1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
25 #include "../include/hitag2.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void BufferClear(void)
48 memset(BigBuf
,0,sizeof(BigBuf
));
49 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(32) |
146 ADC_MODE_STARTUP_TIME(16) |
147 ADC_MODE_SAMPLE_HOLD_TIME(8);
148 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
150 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
151 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
153 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
158 int AvgAdc(int ch
) // was static - merlok
163 for(i
= 0; i
< 32; i
++) {
167 return (a
+ 15) >> 5;
170 void MeasureAntennaTuning(void)
172 uint8_t *dest
= (uint8_t *)BigBuf
+ FREE_BUFFER_OFFSET
;
173 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
174 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
177 DbpString("Measuring antenna characteristics, please wait...");
178 memset(dest
,0,FREE_BUFFER_SIZE
);
181 * Sweeps the useful LF range of the proxmark from
182 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
183 * read the voltage in the antenna, the result left
184 * in the buffer is a graph which should clearly show
185 * the resonating frequency of your LF antenna
186 * ( hopefully around 95 if it is tuned to 125kHz!)
189 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
190 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
191 for (i
=255; i
>19; i
--) {
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
195 // Vref = 3.3V, and a 10000:240 voltage divider on the input
196 // can measure voltages up to 137500 mV
197 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
198 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
199 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
201 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
212 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
215 // Vref = 3300mV, and an 10:1 voltage divider on the input
216 // can measure voltages up to 33000 mV
217 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
219 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
220 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
222 // c.arg[2] = peakf | (peakv << 16);
224 DbpString("Measuring complete, sending report back to host");
225 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
226 // UsbSendPacket((uint8_t *)&c, sizeof(c));
227 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
233 void MeasureAntennaTuningHf(void)
235 int vHf
= 0; // in mV
237 DbpString("Measuring HF antenna, press button to exit");
240 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
241 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
242 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
244 // Vref = 3300mV, and an 10:1 voltage divider on the input
245 // can measure voltages up to 33000 mV
246 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
248 Dbprintf("%d mV",vHf
);
249 if (BUTTON_PRESS()) break;
251 DbpString("cancelled");
255 void SimulateTagHfListen(void)
257 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
262 // We're using this mode just so that I can test it out; the simulated
263 // tag mode would work just as well and be simpler.
264 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
265 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
267 // We need to listen to the high-frequency, peak-detected path.
268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
274 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
275 AT91C_BASE_SSC
->SSC_THR
= 0xff;
277 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
278 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
292 if(i
>= FREE_BUFFER_SIZE
) {
298 DbpString("simulate tag (now type bitsamples)");
301 void ReadMem(int addr
)
303 const uint8_t *data
= ((uint8_t *)addr
);
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
309 /* osimage version information is linked in */
310 extern struct version_information version_information
;
311 /* bootrom version information is pointed to from _bootphase1_version_pointer */
312 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
313 void SendVersion(void)
315 char temp
[512]; /* Limited data payload in USB packets */
316 DbpString("Prox/RFID mark3 RFID instrument");
318 /* Try to find the bootrom version information. Expect to find a pointer at
319 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
320 * pointer, then use it.
322 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
323 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
324 DbpString("bootrom version information appears invalid");
326 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
330 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
333 FpgaGatherVersion(temp
, sizeof(temp
));
336 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
340 // samy's sniff and repeat routine
343 DbpString("Stand-alone mode! No PC necessary.");
344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
346 // 3 possible options? no just 2 for now
349 int high
[OPTS
], low
[OPTS
];
351 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_ORANGE
, 200);
355 LED(LED_ORANGE
, 200);
357 LED(LED_ORANGE
, 200);
359 LED(LED_ORANGE
, 200);
366 // Turn on selected LED
367 LED(selected
+ 1, 0);
374 // Was our button held down or pressed?
375 int button_pressed
= BUTTON_HELD(1000);
378 // Button was held for a second, begin recording
379 if (button_pressed
> 0 && cardRead
== 0)
382 LED(selected
+ 1, 0);
386 DbpString("Starting recording");
388 // wait for button to be released
389 while(BUTTON_PRESS())
392 /* need this delay to prevent catching some weird data */
395 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
396 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
399 LED(selected
+ 1, 0);
400 // Finished recording
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
410 else if (button_pressed
> 0 && cardRead
== 1)
413 LED(selected
+ 1, 0);
417 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
419 // wait for button to be released
420 while(BUTTON_PRESS())
423 /* need this delay to prevent catching some weird data */
426 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
430 LED(selected
+ 1, 0);
431 // Finished recording
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
441 // Change where to record (or begin playing)
442 else if (button_pressed
)
444 // Next option if we were previously playing
446 selected
= (selected
+ 1) % OPTS
;
450 LED(selected
+ 1, 0);
452 // Begin transmitting
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
460 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
461 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
465 DbpString("Exiting");
470 /* We pressed a button so ignore it here with a delay */
473 // when done, we're done playing, move to next option
474 selected
= (selected
+ 1) % OPTS
;
477 LED(selected
+ 1, 0);
480 while(BUTTON_PRESS())
489 Listen and detect an external reader. Determine the best location
493 Inside the ListenReaderField() function, there is two mode.
494 By default, when you call the function, you will enter mode 1.
495 If you press the PM3 button one time, you will enter mode 2.
496 If you press the PM3 button a second time, you will exit the function.
498 DESCRIPTION OF MODE 1:
499 This mode just listens for an external reader field and lights up green
500 for HF and/or red for LF. This is the original mode of the detectreader
503 DESCRIPTION OF MODE 2:
504 This mode will visually represent, using the LEDs, the actual strength of the
505 current compared to the maximum current detected. Basically, once you know
506 what kind of external reader is present, it will help you spot the best location to place
507 your antenna. You will probably not get some good results if there is a LF and a HF reader
508 at the same place! :-)
512 static const char LIGHT_SCHEME
[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
522 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
524 void ListenReaderField(int limit
)
526 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
527 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
528 int mode
=1, display_val
, display_max
, i
;
535 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
537 if(limit
!= HF_ONLY
) {
538 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
542 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
544 if (limit
!= LF_ONLY
) {
545 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
550 if (BUTTON_PRESS()) {
555 DbpString("Signal Strength Mode");
559 DbpString("Stopped");
567 if (limit
!= HF_ONLY
) {
569 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
574 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
575 // see if there's a significant change
576 if(abs(lf_av
- lf_av_new
) > 10) {
577 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
585 if (limit
!= LF_ONLY
) {
587 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
592 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
593 // see if there's a significant change
594 if(abs(hf_av
- hf_av_new
) > 10) {
595 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
604 if (limit
== LF_ONLY
) {
606 display_max
= lf_max
;
607 } else if (limit
== HF_ONLY
) {
609 display_max
= hf_max
;
610 } else { /* Pick one at random */
611 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
613 display_max
= hf_max
;
616 display_max
= lf_max
;
619 for (i
=0; i
<LIGHT_LEN
; i
++) {
620 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
621 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
622 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
623 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
624 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
632 void UsbPacketReceived(uint8_t *packet
, int len
)
634 UsbCommand
*c
= (UsbCommand
*)packet
;
636 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
640 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
641 AcquireRawAdcSamples125k(c
->arg
[0]);
642 cmd_send(CMD_ACK
,0,0,0,0,0);
644 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
645 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
647 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
648 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
649 cmd_send(CMD_ACK
,0,0,0,0,0);
651 case CMD_HID_DEMOD_FSK
:
652 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
654 case CMD_HID_SIM_TAG
:
655 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
657 case CMD_HID_CLONE_TAG
:
658 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
660 case CMD_IO_DEMOD_FSK
:
661 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
663 case CMD_IO_CLONE_TAG
:
664 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
666 case CMD_EM410X_WRITE_TAG
:
667 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
669 case CMD_READ_TI_TYPE
:
672 case CMD_WRITE_TI_TYPE
:
673 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
675 case CMD_SIMULATE_TAG_125K
:
676 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
677 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
679 case CMD_LF_SIMULATE_BIDIR
:
680 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
682 case CMD_INDALA_CLONE_TAG
:
683 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
685 case CMD_INDALA_CLONE_TAG_L
:
686 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
688 case CMD_T55XX_READ_BLOCK
:
689 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
691 case CMD_T55XX_WRITE_BLOCK
:
692 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
694 case CMD_T55XX_READ_TRACE
:
697 case CMD_PCF7931_READ
:
699 cmd_send(CMD_ACK
,0,0,0,0,0);
701 case CMD_EM4X_READ_WORD
:
702 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
704 case CMD_EM4X_WRITE_WORD
:
705 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
710 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
711 SnoopHitag(c
->arg
[0]);
713 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
714 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
716 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
717 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
722 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
723 AcquireRawAdcSamplesIso15693();
725 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
726 RecordRawAdcSamplesIso15693();
729 case CMD_ISO_15693_COMMAND
:
730 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
733 case CMD_ISO_15693_FIND_AFI
:
734 BruteforceIso15693Afi(c
->arg
[0]);
737 case CMD_ISO_15693_DEBUG
:
738 SetDebugIso15693(c
->arg
[0]);
741 case CMD_READER_ISO_15693
:
742 ReaderIso15693(c
->arg
[0]);
744 case CMD_SIMTAG_ISO_15693
:
745 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
750 case CMD_SIMULATE_TAG_LEGIC_RF
:
751 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
754 case CMD_WRITER_LEGIC_RF
:
755 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
758 case CMD_READER_LEGIC_RF
:
759 LegicRfReader(c
->arg
[0], c
->arg
[1]);
763 #ifdef WITH_ISO14443b
764 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
765 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
767 case CMD_READ_SRI512_TAG
:
768 ReadSTMemoryIso14443(0x0F);
770 case CMD_READ_SRIX4K_TAG
:
771 ReadSTMemoryIso14443(0x7F);
773 case CMD_SNOOP_ISO_14443
:
776 case CMD_SIMULATE_TAG_ISO_14443
:
777 SimulateIso14443Tag();
779 case CMD_ISO_14443B_COMMAND
:
780 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
784 #ifdef WITH_ISO14443a
785 case CMD_SNOOP_ISO_14443a
:
786 SnoopIso14443a(c
->arg
[0]);
788 case CMD_READER_ISO_14443a
:
791 case CMD_SIMULATE_TAG_ISO_14443a
:
792 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
795 case CMD_EPA_PACE_COLLECT_NONCE
:
796 EPA_PACE_Collect_Nonce(c
);
803 case CMD_READER_MIFARE
:
804 ReaderMifare(c
->arg
[0]);
806 case CMD_MIFARE_READBL
:
807 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
809 case CMD_MIFAREU_READBL
:
810 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
812 case CMD_MIFAREUC_AUTH1
:
813 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
815 case CMD_MIFAREUC_AUTH2
:
816 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
818 case CMD_MIFAREU_READCARD
:
819 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
821 case CMD_MIFAREUC_READCARD
:
822 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
824 case CMD_MIFARE_READSC
:
825 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
827 case CMD_MIFARE_WRITEBL
:
828 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
830 case CMD_MIFAREU_WRITEBL_COMPAT
:
831 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
833 case CMD_MIFAREU_WRITEBL
:
834 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
836 case CMD_MIFARE_NESTED
:
837 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
839 case CMD_MIFARE_CHKKEYS
:
840 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
842 case CMD_SIMULATE_MIFARE_CARD
:
843 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
847 case CMD_MIFARE_SET_DBGMODE
:
848 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
850 case CMD_MIFARE_EML_MEMCLR
:
851 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
853 case CMD_MIFARE_EML_MEMSET
:
854 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
856 case CMD_MIFARE_EML_MEMGET
:
857 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
859 case CMD_MIFARE_EML_CARDLOAD
:
860 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 // Work with "magic Chinese" card
864 case CMD_MIFARE_EML_CSETBLOCK
:
865 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
867 case CMD_MIFARE_EML_CGETBLOCK
:
868 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
872 case CMD_MIFARE_SNIFFER
:
873 SniffMifare(c
->arg
[0]);
877 case CMD_MIFARE_DESFIRE_READBL
:
879 case CMD_MIFARE_DESFIRE_WRITEBL
:
881 case CMD_MIFARE_DESFIRE_AUTH1
:
882 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
884 case CMD_MIFARE_DESFIRE_AUTH2
:
885 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
887 // case CMD_MIFARE_DES_READER:
888 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
890 case CMD_MIFARE_DESFIRE_INFO
:
891 MifareDesfireGetInformation();
893 case CMD_MIFARE_DESFIRE
:
894 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
900 // Makes use of ISO14443a FPGA Firmware
901 case CMD_SNOOP_ICLASS
:
904 case CMD_SIMULATE_TAG_ICLASS
:
905 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
907 case CMD_READER_ICLASS
:
908 ReaderIClass(c
->arg
[0]);
910 case CMD_READER_ICLASS_REPLAY
:
911 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
915 case CMD_SIMULATE_TAG_HF_LISTEN
:
916 SimulateTagHfListen();
923 case CMD_MEASURE_ANTENNA_TUNING
:
924 MeasureAntennaTuning();
927 case CMD_MEASURE_ANTENNA_TUNING_HF
:
928 MeasureAntennaTuningHf();
931 case CMD_LISTEN_READER_FIELD
:
932 ListenReaderField(c
->arg
[0]);
935 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
936 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
938 LED_D_OFF(); // LED D indicates field ON or OFF
941 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
944 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
945 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
946 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
948 // Trigger a finish downloading signal with an ACK frame
949 cmd_send(CMD_ACK
,0,0,0,0,0);
953 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
954 uint8_t *b
= (uint8_t *)BigBuf
;
955 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
956 cmd_send(CMD_ACK
,0,0,0,0,0);
963 case CMD_SET_LF_DIVISOR
:
964 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
965 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
968 case CMD_SET_ADC_MUX
:
970 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
971 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
972 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
973 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
989 case CMD_SETUP_WRITE
:
990 case CMD_FINISH_WRITE
:
991 case CMD_HARDWARE_RESET
:
995 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
997 // We're going to reset, and the bootrom will take control.
1001 case CMD_START_FLASH
:
1002 if(common_area
.flags
.bootrom_present
) {
1003 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1006 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1010 case CMD_DEVICE_INFO
: {
1011 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1012 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1013 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1017 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1022 void __attribute__((noreturn
)) AppMain(void)
1026 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1027 /* Initialize common area */
1028 memset(&common_area
, 0, sizeof(common_area
));
1029 common_area
.magic
= COMMON_AREA_MAGIC
;
1030 common_area
.version
= 1;
1032 common_area
.flags
.osimage_present
= 1;
1042 // The FPGA gets its clock from us from PCK0 output, so set that up.
1043 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1044 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1045 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1046 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1047 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1048 AT91C_PMC_PRES_CLK_4
;
1049 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1052 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1054 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1056 // Load the FPGA image, which we have stored in our flash.
1057 // (the HF version by default)
1058 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1066 byte_t rx
[sizeof(UsbCommand
)];
1071 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1073 UsbPacketReceived(rx
,rx_len
);
1079 if (BUTTON_HELD(1000) > 0)