]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
2eb54d27449ef2838ed8e9e93505bd2450b39896
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include <stdarg.h>
14
15 #include "usb_cdc.h"
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "fpga.h"
19 #include "util.h"
20 #include "printf.h"
21 #include "string.h"
22 #include "legicrf.h"
23 #include "legicrfsim.h"
24 #include "hitag2.h"
25 #include "hitagS.h"
26 #include "iclass.h"
27 #include "iso14443b.h"
28 #include "iso15693.h"
29 #include "lfsampling.h"
30 #include "BigBuf.h"
31 #include "mifarecmd.h"
32 #include "mifareutil.h"
33 #include "mifaresim.h"
34 #include "pcf7931.h"
35 #include "i2c.h"
36 #include "hfsnoop.h"
37 #include "fpgaloader.h"
38 #ifdef WITH_LCD
39 #include "LCD.h"
40 #endif
41
42 static uint32_t hw_capabilities;
43
44 // Craig Young - 14a stand-alone code
45 #ifdef WITH_ISO14443a
46 #include "iso14443a.h"
47 #endif
48
49 //=============================================================================
50 // A buffer where we can queue things up to be sent through the FPGA, for
51 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
52 // is the order in which they go out on the wire.
53 //=============================================================================
54
55 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
56 uint8_t ToSend[TOSEND_BUFFER_SIZE];
57 int ToSendMax;
58 static int ToSendBit;
59 struct common_area common_area __attribute__((section(".commonarea")));
60
61 void ToSendReset(void) {
62 ToSendMax = -1;
63 ToSendBit = 8;
64 }
65
66 void ToSendStuffBit(int b) {
67 if (ToSendBit >= 8) {
68 ToSendMax++;
69 ToSend[ToSendMax] = 0;
70 ToSendBit = 0;
71 }
72
73 if (b) {
74 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
75 }
76
77 ToSendBit++;
78
79 if (ToSendMax >= sizeof(ToSend)) {
80 ToSendBit = 0;
81 DbpString("ToSendStuffBit overflowed!");
82 }
83 }
84
85 //=============================================================================
86 // Debug print functions, to go out over USB, to the usual PC-side client.
87 //=============================================================================
88
89 void DbpString(char *str) {
90 uint8_t len = strlen(str);
91 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len);
92 }
93
94 void Dbprintf(const char *fmt, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
102
103 DbpString(output_string);
104 }
105
106 // prints HEX & ASCII
107 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
108 int l=0,i;
109 char ascii[9];
110
111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
116 ascii[l]=0;
117
118 // filter safe ascii
119 for (i = 0; i < l; i++)
120 if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.';
121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii, l, d, " ");
124 } else {
125 Dbprintf("%*D", l, d, " ");
126 }
127
128 len -= 8;
129 d += 8;
130 }
131 }
132
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 // return that.
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch) {
139 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
140 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
141 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
142 //
143 // The maths are:
144 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
145 //
146 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
147
148 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
149 AT91C_BASE_ADC->ADC_MR =
150 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
151 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
152 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
153
154 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
155 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
156
157 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
158
159 return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
160 }
161
162 int AvgAdc(int ch) { // was static - merlok{
163 int i;
164 int a = 0;
165
166 for(i = 0; i < 32; i++) {
167 a += ReadAdc(ch);
168 }
169
170 return (a + 15) >> 5;
171 }
172
173 static int AvgAdc_Voltage_HF(void) {
174 int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
175
176 AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
177 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
178 if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
179 AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
180 if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
181 return AvgAdc_Voltage_High;
182 }
183 }
184 return AvgAdc_Voltage_Low;
185 }
186
187 static int AvgAdc_Voltage_LF(void) {
188 return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
189 }
190
191 void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) {
192 int i, adcval = 0, peak = 0;
193
194 /*
195 * Sweeps the useful LF range of the proxmark from
196 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
197 * read the voltage in the antenna, the result left
198 * in the buffer is a graph which should clearly show
199 * the resonating frequency of your LF antenna
200 * ( hopefully around 95 if it is tuned to 125kHz!)
201 */
202
203 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
205 SpinDelay(50);
206
207 for (i = 255; i >= 19; i--) {
208 WDT_HIT();
209 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
210 SpinDelay(20);
211 adcval = AvgAdc_Voltage_LF();
212 if (i == 95) *vLf125 = adcval; // voltage at 125Khz
213 if (i == 89) *vLf134 = adcval; // voltage at 134Khz
214
215 LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
216 if (LF_Results[i] > peak) {
217 *peakv = adcval;
218 peak = LF_Results[i];
219 *peakf = i;
220 //ptr = i;
221 }
222 }
223
224 for (i = 18; i >= 0; i--) LF_Results[i] = 0;
225
226 return;
227 }
228
229 void MeasureAntennaTuningHfOnly(int *vHf) {
230 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
231 LED_A_ON();
232 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
234 SpinDelay(20);
235 *vHf = AvgAdc_Voltage_HF();
236 LED_A_OFF();
237 return;
238 }
239
240 void MeasureAntennaTuning(int mode) {
241 uint8_t LF_Results[256] = {0};
242 int peakv = 0, peakf = 0;
243 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
244
245 LED_B_ON();
246
247 if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
248 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
249 MeasureAntennaTuningHfOnly(&vHf);
250 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
251 } else {
252 if (mode & FLAG_TUNE_LF) {
253 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
254 }
255 if (mode & FLAG_TUNE_HF) {
256 MeasureAntennaTuningHfOnly(&vHf);
257 }
258 }
259
260 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
261 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
262 LED_B_OFF();
263 return;
264 }
265
266 void MeasureAntennaTuningHf(void) {
267 int vHf = 0; // in mV
268
269 DbpString("Measuring HF antenna, press button to exit");
270
271 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
272 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
273 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
274
275 for (;;) {
276 SpinDelay(500);
277 vHf = AvgAdc_Voltage_HF();
278
279 Dbprintf("%d mV",vHf);
280 if (BUTTON_PRESS()) break;
281 }
282 DbpString("cancelled");
283
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
285
286 }
287
288
289 void ReadMem(int addr) {
290 const uint8_t *data = ((uint8_t *)addr);
291
292 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
293 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
294 }
295
296 /* osimage version information is linked in */
297 extern struct version_information version_information;
298 /* bootrom version information is pointed to from _bootphase1_version_pointer */
299 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
300
301
302 void set_hw_capabilities(void) {
303 if (I2C_is_available()) {
304 hw_capabilities |= HAS_SMARTCARD_SLOT;
305 }
306
307 if (false) { // TODO: implement a test
308 hw_capabilities |= HAS_EXTRA_FLASH_MEM;
309 }
310 }
311
312
313 void SendVersion(void) {
314 set_hw_capabilities();
315
316 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
317 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
318
319 /* Try to find the bootrom version information. Expect to find a pointer at
320 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
321 * pointer, then use it.
322 */
323 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
324 if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) {
325 strcat(VersionString, "bootrom version information appears invalid\n");
326 } else {
327 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
328 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
329 }
330
331 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
332 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
333
334 for (int i = 0; i < fpga_bitstream_num; i++) {
335 strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
336 strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
337 }
338
339 // test availability of SmartCard slot
340 if (I2C_is_available()) {
341 strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
342 } else {
343 strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
344 }
345
346 // Send Chip ID and used flash memory
347 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
348 uint32_t compressed_data_section_size = common_area.arg1;
349 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString) + 1);
350 }
351
352 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
353 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
354 void printUSBSpeed(void) {
355 Dbprintf("USB Speed:");
356 Dbprintf(" Sending USB packets to client...");
357
358 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
359 uint8_t *test_data = BigBuf_get_addr();
360 uint32_t end_time;
361
362 uint32_t start_time = end_time = GetTickCount();
363 uint32_t bytes_transferred = 0;
364
365 LED_B_ON();
366 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
367 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
368 end_time = GetTickCount();
369 bytes_transferred += USB_CMD_DATA_SIZE;
370 }
371 LED_B_OFF();
372
373 Dbprintf(" Time elapsed: %dms", end_time - start_time);
374 Dbprintf(" Bytes transferred: %d", bytes_transferred);
375 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
376 1000 * bytes_transferred / (end_time - start_time));
377
378 }
379
380 /**
381 * Prints runtime information about the PM3.
382 **/
383 void SendStatus(void) {
384 BigBuf_print_status();
385 Fpga_print_status();
386 #ifdef WITH_SMARTCARD
387 I2C_print_status();
388 #endif
389 printConfig(); //LF Sampling config
390 printUSBSpeed();
391 Dbprintf("Various");
392 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
393 Dbprintf(" ToSendMax..........%d", ToSendMax);
394 Dbprintf(" ToSendBit..........%d", ToSendBit);
395
396 cmd_send(CMD_ACK,1,0,0,0,0);
397 }
398
399 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
400
401 #define OPTS 2
402
403 void StandAloneMode() {
404 DbpString("Stand-alone mode! No PC necessary.");
405 // Oooh pretty -- notify user we're in elite samy mode now
406 LED(LED_RED, 200);
407 LED(LED_ORANGE, 200);
408 LED(LED_GREEN, 200);
409 LED(LED_ORANGE, 200);
410 LED(LED_RED, 200);
411 LED(LED_ORANGE, 200);
412 LED(LED_GREEN, 200);
413 LED(LED_ORANGE, 200);
414 LED(LED_RED, 200);
415 }
416
417 #endif
418
419
420
421 #ifdef WITH_ISO14443a_StandAlone
422 void StandAloneMode14a() {
423 StandAloneMode();
424 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
425
426 int selected = 0;
427 bool playing = false, GotoRecord = false, GotoClone = false;
428 bool cardRead[OPTS] = {false};
429 uint8_t readUID[10] = {0};
430 uint32_t uid_1st[OPTS]={0};
431 uint32_t uid_2nd[OPTS]={0};
432 uint32_t uid_tmp1 = 0;
433 uint32_t uid_tmp2 = 0;
434 iso14a_card_select_t hi14a_card[OPTS];
435
436 LED(selected + 1, 0);
437
438 for (;;) {
439 usb_poll();
440 WDT_HIT();
441 SpinDelay(300);
442
443 if (GotoRecord || !cardRead[selected]) {
444 GotoRecord = false;
445 LEDsoff();
446 LED(selected + 1, 0);
447 LED(LED_RED2, 0);
448
449 // record
450 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
451 /* need this delay to prevent catching some weird data */
452 SpinDelay(500);
453 /* Code for reading from 14a tag */
454 uint8_t uid[10] ={0};
455 uint32_t cuid;
456 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
457
458 for ( ; ; ) {
459 WDT_HIT();
460 if (BUTTON_PRESS()) {
461 if (cardRead[selected]) {
462 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
463 break;
464 } else if (cardRead[(selected+1)%OPTS]) {
465 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
466 selected = (selected+1)%OPTS;
467 break;
468 } else {
469 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
470 SpinDelay(300);
471 }
472 }
473 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
474 continue;
475 else {
476 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
477 memcpy(readUID,uid,10*sizeof(uint8_t));
478 uint8_t *dst = (uint8_t *)&uid_tmp1;
479 // Set UID byte order
480 for (int i = 0; i < 4; i++)
481 dst[i] = uid[3-i];
482 dst = (uint8_t *)&uid_tmp2;
483 for (int i = 0; i < 4; i++)
484 dst[i] = uid[7-i];
485 if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) {
486 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
487 } else {
488 if (uid_tmp2) {
489 Dbprintf("Bank[%d] received a 7-byte UID", selected);
490 uid_1st[selected] = (uid_tmp1)>>8;
491 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
492 } else {
493 Dbprintf("Bank[%d] received a 4-byte UID", selected);
494 uid_1st[selected] = uid_tmp1;
495 uid_2nd[selected] = uid_tmp2;
496 }
497 break;
498 }
499 }
500 }
501 Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]);
502 Dbprintf("SAK = %02X", hi14a_card[selected].sak);
503 LEDsoff();
504 LED(LED_GREEN, 200);
505 LED(LED_ORANGE, 200);
506 LED(LED_GREEN, 200);
507 LED(LED_ORANGE, 200);
508
509 LEDsoff();
510 LED(selected + 1, 0);
511
512 // Next state is replay:
513 playing = true;
514
515 cardRead[selected] = true;
516 } else if (GotoClone) { /* MF Classic UID clone */
517 GotoClone=false;
518 LEDsoff();
519 LED(selected + 1, 0);
520 LED(LED_ORANGE, 250);
521
522
523 // record
524 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
525
526 // wait for button to be released
527 while(BUTTON_PRESS()) {
528 // Delay cloning until card is in place
529 WDT_HIT();
530 }
531 Dbprintf("Starting clone. [Bank: %u]", selected);
532 // need this delay to prevent catching some weird data
533 SpinDelay(500);
534 // Begin clone function here:
535 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
536 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
537 memcpy(c.d.asBytes, data, 16);
538 SendCommand(&c);
539
540 Block read is similar:
541 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
542 We need to imitate that call with blockNo 0 to set a uid.
543
544 The get and set commands are handled in this file:
545 // Work with "magic Chinese" card
546 case CMD_MIFARE_CSETBLOCK:
547 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
548 break;
549 case CMD_MIFARE_CGETBLOCK:
550 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
551 break;
552
553 mfCSetUID provides example logic for UID set workflow:
554 -Read block0 from card in field with MifareCGetBlock()
555 -Configure new values without replacing reserved bytes
556 memcpy(block0, uid, 4); // Copy UID bytes from byte array
557 // Mifare UID BCC
558 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
559 Bytes 5-7 are reserved SAK and ATQA for mifare classic
560 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
561 */
562 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
563 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
564 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
565 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
566 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
567 playing = true;
568 } else {
569 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]);
570 memcpy(newBlock0, oldBlock0, 16);
571 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
572
573 newBlock0[0] = uid_1st[selected] >> 24;
574 newBlock0[1] = 0xFF & (uid_1st[selected] >> 16);
575 newBlock0[2] = 0xFF & (uid_1st[selected] >> 8);
576 newBlock0[3] = 0xFF & (uid_1st[selected]);
577 newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3];
578 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
579 MifareCSetBlock(0, 0xFF, 0, newBlock0);
580 MifareCGetBlock(0x3F, 1, 0, testBlock0);
581 if (memcmp(testBlock0, newBlock0, 16) == 0) {
582 DbpString("Cloned successfull!");
583 cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
584 playing = false;
585 GotoRecord = true;
586 selected = (selected+1) % OPTS;
587 } else {
588 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
589 playing = true;
590 }
591 }
592 LEDsoff();
593 LED(selected + 1, 0);
594
595 } else if (playing) {
596 // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
597 // Change where to record (or begin playing)
598 LEDsoff();
599 LED(selected + 1, 0);
600
601 // Begin transmitting
602 LED(LED_GREEN, 0);
603 DbpString("Playing");
604 for ( ; ; ) {
605 WDT_HIT();
606 int button_action = BUTTON_HELD(1000);
607 if (button_action == 0) { // No button action, proceed with sim
608 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
609 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected);
610 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
611 DbpString("Mifare Classic");
612 SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
613 } else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
614 DbpString("Mifare Ultralight");
615 SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight
616 } else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
617 DbpString("Mifare DESFire");
618 SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire
619 } else {
620 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
621 SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data);
622 }
623 } else if (button_action == BUTTON_SINGLE_CLICK) {
624 selected = (selected + 1) % OPTS;
625 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
626 GotoRecord = true;
627 break;
628 } else if (button_action == BUTTON_HOLD) {
629 Dbprintf("Playtime over. Begin cloning...");
630 GotoClone = true;
631 break;
632 }
633 WDT_HIT();
634 }
635
636 /* We pressed a button so ignore it here with a delay */
637 SpinDelay(300);
638 LEDsoff();
639 LED(selected + 1, 0);
640 }
641 }
642 }
643
644 #elif WITH_LF_StandAlone
645
646 // samy's sniff and repeat routine
647 void SamyRun() {
648 StandAloneMode();
649 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
650
651 int tops[OPTS], high[OPTS], low[OPTS];
652 int selected = 0;
653 int playing = 0;
654 int cardRead = 0;
655
656 // Turn on selected LED
657 LED(selected + 1, 0);
658
659 for (;;) {
660 usb_poll();
661 WDT_HIT();
662
663 // Was our button held down or pressed?
664 int button_pressed = BUTTON_HELD(1000);
665 SpinDelay(300);
666
667 // Button was held for a second, begin recording
668 if (button_pressed > 0 && cardRead == 0) {
669 LEDsoff();
670 LED(selected + 1, 0);
671 LED(LED_RED2, 0);
672
673 // record
674 DbpString("Starting recording");
675
676 // wait for button to be released
677 while(BUTTON_PRESS())
678 WDT_HIT();
679
680 /* need this delay to prevent catching some weird data */
681 SpinDelay(500);
682
683 CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
684 if (tops[selected] > 0)
685 Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
686 else
687 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
688
689 LEDsoff();
690 LED(selected + 1, 0);
691 // Finished recording
692
693 // If we were previously playing, set playing off
694 // so next button push begins playing what we recorded
695 playing = 0;
696
697 cardRead = 1;
698
699 } else if (button_pressed > 0 && cardRead == 1) {
700 LEDsoff();
701 LED(selected + 1, 0);
702 LED(LED_ORANGE, 0);
703
704 // record
705 if (tops[selected] > 0)
706 Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
707 else
708 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
709
710 // wait for button to be released
711 while(BUTTON_PRESS())
712 WDT_HIT();
713
714 /* need this delay to prevent catching some weird data */
715 SpinDelay(500);
716
717 CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
718 if (tops[selected] > 0)
719 Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
720 else
721 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
722
723 LEDsoff();
724 LED(selected + 1, 0);
725 // Finished recording
726
727 // If we were previously playing, set playing off
728 // so next button push begins playing what we recorded
729 playing = 0;
730
731 cardRead = 0;
732
733 } else if (button_pressed) {
734
735 // Change where to record (or begin playing)
736 // Next option if we were previously playing
737 if (playing)
738 selected = (selected + 1) % OPTS;
739 playing = !playing;
740
741 LEDsoff();
742 LED(selected + 1, 0);
743
744 // Begin transmitting
745 if (playing) {
746 LED(LED_GREEN, 0);
747 DbpString("Playing");
748 // wait for button to be released
749 while(BUTTON_PRESS())
750 WDT_HIT();
751 if (tops[selected] > 0)
752 Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
753 else
754 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
755
756 CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
757 DbpString("Done playing");
758 if (BUTTON_HELD(1000) > 0) {
759 DbpString("Exiting");
760 LEDsoff();
761 return;
762 }
763
764 /* We pressed a button so ignore it here with a delay */
765 SpinDelay(300);
766
767 // when done, we're done playing, move to next option
768 selected = (selected + 1) % OPTS;
769 playing = !playing;
770 LEDsoff();
771 LED(selected + 1, 0);
772 } else
773 while(BUTTON_PRESS())
774 WDT_HIT();
775 }
776 }
777 }
778
779 #endif
780
781 /*
782 OBJECTIVE
783 Listen and detect an external reader. Determine the best location
784 for the antenna.
785
786 INSTRUCTIONS:
787 Inside the ListenReaderField() function, there is two mode.
788 By default, when you call the function, you will enter mode 1.
789 If you press the PM3 button one time, you will enter mode 2.
790 If you press the PM3 button a second time, you will exit the function.
791
792 DESCRIPTION OF MODE 1:
793 This mode just listens for an external reader field and lights up green
794 for HF and/or red for LF. This is the original mode of the detectreader
795 function.
796
797 DESCRIPTION OF MODE 2:
798 This mode will visually represent, using the LEDs, the actual strength of the
799 current compared to the maximum current detected. Basically, once you know
800 what kind of external reader is present, it will help you spot the best location to place
801 your antenna. You will probably not get some good results if there is a LF and a HF reader
802 at the same place! :-)
803
804 LIGHT SCHEME USED:
805 */
806 static const char LIGHT_SCHEME[] = {
807 0x0, /* ---- | No field detected */
808 0x1, /* X--- | 14% of maximum current detected */
809 0x2, /* -X-- | 29% of maximum current detected */
810 0x4, /* --X- | 43% of maximum current detected */
811 0x8, /* ---X | 57% of maximum current detected */
812 0xC, /* --XX | 71% of maximum current detected */
813 0xE, /* -XXX | 86% of maximum current detected */
814 0xF, /* XXXX | 100% of maximum current detected */
815 };
816
817 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
818
819 void ListenReaderField(int limit) {
820 int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
821 int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
822 int mode=1, display_val, display_max, i;
823
824 #define LF_ONLY 1
825 #define HF_ONLY 2
826 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
827 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
828 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
829
830
831 // switch off FPGA - we don't want to measure our own signal
832 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
833 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
834
835 LEDsoff();
836
837 lf_av = lf_max = AvgAdc_Voltage_LF();
838
839 if (limit != HF_ONLY) {
840 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
841 lf_baseline = lf_av;
842 }
843
844 hf_av = hf_max = AvgAdc_Voltage_HF();
845
846 if (limit != LF_ONLY) {
847 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
848 hf_baseline = hf_av;
849 }
850
851 for(;;) {
852 SpinDelay(500);
853 if (BUTTON_PRESS()) {
854 switch (mode) {
855 case 1:
856 mode=2;
857 DbpString("Signal Strength Mode");
858 break;
859 case 2:
860 default:
861 DbpString("Stopped");
862 LEDsoff();
863 return;
864 break;
865 }
866 while (BUTTON_PRESS())
867 /* wait */;
868 }
869 WDT_HIT();
870
871 if (limit != HF_ONLY) {
872 if(mode == 1) {
873 if (lf_av - lf_baseline > MIN_LF_FIELD)
874 LED_D_ON();
875 else
876 LED_D_OFF();
877 }
878
879 lf_av_new = AvgAdc_Voltage_LF();
880 // see if there's a significant change
881 if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
882 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
883 lf_av = lf_av_new;
884 if (lf_av > lf_max)
885 lf_max = lf_av;
886 }
887 }
888
889 if (limit != LF_ONLY) {
890 if (mode == 1){
891 if (hf_av - hf_baseline > MIN_HF_FIELD)
892 LED_B_ON();
893 else
894 LED_B_OFF();
895 }
896
897 hf_av_new = AvgAdc_Voltage_HF();
898
899 // see if there's a significant change
900 if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
901 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
902 hf_av = hf_av_new;
903 if (hf_av > hf_max)
904 hf_max = hf_av;
905 }
906 }
907
908 if (mode == 2) {
909 if (limit == LF_ONLY) {
910 display_val = lf_av;
911 display_max = lf_max;
912 } else if (limit == HF_ONLY) {
913 display_val = hf_av;
914 display_max = hf_max;
915 } else { /* Pick one at random */
916 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
917 display_val = hf_av;
918 display_max = hf_max;
919 } else {
920 display_val = lf_av;
921 display_max = lf_max;
922 }
923 }
924 for (i = 0; i < LIGHT_LEN; i++) {
925 if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) {
926 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
927 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
928 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
929 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
930 break;
931 }
932 }
933 }
934 }
935 }
936
937
938 void UsbPacketReceived(UsbCommand *c) {
939
940 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
941
942 switch(c->cmd) {
943 #ifdef WITH_LF
944 case CMD_SET_LF_SAMPLING_CONFIG:
945 setSamplingConfig(c->d.asBytes);
946 break;
947 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
948 cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
949 break;
950 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
951 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
952 break;
953 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
954 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
955 break;
956 case CMD_HID_DEMOD_FSK:
957 CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
958 break;
959 case CMD_HID_SIM_TAG:
960 CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
961 break;
962 case CMD_FSK_SIM_TAG:
963 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
964 break;
965 case CMD_ASK_SIM_TAG:
966 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
967 break;
968 case CMD_PSK_SIM_TAG:
969 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
970 break;
971 case CMD_HID_CLONE_TAG:
972 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
973 break;
974 case CMD_PARADOX_CLONE_TAG:
975 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
976 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
977 break;
978 case CMD_IO_DEMOD_FSK:
979 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
980 break;
981 case CMD_IO_CLONE_TAG:
982 CopyIOtoT55x7(c->arg[0], c->arg[1]);
983 break;
984 case CMD_EM410X_DEMOD:
985 CmdEM410xdemod(c->arg[0], 0, 0, 1);
986 break;
987 case CMD_EM410X_WRITE_TAG:
988 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
989 break;
990 case CMD_READ_TI_TYPE:
991 ReadTItag();
992 break;
993 case CMD_WRITE_TI_TYPE:
994 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
995 break;
996 case CMD_SIMULATE_TAG_125K:
997 LED_A_ON();
998 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
999 LED_A_OFF();
1000 break;
1001 case CMD_LF_SIMULATE_BIDIR:
1002 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
1003 break;
1004 case CMD_INDALA_CLONE_TAG:
1005 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
1006 break;
1007 case CMD_INDALA_CLONE_TAG_L:
1008 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
1009 break;
1010 case CMD_T55XX_READ_BLOCK:
1011 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1012 break;
1013 case CMD_T55XX_WRITE_BLOCK:
1014 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1015 break;
1016 case CMD_T55XX_WAKEUP:
1017 T55xxWakeUp(c->arg[0]);
1018 break;
1019 case CMD_T55XX_RESET_READ:
1020 T55xxResetRead();
1021 break;
1022 case CMD_PCF7931_READ:
1023 ReadPCF7931();
1024 break;
1025 case CMD_PCF7931_WRITE:
1026 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
1027 break;
1028 case CMD_PCF7931_BRUTEFORCE:
1029 BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
1030 break;
1031 case CMD_EM4X_READ_WORD:
1032 EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
1033 break;
1034 case CMD_EM4X_WRITE_WORD:
1035 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1036 break;
1037 case CMD_EM4X_PROTECT:
1038 EM4xProtect(c->arg[0], c->arg[1], c->arg[2]);
1039 break;
1040 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1041 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1042 break;
1043 case CMD_VIKING_CLONE_TAG:
1044 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1045 break;
1046 case CMD_COTAG:
1047 Cotag(c->arg[0]);
1048 break;
1049 #endif
1050
1051 #ifdef WITH_HITAG
1052 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1053 SnoopHitag(c->arg[0]);
1054 break;
1055 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1056 SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes);
1057 break;
1058 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1059 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1060 break;
1061 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1062 SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes);
1063 break;
1064 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1065 check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]);
1066 break;
1067 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
1068 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
1069 break;
1070 case CMD_READ_HITAG_S_BLK:
1071 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
1072 break;
1073 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
1074 if ((hitag_function)c->arg[0] < 10) {
1075 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1076 }
1077 else if ((hitag_function)c->arg[0] >= 10) {
1078 WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
1079 }
1080 break;
1081 #endif
1082
1083 #ifdef WITH_ISO15693
1084 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1085 AcquireRawAdcSamplesIso15693();
1086 break;
1087
1088 case CMD_SNOOP_ISO_15693:
1089 SnoopIso15693(0, NULL);
1090 break;
1091
1092 case CMD_ISO_15693_COMMAND:
1093 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1094 break;
1095
1096 case CMD_ISO_15693_FIND_AFI:
1097 BruteforceIso15693Afi(c->arg[0]);
1098 break;
1099
1100 case CMD_ISO_15693_DEBUG:
1101 SetDebugIso15693(c->arg[0]);
1102 break;
1103
1104 case CMD_READER_ISO_15693:
1105 ReaderIso15693(c->arg[0]);
1106 break;
1107
1108 case CMD_SIMTAG_ISO_15693:
1109 SimTagIso15693(c->arg[0], c->d.asBytes);
1110 break;
1111
1112 case CMD_CSETUID_ISO_15693:
1113 SetTag15693Uid(c->d.asBytes);
1114 break;
1115 #endif
1116
1117 #ifdef WITH_LEGICRF
1118 case CMD_SIMULATE_TAG_LEGIC_RF:
1119 LegicRfSimulate(c->arg[0]);
1120 break;
1121
1122 case CMD_WRITER_LEGIC_RF:
1123 LegicRfWriter(c->arg[1], c->arg[0]);
1124 break;
1125
1126 case CMD_READER_LEGIC_RF:
1127 LegicRfReader(c->arg[0], c->arg[1]);
1128 break;
1129 #endif
1130
1131 #ifdef WITH_ISO14443b
1132 case CMD_READ_SRI512_TAG:
1133 ReadSTMemoryIso14443b(0x0F);
1134 break;
1135 case CMD_READ_SRIX4K_TAG:
1136 ReadSTMemoryIso14443b(0x7F);
1137 break;
1138 case CMD_SNOOP_ISO_14443B:
1139 SnoopIso14443b();
1140 break;
1141 case CMD_SIMULATE_TAG_ISO_14443B:
1142 SimulateIso14443bTag();
1143 break;
1144 case CMD_ISO_14443B_COMMAND:
1145 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1146 break;
1147 #endif
1148
1149 #ifdef WITH_ISO14443a
1150 case CMD_SNOOP_ISO_14443a:
1151 SnoopIso14443a(c->arg[0]);
1152 break;
1153 case CMD_READER_ISO_14443a:
1154 ReaderIso14443a(c);
1155 break;
1156 case CMD_SIMULATE_TAG_ISO_14443a:
1157 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1158 break;
1159
1160 case CMD_EPA_PACE_COLLECT_NONCE:
1161 EPA_PACE_Collect_Nonce(c);
1162 break;
1163 case CMD_EPA_PACE_REPLAY:
1164 EPA_PACE_Replay(c);
1165 break;
1166
1167 case CMD_READER_MIFARE:
1168 ReaderMifare(c->arg[0]);
1169 break;
1170 case CMD_MIFARE_READBL:
1171 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1172 break;
1173 case CMD_MIFAREU_READBL:
1174 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1175 break;
1176 case CMD_MIFAREUC_AUTH:
1177 MifareUC_Auth(c->arg[0],c->d.asBytes);
1178 break;
1179 case CMD_MIFAREU_READCARD:
1180 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1181 break;
1182 case CMD_MIFAREUC_SETPWD:
1183 MifareUSetPwd(c->arg[0], c->d.asBytes);
1184 break;
1185 case CMD_MIFARE_READSC:
1186 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1187 break;
1188 case CMD_MIFARE_WRITEBL:
1189 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1190 break;
1191 case CMD_MIFARE_PERSONALIZE_UID:
1192 MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes);
1193 break;
1194 //case CMD_MIFAREU_WRITEBL_COMPAT:
1195 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1196 //break;
1197 case CMD_MIFAREU_WRITEBL:
1198 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1199 break;
1200 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1201 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1202 break;
1203 case CMD_MIFARE_NESTED:
1204 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1205 break;
1206 case CMD_MIFARE_CHKKEYS:
1207 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1208 break;
1209 case CMD_SIMULATE_MIFARE_CARD:
1210 MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1211 break;
1212
1213 // emulator
1214 case CMD_MIFARE_SET_DBGMODE:
1215 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1216 break;
1217 case CMD_MIFARE_EML_MEMCLR:
1218 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1219 break;
1220 case CMD_MIFARE_EML_MEMSET:
1221 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1222 break;
1223 case CMD_MIFARE_EML_MEMGET:
1224 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1225 break;
1226 case CMD_MIFARE_EML_CARDLOAD:
1227 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1228 break;
1229
1230 // Work with "magic Chinese" card
1231 case CMD_MIFARE_CWIPE:
1232 MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1233 break;
1234 case CMD_MIFARE_CSETBLOCK:
1235 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1236 break;
1237 case CMD_MIFARE_CGETBLOCK:
1238 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1239 break;
1240 case CMD_MIFARE_CIDENT:
1241 MifareCIdent();
1242 break;
1243
1244 // mifare sniffer
1245 case CMD_MIFARE_SNIFFER:
1246 SniffMifare(c->arg[0]);
1247 break;
1248
1249 #endif
1250
1251 #ifdef WITH_ICLASS
1252 // Makes use of ISO14443a FPGA Firmware
1253 case CMD_SNOOP_ICLASS:
1254 SnoopIClass(c->arg[0], c->d.asBytes);
1255 break;
1256 case CMD_SIMULATE_TAG_ICLASS:
1257 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1258 break;
1259 case CMD_READER_ICLASS:
1260 ReaderIClass(c->arg[0]);
1261 break;
1262 case CMD_ICLASS_EML_MEMSET:
1263 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1264 break;
1265 case CMD_ICLASS_WRITEBLOCK:
1266 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1267 break;
1268 case CMD_ICLASS_READBLOCK:
1269 iClass_ReadBlk(c->arg[0]);
1270 break;
1271 case CMD_ICLASS_CHECK:
1272 iClass_Check(c->d.asBytes);
1273 break;
1274 case CMD_ICLASS_READCHECK:
1275 iClass_Readcheck(c->arg[0], c->arg[1]);
1276 break;
1277 case CMD_ICLASS_DUMP:
1278 iClass_Dump(c->arg[0], c->arg[1]);
1279 break;
1280 case CMD_ICLASS_CLONE:
1281 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1282 break;
1283 #endif
1284
1285 #ifdef WITH_HFSNOOP
1286 case CMD_HF_SNIFFER:
1287 HfSnoop(c->arg[0], c->arg[1]);
1288 break;
1289 case CMD_HF_PLOT:
1290 HfPlot();
1291 break;
1292 #endif
1293
1294 #ifdef WITH_SMARTCARD
1295 case CMD_SMART_ATR: {
1296 SmartCardAtr();
1297 break;
1298 }
1299 case CMD_SMART_SETCLOCK:{
1300 SmartCardSetClock(c->arg[0]);
1301 break;
1302 }
1303 case CMD_SMART_RAW: {
1304 SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
1305 break;
1306 }
1307 case CMD_SMART_UPLOAD: {
1308 // upload file from client
1309 uint8_t *mem = BigBuf_get_addr();
1310 memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1311 cmd_send(CMD_ACK,1,0,0,0,0);
1312 break;
1313 }
1314 case CMD_SMART_UPGRADE: {
1315 SmartCardUpgrade(c->arg[0]);
1316 break;
1317 }
1318 #endif
1319
1320 case CMD_BUFF_CLEAR:
1321 BigBuf_Clear();
1322 break;
1323
1324 case CMD_MEASURE_ANTENNA_TUNING:
1325 MeasureAntennaTuning(c->arg[0]);
1326 break;
1327
1328 case CMD_MEASURE_ANTENNA_TUNING_HF:
1329 MeasureAntennaTuningHf();
1330 break;
1331
1332 case CMD_LISTEN_READER_FIELD:
1333 ListenReaderField(c->arg[0]);
1334 break;
1335
1336 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1337 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1338 SpinDelay(200);
1339 LED_D_OFF(); // LED D indicates field ON or OFF
1340 break;
1341
1342 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1343 LED_B_ON();
1344 uint8_t *BigBuf = BigBuf_get_addr();
1345 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1346 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1347 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1348 }
1349 // Trigger a finish downloading signal with an ACK frame
1350 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1351 LED_B_OFF();
1352 break;
1353
1354 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1355 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1356 // to be able to use this one for uploading data to device
1357 // arg1 = 0 upload for LF usage
1358 // 1 upload for HF usage
1359 if (c->arg[1] == 0)
1360 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1361 else
1362 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1363
1364 uint8_t *b = BigBuf_get_addr();
1365 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1366 cmd_send(CMD_ACK,0,0,0,0,0);
1367 break;
1368 }
1369 case CMD_READ_MEM:
1370 ReadMem(c->arg[0]);
1371 break;
1372
1373 case CMD_SET_LF_DIVISOR:
1374 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1375 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1376 break;
1377
1378 case CMD_SET_ADC_MUX:
1379 switch(c->arg[0]) {
1380 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1381 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1382 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1383 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1384 }
1385 break;
1386
1387 case CMD_VERSION:
1388 SendVersion();
1389 break;
1390 case CMD_STATUS:
1391 SendStatus();
1392 break;
1393 case CMD_PING:
1394 cmd_send(CMD_ACK,0,0,0,0,0);
1395 break;
1396 #ifdef WITH_LCD
1397 case CMD_LCD_RESET:
1398 LCDReset();
1399 break;
1400 case CMD_LCD:
1401 LCDSend(c->arg[0]);
1402 break;
1403 #endif
1404 case CMD_SETUP_WRITE:
1405 case CMD_FINISH_WRITE:
1406 case CMD_HARDWARE_RESET:
1407 usb_disable();
1408 SpinDelay(1000);
1409 SpinDelay(1000);
1410 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1411 for(;;) {
1412 // We're going to reset, and the bootrom will take control.
1413 }
1414 break;
1415
1416 case CMD_START_FLASH:
1417 if(common_area.flags.bootrom_present) {
1418 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1419 }
1420 usb_disable();
1421 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1422 for(;;);
1423 break;
1424
1425 case CMD_DEVICE_INFO: {
1426 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1427 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1428 cmd_send_old(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1429 break;
1430 }
1431 default:
1432 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1433 break;
1434 }
1435 }
1436
1437
1438 void __attribute__((noreturn)) AppMain(void) {
1439
1440 SpinDelay(100);
1441 clear_trace();
1442 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1443 /* Initialize common area */
1444 memset(&common_area, 0, sizeof(common_area));
1445 common_area.magic = COMMON_AREA_MAGIC;
1446 common_area.version = 1;
1447 }
1448 common_area.flags.osimage_present = 1;
1449
1450 LEDsoff();
1451
1452 // Init USB device
1453 usb_enable();
1454
1455 // The FPGA gets its clock from us from PCK0 output, so set that up.
1456 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1457 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1458 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1459 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1460 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1461 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1462 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1463
1464 // Reset SPI
1465 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1466 // Reset SSC
1467 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1468
1469 // Load the FPGA image, which we have stored in our flash.
1470 // (the HF version by default)
1471 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1472
1473 StartTickCount();
1474
1475 #ifdef WITH_LCD
1476 LCDInit();
1477 #endif
1478
1479 UsbCommand rx;
1480
1481 for(;;) {
1482 WDT_HIT();
1483 if (cmd_receive(&rx)) {
1484 UsbPacketReceived(&rx);
1485 } else {
1486 #if defined(WITH_LF_StandAlone) && !defined(WITH_ISO14443a_StandAlone)
1487 if (BUTTON_HELD(1000) > 0)
1488 SamyRun();
1489 #endif
1490 #if defined(WITH_ISO14443a) && defined(WITH_ISO14443a_StandAlone)
1491 if (BUTTON_HELD(1000) > 0)
1492 StandAloneMode14a();
1493 #endif
1494 }
1495 }
1496 }
Impressum, Datenschutz