenbits += 16;
2142 }
2143 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2144 if(param & ISO14A_TOPAZMODE) {
2145 int bits_to_send = lenbits;
2146 uint16_t i = 0;
2147 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2148 bits_to_send -= 7;
2149 while (bits_to_send > 0) {
2150 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2151 bits_to_send -= 8;
2152 }
2153 } else {
2154 GetParity(cmd, lenbits/8, par);
2155 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2156 }
2157 } else { // want to send complete bytes only
2158 if(param & ISO14A_TOPAZMODE) {
2159 uint16_t i = 0;
2160 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2161 while (i < len) {
2162 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2163 }
2164 } else {
2165 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2166 }
2167 }
2168 arg0 = ReaderReceive(buf, par);
2169 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2170 }
2171
2172 if(param & ISO14A_REQUEST_TRIGGER) {
2173 iso14a_set_trigger(FALSE);
2174 }
2175
2176 if(param & ISO14A_NO_DISCONNECT) {
2177 return;
2178 }
2179
2180 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2181 set_tracing(FALSE);
2182 LEDsoff();
2183 }
2184
2185
2186 // Determine the distance between two nonces.
2187 // Assume that the difference is small, but we don't know which is first.
2188 // Therefore try in alternating directions.
2189 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2190
2191 uint16_t i;
2192 uint32_t nttmp1, nttmp2;
2193
2194 if (nt1 == nt2) return 0;
2195
2196 nttmp1 = nt1;
2197 nttmp2 = nt2;
2198
2199 for (i = 1; i < 0xFFFF; i++) {
2200 nttmp1 = prng_successor(nttmp1, 1);
2201 if (nttmp1 == nt2) return i;
2202 nttmp2 = prng_successor(nttmp2, 1);
2203 if (nttmp2 == nt1) return -i;
2204 }
2205
2206 return(-99999); // either nt1 or nt2 are invalid nonces
2207 }
2208
2209
2210 //-----------------------------------------------------------------------------
2211 // Recover several bits of the cypher stream. This implements (first stages of)
2212 // the algorithm described in "The Dark Side of Security by Obscurity and
2213 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2214 // (article by Nicolas T. Courtois, 2009)
2215 //-----------------------------------------------------------------------------
2216 void ReaderMifare(bool first_try)
2217 {
2218 // Mifare AUTH
2219 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2220 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2221 static uint8_t mf_nr_ar3;
2222
2223 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2224 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2225
2226 if (first_try) {
2227 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2228 }
2229
2230 // free eventually allocated BigBuf memory. We want all for tracing.
2231 BigBuf_free();
2232
2233 clear_trace();
2234 set_tracing(TRUE);
2235
2236 byte_t nt_diff = 0;
2237 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2238 static byte_t par_low = 0;
2239 bool led_on = TRUE;
2240 uint8_t uid[10] ={0};
2241 uint32_t cuid;
2242
2243 uint32_t nt = 0;
2244 uint32_t previous_nt = 0;
2245 static uint32_t nt_attacked = 0;
2246 byte_t par_list[8] = {0x00};
2247 byte_t ks_list[8] = {0x00};
2248
2249 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2250 static uint32_t sync_time = 0;
2251 static int32_t sync_cycles = 0;
2252 int catch_up_cycles = 0;
2253 int last_catch_up = 0;
2254 uint16_t elapsed_prng_sequences;
2255 uint16_t consecutive_resyncs = 0;
2256 int isOK = 0;
2257
2258 if (first_try) {
2259 mf_nr_ar3 = 0;
2260 sync_time = GetCountSspClk() & 0xfffffff8;
2261 sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2262 nt_attacked = 0;
2263 par[0] = 0;
2264 }
2265 else {
2266 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2267 mf_nr_ar3++;
2268 mf_nr_ar[3] = mf_nr_ar3;
2269 par[0] = par_low;
2270 }
2271
2272 LED_A_ON();
2273 LED_B_OFF();
2274 LED_C_OFF();
2275
2276
2277 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2278 #define MAX_SYNC_TRIES 32
2279 #define NUM_DEBUG_INFOS 8 // per strategy
2280 #define MAX_STRATEGY 3
2281 uint16_t unexpected_random = 0;
2282 uint16_t sync_tries = 0;
2283 int16_t debug_info_nr = -1;
2284 uint16_t strategy = 0;
2285 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2286 uint32_t select_time;
2287 uint32_t halt_time;
2288
2289 for(uint16_t i = 0; TRUE; i++) {
2290
2291 LED_C_ON();
2292 WDT_HIT();
2293
2294 // Test if the action was cancelled
2295 if(BUTTON_PRESS()) {
2296 isOK = -1;
2297 break;
2298 }
2299
2300 if (strategy == 2) {
2301 // test with additional hlt command
2302 halt_time = 0;
2303 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2304 if (len && MF_DBGLEVEL >= 3) {
2305 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2306 }
2307 }
2308
2309 if (strategy == 3) {
2310 // test with FPGA power off/on
2311 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2312 SpinDelay(200);
2313 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2314 SpinDelay(100);
2315 }
2316
2317 if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) {
2318 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2319 continue;
2320 }
2321 select_time = GetCountSspClk();
2322
2323 elapsed_prng_sequences = 1;
2324 if (debug_info_nr == -1) {
2325 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2326 catch_up_cycles = 0;
2327
2328 // if we missed the sync time already, advance to the next nonce repeat
2329 while(GetCountSspClk() > sync_time) {
2330 elapsed_prng_sequences++;
2331 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2332 }
2333
2334 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2335 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2336 } else {
2337 // collect some information on tag nonces for debugging:
2338 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2339 if (strategy == 0) {
2340 // nonce distances at fixed time after card select:
2341 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2342 } else if (strategy == 1) {
2343 // nonce distances at fixed time between authentications:
2344 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2345 } else if (strategy == 2) {
2346 // nonce distances at fixed time after halt:
2347 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2348 } else {
2349 // nonce_distances at fixed time after power on
2350 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2351 }
2352 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2353 }
2354
2355 // Receive the (4 Byte) "random" nonce
2356 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2357 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2358 continue;
2359 }
2360
2361 previous_nt = nt;
2362 nt = bytes_to_num(receivedAnswer, 4);
2363
2364 // Transmit reader nonce with fake par
2365 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2366
2367 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2368 int nt_distance = dist_nt(previous_nt, nt);
2369 if (nt_distance == 0) {
2370 nt_attacked = nt;
2371 } else {
2372 if (nt_distance == -99999) { // invalid nonce received
2373 unexpected_random++;
2374 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
2375 isOK = -3; // Card has an unpredictable PRNG. Give up
2376 break;
2377 } else {
2378 continue; // continue trying...
2379 }
2380 }
2381 if (++sync_tries > MAX_SYNC_TRIES) {
2382 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
2383 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2384 break;
2385 } else { // continue for a while, just to collect some debug info
2386 debug_info[strategy][debug_info_nr] = nt_distance;
2387 debug_info_nr++;
2388 if (debug_info_nr == NUM_DEBUG_INFOS) {
2389 strategy++;
2390 debug_info_nr = 0;
2391 }
2392 continue;
2393 }
2394 }
2395 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
2396 if (sync_cycles <= 0) {
2397 sync_cycles += PRNG_SEQUENCE_LENGTH;
2398 }
2399 if (MF_DBGLEVEL >= 3) {
2400 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
2401 }
2402 continue;
2403 }
2404 }
2405
2406 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2407 catch_up_cycles = -dist_nt(nt_attacked, nt);
2408 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2409 catch_up_cycles = 0;
2410 continue;
2411 }
2412 catch_up_cycles /= elapsed_prng_sequences;
2413 if (catch_up_cycles == last_catch_up) {
2414 consecutive_resyncs++;
2415 }
2416 else {
2417 last_catch_up = catch_up_cycles;
2418 consecutive_resyncs = 0;
2419 }
2420 if (consecutive_resyncs < 3) {
2421 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2422 }
2423 else {
2424 sync_cycles = sync_cycles + catch_up_cycles;
2425 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2426 last_catch_up = 0;
2427 catch_up_cycles = 0;
2428 consecutive_resyncs = 0;
2429 }
2430 continue;
2431 }
2432
2433 consecutive_resyncs = 0;
2434
2435 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2436 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2437 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2438
2439 if (nt_diff == 0) {
2440 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2441 }
2442
2443 led_on = !led_on;
2444 if(led_on) LED_B_ON(); else LED_B_OFF();
2445
2446 par_list[nt_diff] = SwapBits(par[0], 8);
2447 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2448
2449 // Test if the information is complete
2450 if (nt_diff == 0x07) {
2451 isOK = 1;
2452 break;
2453 }
2454
2455 nt_diff = (nt_diff + 1) & 0x07;
2456 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2457 par[0] = par_low;
2458 } else {
2459 if (nt_diff == 0 && first_try)
2460 {
2461 par[0]++;
2462 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2463 isOK = -2;
2464 break;
2465 }
2466 } else {
2467 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2468 }
2469 }
2470 }
2471
2472
2473 mf_nr_ar[3] &= 0x1F;
2474
2475 if (isOK == -4) {
2476 if (MF_DBGLEVEL >= 3) {
2477 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2478 for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2479 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2480 }
2481 }
2482 }
2483 }
2484
2485 byte_t buf[28];
2486 memcpy(buf + 0, uid, 4);
2487 num_to_bytes(nt, 4, buf + 4);
2488 memcpy(buf + 8, par_list, 8);
2489 memcpy(buf + 16, ks_list, 8);
2490 memcpy(buf + 24, mf_nr_ar, 4);
2491
2492 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2493
2494 // Thats it...
2495 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2496 LEDsoff();
2497
2498 set_tracing(FALSE);
2499 }
2500
2501 /**
2502 *MIFARE 1K simulate.
2503 *
2504 *@param flags :
2505 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2506 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2507 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2508 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2509 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2510 */
2511 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2512 {
2513 int cardSTATE = MFEMUL_NOFIELD;
2514 int _7BUID = 0;
2515 int vHf = 0; // in mV
2516 int res;
2517 uint32_t selTimer = 0;
2518 uint32_t authTimer = 0;
2519 uint16_t len = 0;
2520 uint8_t cardWRBL = 0;
2521 uint8_t cardAUTHSC = 0;
2522 uint8_t cardAUTHKEY = 0xff; // no authentication
2523 // uint32_t cardRr = 0;
2524 uint32_t cuid = 0;
2525 //uint32_t rn_enc = 0;
2526 uint32_t ans = 0;
2527 uint32_t cardINTREG = 0;
2528 uint8_t cardINTBLOCK = 0;
2529 struct Crypto1State mpcs = {0, 0};
2530 struct Crypto1State *pcs;
2531 pcs = &mpcs;
2532 uint32_t numReads = 0;//Counts numer of times reader read a block
2533 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2534 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2535 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2536 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2537
2538 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2539 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2540 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2541 uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2542 //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2543 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2544
2545 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
2546 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2547
2548 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2549 // This can be used in a reader-only attack.
2550 // (it can also be retrieved via 'hf 14a list', but hey...
2551 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
2552 uint8_t ar_nr_collected = 0;
2553
2554 // Authenticate response - nonce
2555 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2556
2557 //-- Determine the UID
2558 // Can be set from emulator memory, incoming data
2559 // and can be 7 or 4 bytes long
2560 if (flags & FLAG_4B_UID_IN_DATA)
2561 {
2562 // 4B uid comes from data-portion of packet
2563 memcpy(rUIDBCC1,datain,4);
2564 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2565
2566 } else if (flags & FLAG_7B_UID_IN_DATA) {
2567 // 7B uid comes from data-portion of packet
2568 memcpy(&rUIDBCC1[1],datain,3);
2569 memcpy(rUIDBCC2, datain+3, 4);
2570 _7BUID = true;
2571 } else {
2572 // get UID from emul memory
2573 emlGetMemBt(receivedCmd, 7, 1);
2574 _7BUID = !(receivedCmd[0] == 0x00);
2575 if (!_7BUID) { // ---------- 4BUID
2576 emlGetMemBt(rUIDBCC1, 0, 4);
2577 } else { // ---------- 7BUID
2578 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2579 emlGetMemBt(rUIDBCC2, 3, 4);
2580 }
2581 }
2582
2583 // save uid.
2584 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2585 if ( _7BUID )
2586 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2587
2588 /*
2589 * Regardless of what method was used to set the UID, set fifth byte and modify
2590 * the ATQA for 4 or 7-byte UID
2591 */
2592 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2593 if (_7BUID) {
2594 rATQA[0] = 0x44;
2595 rUIDBCC1[0] = 0x88;
2596 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2597 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2598 }
2599
2600 if (MF_DBGLEVEL >= 1) {
2601 if (!_7BUID) {
2602 Dbprintf("4B UID: %02x%02x%02x%02x",
2603 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2604 } else {
2605 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2606 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2607 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2608 }
2609 }
2610
2611 // We need to listen to the high-frequency, peak-detected path.
2612 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2613
2614 // free eventually allocated BigBuf memory but keep Emulator Memory
2615 BigBuf_free_keep_EM();
2616
2617 // clear trace
2618 clear_trace();
2619 set_tracing(TRUE);
2620
2621
2622 bool finished = FALSE;
2623 while (!BUTTON_PRESS() && !finished) {
2624 WDT_HIT();
2625
2626 // find reader field
2627 if (cardSTATE == MFEMUL_NOFIELD) {
2628 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2629 if (vHf > MF_MINFIELDV) {
2630 cardSTATE_TO_IDLE();
2631 LED_A_ON();
2632 }
2633 }
2634 if(cardSTATE == MFEMUL_NOFIELD) continue;
2635
2636 //Now, get data
2637 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2638 if (res == 2) { //Field is off!
2639 cardSTATE = MFEMUL_NOFIELD;
2640 LEDsoff();
2641 continue;
2642 } else if (res == 1) {
2643 break; //return value 1 means button press
2644 }
2645
2646 // REQ or WUP request in ANY state and WUP in HALTED state
2647 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2648 selTimer = GetTickCount();
2649 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2650 cardSTATE = MFEMUL_SELECT1;
2651
2652 // init crypto block
2653 LED_B_OFF();
2654 LED_C_OFF();
2655 crypto1_destroy(pcs);
2656 cardAUTHKEY = 0xff;
2657 continue;
2658 }
2659
2660 switch (cardSTATE) {
2661 case MFEMUL_NOFIELD:
2662 case MFEMUL_HALTED:
2663 case MFEMUL_IDLE:{
2664 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2665 break;
2666 }
2667 case MFEMUL_SELECT1:{
2668 // select all
2669 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2670 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2671 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2672 break;
2673 }
2674
2675 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2676 {
2677 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2678 }
2679 // select card
2680 if (len == 9 &&
2681 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2682 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2683 cuid = bytes_to_num(rUIDBCC1, 4);
2684 if (!_7BUID) {
2685 cardSTATE = MFEMUL_WORK;
2686 LED_B_ON();
2687 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2688 break;
2689 } else {
2690 cardSTATE = MFEMUL_SELECT2;
2691 }
2692 }
2693 break;
2694 }
2695 case MFEMUL_AUTH1:{
2696 if( len != 8)
2697 {
2698 cardSTATE_TO_IDLE();
2699 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2700 break;
2701 }
2702
2703 uint32_t ar = bytes_to_num(receivedCmd, 4);
2704 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2705
2706 //Collect AR/NR
2707 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2708 if(ar_nr_collected < 2){
2709 if(ar_nr_responses[2] != ar)
2710 {// Avoid duplicates... probably not necessary, ar should vary.
2711 //ar_nr_responses[ar_nr_collected*5] = 0;
2712 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2713 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2714 ar_nr_responses[ar_nr_collected*5+3] = nr;
2715 ar_nr_responses[ar_nr_collected*5+4] = ar;
2716 ar_nr_collected++;
2717 }
2718 // Interactive mode flag, means we need to send ACK
2719 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2720 {
2721 finished = true;
2722 }
2723 }
2724
2725 // --- crypto
2726 //crypto1_word(pcs, ar , 1);
2727 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2728
2729 //test if auth OK
2730 //if (cardRr != prng_successor(nonce, 64)){
2731
2732 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2733 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2734 // cardRr, prng_successor(nonce, 64));
2735 // Shouldn't we respond anything here?
2736 // Right now, we don't nack or anything, which causes the
2737 // reader to do a WUPA after a while. /Martin
2738 // -- which is the correct response. /piwi
2739 //cardSTATE_TO_IDLE();
2740 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2741 //break;
2742 //}
2743
2744 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2745
2746 num_to_bytes(ans, 4, rAUTH_AT);
2747 // --- crypto
2748 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2749 LED_C_ON();
2750 cardSTATE = MFEMUL_WORK;
2751 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2752 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2753 GetTickCount() - authTimer);
2754 break;
2755 }
2756 case MFEMUL_SELECT2:{
2757 if (!len) {
2758 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2759 break;
2760 }
2761 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2762 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2763 break;
2764 }
2765
2766 // select 2 card
2767 if (len == 9 &&
2768 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2769 EmSendCmd(rSAK, sizeof(rSAK));
2770 cuid = bytes_to_num(rUIDBCC2, 4);
2771 cardSTATE = MFEMUL_WORK;
2772 LED_B_ON();
2773 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2774 break;
2775 }
2776
2777 // i guess there is a command). go into the work state.
2778 if (len != 4) {
2779 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2780 break;
2781 }
2782 cardSTATE = MFEMUL_WORK;
2783 //goto lbWORK;
2784 //intentional fall-through to the next case-stmt
2785 }
2786
2787 case MFEMUL_WORK:{
2788 if (len == 0) {
2789 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2790 break;
2791 }
2792
2793 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2794
2795 if(encrypted_data) {
2796 // decrypt seqence
2797 mf_crypto1_decrypt(pcs, receivedCmd, len);
2798 }
2799
2800 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2801 authTimer = GetTickCount();
2802 cardAUTHSC = receivedCmd[1] / 4; // received block num
2803 cardAUTHKEY = receivedCmd[0] - 0x60;
2804 crypto1_destroy(pcs);//Added by martin
2805 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2806
2807 if (!encrypted_data) { // first authentication
2808 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2809
2810 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2811 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2812 } else { // nested authentication
2813 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2814 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2815 num_to_bytes(ans, 4, rAUTH_AT);
2816 }
2817
2818 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2819 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2820 cardSTATE = MFEMUL_AUTH1;
2821 break;
2822 }
2823
2824 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2825 // BUT... ACK --> NACK
2826 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2827 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2828 break;
2829 }
2830
2831 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2832 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2833 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2834 break;
2835 }
2836
2837 if(len != 4) {
2838 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2839 break;
2840 }
2841
2842 if(receivedCmd[0] == 0x30 // read block
2843 || receivedCmd[0] == 0xA0 // write block
2844 || receivedCmd[0] == 0xC0 // inc
2845 || receivedCmd[0] == 0xC1 // dec
2846 || receivedCmd[0] == 0xC2 // restore
2847 || receivedCmd[0] == 0xB0) { // transfer
2848 if (receivedCmd[1] >= 16 * 4) {
2849 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2850 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2851 break;
2852 }
2853
2854 if (receivedCmd[1] / 4 != cardAUTHSC) {
2855 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2856 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2857 break;
2858 }
2859 }
2860 // read block
2861 if (receivedCmd[0] == 0x30) {
2862 if (MF_DBGLEVEL >= 4) {
2863 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2864 }
2865 emlGetMem(response, receivedCmd[1], 1);
2866 AppendCrc14443a(response, 16);
2867 mf_crypto1_encrypt(pcs, response, 18, response_par);
2868 EmSendCmdPar(response, 18, response_par);
2869 numReads++;
2870 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2871 Dbprintf("%d reads done, exiting", numReads);
2872 finished = true;
2873 }
2874 break;
2875 }
2876 // write block
2877 if (receivedCmd[0] == 0xA0) {
2878 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2879 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2880 cardSTATE = MFEMUL_WRITEBL2;
2881 cardWRBL = receivedCmd[1];
2882 break;
2883 }
2884 // increment, decrement, restore
2885 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2886 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2887 if (emlCheckValBl(receivedCmd[1])) {
2888 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2889 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2890 break;
2891 }
2892 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2893 if (receivedCmd[0] == 0xC1)
2894 cardSTATE = MFEMUL_INTREG_INC;
2895 if (receivedCmd[0] == 0xC0)
2896 cardSTATE = MFEMUL_INTREG_DEC;
2897 if (receivedCmd[0] == 0xC2)
2898 cardSTATE = MFEMUL_INTREG_REST;
2899 cardWRBL = receivedCmd[1];
2900 break;
2901 }
2902 // transfer
2903 if (receivedCmd[0] == 0xB0) {
2904 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2905 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2906 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2907 else
2908 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2909 break;
2910 }
2911 // halt
2912 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2913 LED_B_OFF();
2914 LED_C_OFF();
2915 cardSTATE = MFEMUL_HALTED;
2916 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2917 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2918 break;
2919 }
2920 // RATS
2921 if (receivedCmd[0] == 0xe0) {//RATS
2922 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2923 break;
2924 }
2925 // command not allowed
2926 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2927 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2928 break;
2929 }
2930 case MFEMUL_WRITEBL2:{
2931 if (len == 18){
2932 mf_crypto1_decrypt(pcs, receivedCmd, len);
2933 emlSetMem(receivedCmd, cardWRBL, 1);
2934 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2935 cardSTATE = MFEMUL_WORK;
2936 } else {
2937 cardSTATE_TO_IDLE();
2938 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2939 }
2940 break;
2941 }
2942
2943 case MFEMUL_INTREG_INC:{
2944 mf_crypto1_decrypt(pcs, receivedCmd, len);
2945 memcpy(&ans, receivedCmd, 4);
2946 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2947 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2948 cardSTATE_TO_IDLE();
2949 break;
2950 }
2951 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2952 cardINTREG = cardINTREG + ans;
2953 cardSTATE = MFEMUL_WORK;
2954 break;
2955 }
2956 case MFEMUL_INTREG_DEC:{
2957 mf_crypto1_decrypt(pcs, receivedCmd, len);
2958 memcpy(&ans, receivedCmd, 4);
2959 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2960 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2961 cardSTATE_TO_IDLE();
2962 break;
2963 }
2964 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2965 cardINTREG = cardINTREG - ans;
2966 cardSTATE = MFEMUL_WORK;
2967 break;
2968 }
2969 case MFEMUL_INTREG_REST:{
2970 mf_crypto1_decrypt(pcs, receivedCmd, len);
2971 memcpy(&ans, receivedCmd, 4);
2972 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2973 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2974 cardSTATE_TO_IDLE();
2975 break;
2976 }
2977 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2978 cardSTATE = MFEMUL_WORK;
2979 break;
2980 }
2981 }
2982 }
2983
2984 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2985 LEDsoff();
2986
2987 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2988 {
2989 //May just aswell send the collected ar_nr in the response aswell
2990 uint8_t len = ar_nr_collected*5*4;
2991 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
2992 }
2993
2994 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
2995 {
2996 if(ar_nr_collected > 1 ) {
2997 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2998 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2999 ar_nr_responses[0], // UID1
3000 ar_nr_responses[1], // UID2
3001 ar_nr_responses[2], // NT
3002 ar_nr_responses[3], // AR1
3003 ar_nr_responses[4], // NR1
3004 ar_nr_responses[8], // AR2
3005 ar_nr_responses[9] // NR2
3006 );
3007 Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x",
3008 ar_nr_responses[0], // UID1
3009 ar_nr_responses[1], // UID2
3010 ar_nr_responses[2], // NT1
3011 ar_nr_responses[3], // AR1
3012 ar_nr_responses[4], // NR1
3013 ar_nr_responses[7], // NT2
3014 ar_nr_responses[8], // AR2
3015 ar_nr_responses[9] // NR2
3016 );
3017 } else {
3018 Dbprintf("Failed to obtain two AR/NR pairs!");
3019 if(ar_nr_collected > 0 ) {
3020 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
3021 ar_nr_responses[0], // UID1
3022 ar_nr_responses[1], // UID2
3023 ar_nr_responses[2], // NT
3024 ar_nr_responses[3], // AR1
3025 ar_nr_responses[4] // NR1
3026 );
3027 }
3028 }
3029 }
3030 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
3031
3032 set_tracing(FALSE);
3033 }
3034
3035
3036 //-----------------------------------------------------------------------------
3037 // MIFARE sniffer.
3038 //
3039 //-----------------------------------------------------------------------------
3040 void RAMFUNC SniffMifare(uint8_t param) {
3041 // param:
3042 // bit 0 - trigger from first card answer
3043 // bit 1 - trigger from first reader 7-bit request
3044
3045 // C(red) A(yellow) B(green)
3046 LEDsoff();
3047 // init trace buffer
3048 clear_trace();
3049 set_tracing(TRUE);
3050
3051 // The command (reader -> tag) that we're receiving.
3052 // The length of a received command will in most cases be no more than 18 bytes.
3053 // So 32 should be enough!
3054 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
3055 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
3056 // The response (tag -> reader) that we're receiving.
3057 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
3058 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
3059
3060 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
3061
3062 // free eventually allocated BigBuf memory
3063 BigBuf_free();
3064 // allocate the DMA buffer, used to stream samples from the FPGA
3065 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
3066 uint8_t *data = dmaBuf;
3067 uint8_t previous_data = 0;
3068 int maxDataLen = 0;
3069 int dataLen = 0;
3070 bool ReaderIsActive = FALSE;
3071 bool TagIsActive = FALSE;
3072
3073 // Set up the demodulator for tag -> reader responses.
3074 DemodInit(receivedResponse, receivedResponsePar);
3075
3076 // Set up the demodulator for the reader -> tag commands
3077 UartInit(receivedCmd, receivedCmdPar);
3078
3079 // Setup for the DMA.
3080 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3081
3082 LED_D_OFF();
3083
3084 // init sniffer
3085 MfSniffInit();
3086
3087 // And now we loop, receiving samples.
3088 for(uint32_t sniffCounter = 0; TRUE; ) {
3089
3090 if(BUTTON_PRESS()) {
3091 DbpString("cancelled by button");
3092 break;
3093 }
3094
3095 LED_A_ON();
3096 WDT_HIT();
3097
3098 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
3099 // check if a transaction is completed (timeout after 2000ms).
3100 // if yes, stop the DMA transfer and send what we have so far to the client
3101 if (MfSniffSend(2000)) {
3102 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
3103 sniffCounter = 0;
3104 data = dmaBuf;
3105 maxDataLen = 0;
3106 ReaderIsActive = FALSE;
3107 TagIsActive = FALSE;
3108 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3109 }
3110 }
3111
3112 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3113 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3114 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3115 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3116 } else {
3117 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
3118 }
3119 // test for length of buffer
3120 if(dataLen > maxDataLen) { // we are more behind than ever...
3121 maxDataLen = dataLen;
3122 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
3123 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3124 break;
3125 }
3126 }
3127 if(dataLen < 1) continue;
3128
3129 // primary buffer was stopped ( <-- we lost data!
3130 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3131 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3132 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3133 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
3134 }
3135 // secondary buffer sets as primary, secondary buffer was stopped
3136 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3137 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3138 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3139 }
3140
3141 LED_A_OFF();
3142
3143 if (sniffCounter & 0x01) {
3144
3145 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3146 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3147 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3148 LED_C_INV();
3149 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
3150
3151 /* And ready to receive another command. */
3152 UartInit(receivedCmd, receivedCmdPar);
3153
3154 /* And also reset the demod code */
3155 DemodReset();
3156 }
3157 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3158 }
3159
3160 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3161 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3162 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3163 LED_C_INV();
3164
3165 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
3166
3167 // And ready to receive another response.
3168 DemodReset();
3169 // And reset the Miller decoder including its (now outdated) input buffer
3170 UartInit(receivedCmd, receivedCmdPar);
3171 }
3172 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3173 }
3174 }
3175
3176 previous_data = *data;
3177 sniffCounter++;
3178 data++;
3179 if(data == dmaBuf + DMA_BUFFER_SIZE) {
3180 data = dmaBuf;
3181 }
3182
3183 } // main cycle
3184
3185 FpgaDisableSscDma();
3186 MfSniffEnd();
3187 LEDsoff();
3188 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3189 set_tracing(FALSE);
3190 }
Impressum, Datenschutz