1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  21 * Does the sample acquisition. If threshold is specified, the actual sampling 
  22 * is not commenced until the threshold has been reached. 
  23 * @param trigger_threshold - the threshold 
  24 * @param silent - is true, now outputs are made. If false, dbprints the status 
  26 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
) 
  28     uint8_t *dest 
= BigBuf_get_addr(); 
  29     int n 
= BigBuf_max_traceLen(); 
  35         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
  36             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
  39         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
  40             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
  42             if (trigger_threshold 
!= -1 && dest
[i
] < trigger_threshold
) 
  45                 trigger_threshold 
= -1; 
  51         Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", 
  52                  dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]); 
  57 * Perform sample aquisition. 
  59 void DoAcquisition125k(int trigger_threshold
) 
  61     DoAcquisition125k_internal(trigger_threshold
, false); 
  65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream 
  66 * if not already loaded, sets divisor and starts up the antenna. 
  67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz 
  71 void LFSetupFPGAForADC(int divisor
, bool lf_field
) 
  73     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  74     if ( (divisor 
== 1) || (divisor 
< 0) || (divisor 
> 255) ) 
  75         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
  76     else if (divisor 
== 0) 
  77         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
  79         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
); 
  81     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| (lf_field 
? FPGA_LF_ADC_READER_FIELD 
: 0)); 
  83     // Connect the A/D to the peak-detected low-frequency path. 
  84     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
  85     // Give it a bit of time for the resonant antenna to settle. 
  87     // Now set up the SSC to get the ADC samples that are now streaming at us. 
  91 * Initializes the FPGA, and acquires the samples. 
  93 void AcquireRawAdcSamples125k(int divisor
) 
  95     LFSetupFPGAForADC(divisor
, true); 
  96     // Now call the acquisition routine 
  97     DoAcquisition125k_internal(-1,false); 
 100 * Initializes the FPGA for snoop-mode, and acquires the samples. 
 103 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
) 
 105     LFSetupFPGAForADC(divisor
, false); 
 106     DoAcquisition125k(trigger_threshold
); 
 109 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
 112     /* Make sure the tag is reset */ 
 113     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 114     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 118     int divisor_used 
= 95; // 125 KHz 
 119     // see if 'h' was specified 
 121     if (command
[strlen((char *) command
) - 1] == 'h') 
 122         divisor_used 
= 88; // 134.8 KHz 
 125     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
); 
 126     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 127     // Give it a bit of time for the resonant antenna to settle. 
 130     // And a little more time for the tag to fully power up 
 133     // Now set up the SSC to get the ADC samples that are now streaming at us. 
 136     // now modulate the reader field 
 137     while(*command 
!= '\0' && *command 
!= ' ') { 
 138         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 140         SpinDelayUs(delay_off
); 
 141         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
); 
 143         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 145         if(*(command
++) == '0') 
 146             SpinDelayUs(period_0
); 
 148             SpinDelayUs(period_1
); 
 150     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 152     SpinDelayUs(delay_off
); 
 153     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
); 
 155     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 158     DoAcquisition125k(-1); 
 161 /* blank r/w tag data stream 
 162 ...0000000000000000 01111111 
 163 1010101010101010101010101010101010101010101010101010101010101010 
 166 101010101010101[0]000... 
 168 [5555fe852c5555555555555555fe0000] 
 172     // some hardcoded initial params 
 173     // when we read a TI tag we sample the zerocross line at 2Mhz 
 174     // TI tags modulate a 1 as 16 cycles of 123.2Khz 
 175     // TI tags modulate a 0 as 16 cycles of 134.2Khz 
 176  #define FSAMPLE 2000000 
 177  #define FREQLO 123200 
 178  #define FREQHI 134200 
 180     signed char *dest 
= (signed char *)BigBuf_get_addr(); 
 181     uint16_t n 
= BigBuf_max_traceLen(); 
 182     // 128 bit shift register [shift3:shift2:shift1:shift0] 
 183     uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 185     int i
, cycles
=0, samples
=0; 
 186     // how many sample points fit in 16 cycles of each frequency 
 187     uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 188     // when to tell if we're close enough to one freq or another 
 189     uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 191     // TI tags charge at 134.2Khz 
 192     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 193     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 195     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 196     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 197     // whether we're modulating the antenna (high) 
 198     // or listening to the antenna (low) 
 199     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 201     // get TI tag data into the buffer 
 204     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 206     for (i
=0; i
<n
-1; i
++) { 
 207         // count cycles by looking for lo to hi zero crossings 
 208         if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 210             // after 16 cycles, measure the frequency 
 213                 samples
=i
-samples
; // number of samples in these 16 cycles 
 215                 // TI bits are coming to us lsb first so shift them 
 216                 // right through our 128 bit right shift register 
 217                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 218                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 219                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 222                 // check if the cycles fall close to the number 
 223                 // expected for either the low or high frequency 
 224                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 225                     // low frequency represents a 1 
 227                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 228                     // high frequency represents a 0 
 230                     // probably detected a gay waveform or noise 
 231                     // use this as gaydar or discard shift register and start again 
 232                     shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 236                 // for each bit we receive, test if we've detected a valid tag 
 238                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 239                 // remember the bits are backwards 
 240                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 241                     // if start and end bytes match, we have a tag so break out of the loop 
 242                     if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 243                         cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 251     // if flag is set we have a tag 
 253         DbpString("Info: No valid tag detected."); 
 255         // put 64 bit data into shift1 and shift0 
 256         shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 257         shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 259         // align 16 bit crc into lower half of shift2 
 260         shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 262         // if r/w tag, check ident match 
 263                 if (shift3 
& (1<<15) ) { 
 264             DbpString("Info: TI tag is rewriteable"); 
 265             // only 15 bits compare, last bit of ident is not valid 
 266                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 267                 DbpString("Error: Ident mismatch!"); 
 269                 DbpString("Info: TI tag ident is valid"); 
 272             DbpString("Info: TI tag is readonly"); 
 275         // WARNING the order of the bytes in which we calc crc below needs checking 
 276         // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 277         // bytes in reverse or something 
 281         crc 
= update_crc16(crc
, (shift0
)&0xff); 
 282         crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 283         crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 284         crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 285         crc 
= update_crc16(crc
, (shift1
)&0xff); 
 286         crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 287         crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 288         crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 290         Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 291                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 292         if (crc 
!= (shift2
&0xffff)) { 
 293             Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 295             DbpString("Info: CRC is good"); 
 300 void WriteTIbyte(uint8_t b
) 
 304     // modulate 8 bits out to the antenna 
 308             // stop modulating antenna 
 315             // stop modulating antenna 
 325 void AcquireTiType(void) 
 328     // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 329     // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 330  #define TIBUFLEN 1250 
 333         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 334     memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t)); 
 336     // Set up the synchronous serial port 
 337     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 338     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 340     // steal this pin from the SSP and use it to control the modulation 
 341     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 342     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 344     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 345     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 347     // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 348     // 48/2 = 24 MHz clock must be divided by 12 
 349     AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 351     AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 352     AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 353     AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 354     AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 361     // Charge TI tag for 50ms. 
 364     // stop modulating antenna and listen 
 371         if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 372             BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;        // store 32 bit values in buffer 
 373             i
++; if(i 
>= TIBUFLEN
) break; 
 378     // return stolen pin to SSP 
 379     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 380     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 382     char *dest 
= (char *)BigBuf_get_addr(); 
 385     for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 386         for (j
=0; j
<32; j
++) { 
 387             if(BigBuf
[i
] & (1 << j
)) { 
 396 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 397 // if crc provided, it will be written with the data verbatim (even if bogus) 
 398 // if not provided a valid crc will be computed from the data and written. 
 399 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 401     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 403         crc 
= update_crc16(crc
, (idlo
)&0xff); 
 404         crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 405         crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 406         crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 407         crc 
= update_crc16(crc
, (idhi
)&0xff); 
 408         crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 409         crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 410         crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 412     Dbprintf("Writing to tag: %x%08x, crc=%x", 
 413              (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 415     // TI tags charge at 134.2Khz 
 416     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 417     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 418     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 419     // whether we're modulating the antenna (high) 
 420     // or listening to the antenna (low) 
 421     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 424     // steal this pin from the SSP and use it to control the modulation 
 425     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 426     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 428     // writing algorithm: 
 429     // a high bit consists of a field off for 1ms and field on for 1ms 
 430     // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 431     // initiate a charge time of 50ms (field on) then immediately start writing bits 
 432     // start by writing 0xBB (keyword) and 0xEB (password) 
 433     // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 434     // finally end with 0x0300 (write frame) 
 435     // all data is sent lsb firts 
 436     // finish with 15ms programming time 
 440     SpinDelay(50);      // charge time 
 442     WriteTIbyte(0xbb); // keyword 
 443     WriteTIbyte(0xeb); // password 
 444     WriteTIbyte( (idlo    
)&0xff ); 
 445     WriteTIbyte( (idlo
>>8 )&0xff ); 
 446     WriteTIbyte( (idlo
>>16)&0xff ); 
 447     WriteTIbyte( (idlo
>>24)&0xff ); 
 448     WriteTIbyte( (idhi    
)&0xff ); 
 449     WriteTIbyte( (idhi
>>8 )&0xff ); 
 450     WriteTIbyte( (idhi
>>16)&0xff ); 
 451     WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 452     WriteTIbyte( (crc     
)&0xff ); // crc lo 
 453     WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 454     WriteTIbyte(0x00); // write frame lo 
 455     WriteTIbyte(0x03); // write frame hi 
 457     SpinDelay(50);      // programming time 
 461     // get TI tag data into the buffer 
 464     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 465     DbpString("Now use tiread to check"); 
 468 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 471     uint8_t *tab 
= BigBuf_get_addr(); 
 473     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 474     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 476     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 478     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 479     AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 481 #define SHORT_COIL()    LOW(GPIO_SSC_DOUT) 
 482 #define OPEN_COIL()             HIGH(GPIO_SSC_DOUT) 
 486         while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 488                 DbpString("Stopped"); 
 505         while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 507                 DbpString("Stopped"); 
 524 #define DEBUG_FRAME_CONTENTS 1 
 525 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 529 // compose fc/8 fc/10 waveform 
 530 static void fc(int c
, int *n
) { 
 531     uint8_t *dest 
= BigBuf_get_addr(); 
 534     // for when we want an fc8 pattern every 4 logical bits 
 545     //  an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples 
 547         for (idx
=0; idx
<6; idx
++) { 
 559     //  an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples 
 561         for (idx
=0; idx
<5; idx
++) { 
 576 // prepare a waveform pattern in the buffer based on the ID given then 
 577 // simulate a HID tag until the button is pressed 
 578 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 582      HID tag bitstream format 
 583      The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 584      A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 585      A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 586      A fc8 is inserted before every 4 bits 
 587      A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 588      nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 592         DbpString("Tags can only have 44 bits."); 
 596     // special start of frame marker containing invalid bit sequences 
 597     fc(8,  &n
); fc(8,  &n
);     // invalid 
 598     fc(8,  &n
); fc(10, &n
); // logical 0 
 599     fc(10, &n
); fc(10, &n
); // invalid 
 600     fc(8,  &n
); fc(10, &n
); // logical 0 
 603     // manchester encode bits 43 to 32 
 604     for (i
=11; i
>=0; i
--) { 
 605         if ((i%4
)==3) fc(0,&n
); 
 607             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 609             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 614     // manchester encode bits 31 to 0 
 615     for (i
=31; i
>=0; i
--) { 
 616         if ((i%4
)==3) fc(0,&n
); 
 618             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 620             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 626     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 632 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 633 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 635     uint8_t *dest 
= BigBuf_get_addr(); 
 637     size_t size 
= BigBuf_max_traceLen();  
 638     uint32_t hi2
=0, hi
=0, lo
=0; 
 640     // Configure to go in 125Khz listen mode 
 641     LFSetupFPGAForADC(95, true); 
 643     while(!BUTTON_PRESS()) { 
 646         if (ledcontrol
) LED_A_ON(); 
 648         DoAcquisition125k_internal(-1,true); 
 650                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 653             // final loop, go over previously decoded manchester data and decode into usable tag ID 
 654             // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 655             if (hi2 
!= 0){ //extra large HID tags 
 656                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 657                          (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 658             }else {  //standard HID tags <38 bits 
 659                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 662                 uint32_t cardnum 
= 0; 
 663                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 665                     lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 667                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 675                         cardnum 
= (lo
>>1)&0xFFFF; 
 679                         cardnum 
= (lo
>>1)&0x7FFFF; 
 680                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 683                         cardnum 
= (lo
>>1)&0xFFFF; 
 684                         fc
= ((hi
&1)<<15)|(lo
>>17); 
 687                         cardnum 
= (lo
>>1)&0xFFFFF; 
 688                         fc 
= ((hi
&1)<<11)|(lo
>>21); 
 691                 else { //if bit 38 is not set then 37 bit format is used 
 696                         cardnum 
= (lo
>>1)&0x7FFFF; 
 697                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 700                 //Dbprintf("TAG ID: %x%08x (%d)", 
 701                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 702                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 703                          (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 704                          (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 707                 if (ledcontrol
) LED_A_OFF(); 
 715     DbpString("Stopped"); 
 716     if (ledcontrol
) LED_A_OFF(); 
 719 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 721     uint8_t *dest 
= BigBuf_get_addr(); 
 723         size_t size
=0, idx
=0; 
 724     int clk
=0, invert
=0, errCnt
=0; 
 726     // Configure to go in 125Khz listen mode 
 727     LFSetupFPGAForADC(95, true); 
 729     while(!BUTTON_PRESS()) { 
 732         if (ledcontrol
) LED_A_ON(); 
 734         DoAcquisition125k_internal(-1,true); 
 735         size  
= BigBuf_max_traceLen(); 
 736         //Dbprintf("DEBUG: Buffer got"); 
 737                 //askdemod and manchester decode 
 738                 errCnt 
= askmandemod(dest
, &size
, &clk
, &invert
); 
 739         //Dbprintf("DEBUG: ASK Got"); 
 743                         lo 
= Em410xDecode(dest
, &size
, &idx
); 
 744             //Dbprintf("DEBUG: EM GOT"); 
 746                                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 749                                     (uint32_t)(lo
&0xFFFF), 
 750                                     (uint32_t)((lo
>>16LL) & 0xFF), 
 751                                     (uint32_t)(lo 
& 0xFFFFFF)); 
 754                 if (ledcontrol
) LED_A_OFF(); 
 758             //Dbprintf("DEBUG: No Tag"); 
 767     DbpString("Stopped"); 
 768     if (ledcontrol
) LED_A_OFF(); 
 771 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 773     uint8_t *dest 
= BigBuf_get_addr(); 
 775     uint32_t code
=0, code2
=0; 
 777     uint8_t facilitycode
=0; 
 779     // Configure to go in 125Khz listen mode 
 780     LFSetupFPGAForADC(95, true); 
 782     while(!BUTTON_PRESS()) { 
 784         if (ledcontrol
) LED_A_ON(); 
 785         DoAcquisition125k_internal(-1,true); 
 786         //fskdemod and get start index 
 788         idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
 793             //0           10          20          30          40          50          60 
 795             //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 796             //----------------------------------------------------------------------------- 
 797             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
 799             //XSF(version)facility:codeone+codetwo 
 801             if(findone
){ //only print binary if we are doing one 
 802                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
 803                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
 804                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
 805                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
 806                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
 807                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
 808                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 810             code 
= bytebits_to_byte(dest
+idx
,32); 
 811             code2 
= bytebits_to_byte(dest
+idx
+32,32); 
 812             version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
 813             facilitycode 
= bytebits_to_byte(dest
+idx
+18,8) ; 
 814             number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
 816             Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
); 
 817             // if we're only looking for one tag 
 819                 if (ledcontrol
) LED_A_OFF(); 
 824             version
=facilitycode
=0; 
 830     DbpString("Stopped"); 
 831     if (ledcontrol
) LED_A_OFF(); 
 834 /*------------------------------ 
 835  * T5555/T5557/T5567 routines 
 836  *------------------------------ 
 839 /* T55x7 configuration register definitions */ 
 840 #define T55x7_POR_DELAY                 0x00000001 
 841 #define T55x7_ST_TERMINATOR             0x00000008 
 842 #define T55x7_PWD                       0x00000010 
 843 #define T55x7_MAXBLOCK_SHIFT            5 
 844 #define T55x7_AOR                       0x00000200 
 845 #define T55x7_PSKCF_RF_2                0 
 846 #define T55x7_PSKCF_RF_4                0x00000400 
 847 #define T55x7_PSKCF_RF_8                0x00000800 
 848 #define T55x7_MODULATION_DIRECT         0 
 849 #define T55x7_MODULATION_PSK1           0x00001000 
 850 #define T55x7_MODULATION_PSK2           0x00002000 
 851 #define T55x7_MODULATION_PSK3           0x00003000 
 852 #define T55x7_MODULATION_FSK1           0x00004000 
 853 #define T55x7_MODULATION_FSK2           0x00005000 
 854 #define T55x7_MODULATION_FSK1a          0x00006000 
 855 #define T55x7_MODULATION_FSK2a          0x00007000 
 856 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 857 #define T55x7_MODULATION_BIPHASE        0x00010000 
 858 #define T55x7_BITRATE_RF_8              0 
 859 #define T55x7_BITRATE_RF_16             0x00040000 
 860 #define T55x7_BITRATE_RF_32             0x00080000 
 861 #define T55x7_BITRATE_RF_40             0x000C0000 
 862 #define T55x7_BITRATE_RF_50             0x00100000 
 863 #define T55x7_BITRATE_RF_64             0x00140000 
 864 #define T55x7_BITRATE_RF_100            0x00180000 
 865 #define T55x7_BITRATE_RF_128            0x001C0000 
 867 /* T5555 (Q5) configuration register definitions */ 
 868 #define T5555_ST_TERMINATOR             0x00000001 
 869 #define T5555_MAXBLOCK_SHIFT            0x00000001 
 870 #define T5555_MODULATION_MANCHESTER     0 
 871 #define T5555_MODULATION_PSK1           0x00000010 
 872 #define T5555_MODULATION_PSK2           0x00000020 
 873 #define T5555_MODULATION_PSK3           0x00000030 
 874 #define T5555_MODULATION_FSK1           0x00000040 
 875 #define T5555_MODULATION_FSK2           0x00000050 
 876 #define T5555_MODULATION_BIPHASE        0x00000060 
 877 #define T5555_MODULATION_DIRECT         0x00000070 
 878 #define T5555_INVERT_OUTPUT             0x00000080 
 879 #define T5555_PSK_RF_2                  0 
 880 #define T5555_PSK_RF_4                  0x00000100 
 881 #define T5555_PSK_RF_8                  0x00000200 
 882 #define T5555_USE_PWD                   0x00000400 
 883 #define T5555_USE_AOR                   0x00000800 
 884 #define T5555_BITRATE_SHIFT             12 
 885 #define T5555_FAST_WRITE                0x00004000 
 886 #define T5555_PAGE_SELECT               0x00008000 
 889  * Relevant times in microsecond 
 890  * To compensate antenna falling times shorten the write times 
 891  * and enlarge the gap ones. 
 893 #define START_GAP 250 
 894 #define WRITE_GAP 160 
 895 #define WRITE_0   144 // 192 
 896 #define WRITE_1   400 // 432 for T55x7; 448 for E5550 
 898 // Write one bit to card 
 899 void T55xxWriteBit(int bit
) 
 901     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 902     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 903     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 905         SpinDelayUs(WRITE_0
); 
 907         SpinDelayUs(WRITE_1
); 
 908     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 909     SpinDelayUs(WRITE_GAP
); 
 912 // Write one card block in page 0, no lock 
 913 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 915     //unsigned int i;  //enio adjustment 12/10/14 
 918     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 919     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 920     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 922     // Give it a bit of time for the resonant antenna to settle. 
 923     // And for the tag to fully power up 
 926     // Now start writting 
 927     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 928     SpinDelayUs(START_GAP
); 
 932     T55xxWriteBit(0); //Page 0 
 935         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 936             T55xxWriteBit(Pwd 
& i
); 
 942     for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 943         T55xxWriteBit(Data 
& i
); 
 946     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
 947         T55xxWriteBit(Block 
& i
); 
 949     // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
 950     // so wait a little more) 
 951     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 952     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 954     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 957 // Read one card block in page 0 
 958 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 960     uint8_t *dest 
= BigBuf_get_addr(); 
 961     //int m=0, i=0; //enio adjustment 12/10/14 
 963     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 964     m 
= BigBuf_max_traceLen(); 
 965     // Clear destination buffer before sending the command 
 966     memset(dest
, 128, m
); 
 967     // Connect the A/D to the peak-detected low-frequency path. 
 968     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
 969     // Now set up the SSC to get the ADC samples that are now streaming at us. 
 973     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 974     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 976     // Give it a bit of time for the resonant antenna to settle. 
 977     // And for the tag to fully power up 
 980     // Now start writting 
 981     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 982     SpinDelayUs(START_GAP
); 
 986     T55xxWriteBit(0); //Page 0 
 989         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
 990             T55xxWriteBit(Pwd 
& i
); 
 995     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
 996         T55xxWriteBit(Block 
& i
); 
 998     // Turn field on to read the response 
 999     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1000     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1002     // Now do the acquisition 
1005         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1006             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1008         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1009             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1010             // we don't care about actual value, only if it's more or less than a 
1011             // threshold essentially we capture zero crossings for later analysis 
1012             //                  if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; 
1018     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1023 // Read card traceability data (page 1) 
1024 void T55xxReadTrace(void){ 
1025     uint8_t *dest 
= BigBuf_get_addr(); 
1028     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1029     m 
= BigBuf_max_traceLen(); 
1030     // Clear destination buffer before sending the command 
1031     memset(dest
, 128, m
); 
1032     // Connect the A/D to the peak-detected low-frequency path. 
1033     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1034     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1038     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1039     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1041     // Give it a bit of time for the resonant antenna to settle. 
1042     // And for the tag to fully power up 
1045     // Now start writting 
1046     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1047     SpinDelayUs(START_GAP
); 
1051     T55xxWriteBit(1); //Page 1 
1053     // Turn field on to read the response 
1054     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1055     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1057     // Now do the acquisition 
1060         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1061             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1063         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1064             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1070     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1075 /*-------------- Cloning routines -----------*/ 
1076 // Copy HID id to card and setup block 0 config 
1077 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1079     int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1083         // Ensure no more than 84 bits supplied 
1085             DbpString("Tags can only have 84 bits."); 
1088         // Build the 6 data blocks for supplied 84bit ID 
1090         data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1091         for (int i
=0;i
<4;i
++) { 
1092             if (hi2 
& (1<<(19-i
))) 
1093                 data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1095                 data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1099         for (int i
=0;i
<16;i
++) { 
1100             if (hi2 
& (1<<(15-i
))) 
1101                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1103                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1107         for (int i
=0;i
<16;i
++) { 
1108             if (hi 
& (1<<(31-i
))) 
1109                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1111                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1115         for (int i
=0;i
<16;i
++) { 
1116             if (hi 
& (1<<(15-i
))) 
1117                 data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1119                 data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1123         for (int i
=0;i
<16;i
++) { 
1124             if (lo 
& (1<<(31-i
))) 
1125                 data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1127                 data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1131         for (int i
=0;i
<16;i
++) { 
1132             if (lo 
& (1<<(15-i
))) 
1133                 data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1135                 data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1139         // Ensure no more than 44 bits supplied 
1141             DbpString("Tags can only have 44 bits."); 
1145         // Build the 3 data blocks for supplied 44bit ID 
1148         data1 
= 0x1D000000; // load preamble 
1150         for (int i
=0;i
<12;i
++) { 
1151             if (hi 
& (1<<(11-i
))) 
1152                 data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1154                 data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1158         for (int i
=0;i
<16;i
++) { 
1159             if (lo 
& (1<<(31-i
))) 
1160                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1162                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1166         for (int i
=0;i
<16;i
++) { 
1167             if (lo 
& (1<<(15-i
))) 
1168                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1170                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1175     // Program the data blocks for supplied ID 
1176     // and the block 0 for HID format 
1177     T55xxWriteBlock(data1
,1,0,0); 
1178     T55xxWriteBlock(data2
,2,0,0); 
1179     T55xxWriteBlock(data3
,3,0,0); 
1181     if (longFMT
) { // if long format there are 6 blocks 
1182         T55xxWriteBlock(data4
,4,0,0); 
1183         T55xxWriteBlock(data5
,5,0,0); 
1184         T55xxWriteBlock(data6
,6,0,0); 
1187     // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1188     T55xxWriteBlock(T55x7_BITRATE_RF_50    
| 
1189                     T55x7_MODULATION_FSK2a 
| 
1190                     last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1198 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1200     int data1
=0, data2
=0; //up to six blocks for long format 
1202     data1 
= hi
;  // load preamble 
1206     // Program the data blocks for supplied ID 
1207     // and the block 0 for HID format 
1208     T55xxWriteBlock(data1
,1,0,0); 
1209     T55xxWriteBlock(data2
,2,0,0); 
1212     T55xxWriteBlock(0x00147040,0,0,0); 
1218 // Define 9bit header for EM410x tags 
1219 #define EM410X_HEADER           0x1FF 
1220 #define EM410X_ID_LENGTH        40 
1222 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1225     uint64_t id 
= EM410X_HEADER
; 
1226     uint64_t rev_id 
= 0;        // reversed ID 
1227     int c_parity
[4];    // column parity 
1228     int r_parity 
= 0;   // row parity 
1231     // Reverse ID bits given as parameter (for simpler operations) 
1232     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1234             rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1237             rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1242     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1243         id_bit 
= rev_id 
& 1; 
1246             // Don't write row parity bit at start of parsing 
1248                 id 
= (id 
<< 1) | r_parity
; 
1249             // Start counting parity for new row 
1256         // First elements in column? 
1258             // Fill out first elements 
1259             c_parity
[i
] = id_bit
; 
1261             // Count column parity 
1262             c_parity
[i 
% 4] ^= id_bit
; 
1265         id 
= (id 
<< 1) | id_bit
; 
1269     // Insert parity bit of last row 
1270     id 
= (id 
<< 1) | r_parity
; 
1272     // Fill out column parity at the end of tag 
1273     for (i 
= 0; i 
< 4; ++i
) 
1274         id 
= (id 
<< 1) | c_parity
[i
]; 
1279     Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1283     T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1284     T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1286     // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1288         // Clock rate is stored in bits 8-15 of the card value 
1289         clock 
= (card 
& 0xFF00) >> 8; 
1290         Dbprintf("Clock rate: %d", clock
); 
1294             clock 
= T55x7_BITRATE_RF_32
; 
1297             clock 
= T55x7_BITRATE_RF_16
; 
1300             // A value of 0 is assumed to be 64 for backwards-compatibility 
1303             clock 
= T55x7_BITRATE_RF_64
; 
1306             Dbprintf("Invalid clock rate: %d", clock
); 
1310         // Writing configuration for T55x7 tag 
1311         T55xxWriteBlock(clock       
| 
1312                         T55x7_MODULATION_MANCHESTER 
| 
1313                         2 << T55x7_MAXBLOCK_SHIFT
, 
1317         // Writing configuration for T5555(Q5) tag 
1318         T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1319                         T5555_MODULATION_MANCHESTER   
| 
1320                         2 << T5555_MAXBLOCK_SHIFT
, 
1324     Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1325              (uint32_t)(id 
>> 32), (uint32_t)id
); 
1328 // Clone Indala 64-bit tag by UID to T55x7 
1329 void CopyIndala64toT55x7(int hi
, int lo
) 
1332     //Program the 2 data blocks for supplied 64bit UID 
1333     // and the block 0 for Indala64 format 
1334     T55xxWriteBlock(hi
,1,0,0); 
1335     T55xxWriteBlock(lo
,2,0,0); 
1336     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1337     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1338                     T55x7_MODULATION_PSK1 
| 
1339                     2 << T55x7_MAXBLOCK_SHIFT
, 
1341     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1342     //  T5567WriteBlock(0x603E1042,0); 
1348 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1351     //Program the 7 data blocks for supplied 224bit UID 
1352     // and the block 0 for Indala224 format 
1353     T55xxWriteBlock(uid1
,1,0,0); 
1354     T55xxWriteBlock(uid2
,2,0,0); 
1355     T55xxWriteBlock(uid3
,3,0,0); 
1356     T55xxWriteBlock(uid4
,4,0,0); 
1357     T55xxWriteBlock(uid5
,5,0,0); 
1358     T55xxWriteBlock(uid6
,6,0,0); 
1359     T55xxWriteBlock(uid7
,7,0,0); 
1360     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1361     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1362                     T55x7_MODULATION_PSK1 
| 
1363                     7 << T55x7_MAXBLOCK_SHIFT
, 
1365     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1366     //  T5567WriteBlock(0x603E10E2,0); 
1373 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1374 #define max(x,y) ( x<y ? y:x) 
1376 int DemodPCF7931(uint8_t **outBlocks
) { 
1377     uint8_t BitStream
[256]; 
1378     uint8_t Blocks
[8][16]; 
1379     uint8_t *GraphBuffer 
= BigBuf_get_addr(); 
1380     int GraphTraceLen 
= BigBuf_max_traceLen(); 
1381     int i
, j
, lastval
, bitidx
, half_switch
; 
1383     int tolerance 
= clock 
/ 8; 
1384     int pmc
, block_done
; 
1385     int lc
, warnings 
= 0; 
1387     int lmin
=128, lmax
=128; 
1390     AcquireRawAdcSamples125k(0); 
1397     /* Find first local max/min */ 
1398     if(GraphBuffer
[1] > GraphBuffer
[0]) { 
1399         while(i 
< GraphTraceLen
) { 
1400             if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
) 
1407         while(i 
< GraphTraceLen
) { 
1408             if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
) 
1420     for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1422         if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir 
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir 
== 0 && GraphBuffer
[i
] < lmin
)) 
1427             // Switch depending on lc length: 
1428             // Tolerance is 1/8 of clock rate (arbitrary) 
1429             if (abs(lc
-clock
/4) < tolerance
) { 
1431                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1433                     i 
+= (128+127+16+32+33+16)-1; 
1441             } else if (abs(lc
-clock
/2) < tolerance
) { 
1443                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1445                     i 
+= (128+127+16+32+33)-1; 
1450                 else if(half_switch 
== 1) { 
1451                     BitStream
[bitidx
++] = 0; 
1456             } else if (abs(lc
-clock
) < tolerance
) { 
1458                 BitStream
[bitidx
++] = 1; 
1464                     Dbprintf("Error: too many detection errors, aborting."); 
1469             if(block_done 
== 1) { 
1471                     for(j
=0; j
<16; j
++) { 
1472                         Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1473                                 64*BitStream
[j
*8+6]+ 
1474                                 32*BitStream
[j
*8+5]+ 
1475                                 16*BitStream
[j
*8+4]+ 
1487             if(i 
< GraphTraceLen
) 
1489                 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0; 
1496         if(num_blocks 
== 4) break; 
1498     memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1502 int IsBlock0PCF7931(uint8_t *Block
) { 
1503     // Assume RFU means 0 :) 
1504     if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1506     if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1511 int IsBlock1PCF7931(uint8_t *Block
) { 
1512     // Assume RFU means 0 :) 
1513     if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1514         if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1522 void ReadPCF7931() { 
1523     uint8_t Blocks
[8][17]; 
1524     uint8_t tmpBlocks
[4][16]; 
1525     int i
, j
, ind
, ind2
, n
; 
1532     memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1535         memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1536         n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1539         if(error
==10 && num_blocks 
== 0) { 
1540             Dbprintf("Error, no tag or bad tag"); 
1543         else if (tries
==20 || error
==10) { 
1544             Dbprintf("Error reading the tag"); 
1545             Dbprintf("Here is the partial content"); 
1550             Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1551                      tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1552                     tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1554             for(i
=0; i
<n
; i
++) { 
1555                 if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1557                     if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1561                         memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1562                         Blocks
[0][ALLOC
] = 1; 
1563                         memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1564                         Blocks
[1][ALLOC
] = 1; 
1565                         max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1567                         Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1569                         // Handle following blocks 
1570                         for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1573                             memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1574                             Blocks
[ind2
][ALLOC
] = 1; 
1582             for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1583                 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1584                     for(j
=0; j
<max_blocks
; j
++) { 
1585                         if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1586                             // Found an identical block 
1587                             for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1590                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1591                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1592                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1593                                     Blocks
[ind2
][ALLOC
] = 1; 
1595                                     if(num_blocks 
== max_blocks
) goto end
; 
1598                             for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1599                                 if(ind2 
> max_blocks
) 
1601                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1602                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1603                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1604                                     Blocks
[ind2
][ALLOC
] = 1; 
1606                                     if(num_blocks 
== max_blocks
) goto end
; 
1615         if (BUTTON_PRESS()) return; 
1616     } while (num_blocks 
!= max_blocks
); 
1618     Dbprintf("-----------------------------------------"); 
1619     Dbprintf("Memory content:"); 
1620     Dbprintf("-----------------------------------------"); 
1621     for(i
=0; i
<max_blocks
; i
++) { 
1622         if(Blocks
[i
][ALLOC
]==1) 
1623             Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1624                      Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1625                     Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1627             Dbprintf("<missing block %d>", i
); 
1629     Dbprintf("-----------------------------------------"); 
1635 //----------------------------------- 
1636 // EM4469 / EM4305 routines 
1637 //----------------------------------- 
1638 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1639 #define FWD_CMD_WRITE 0xA 
1640 #define FWD_CMD_READ 0x9 
1641 #define FWD_CMD_DISABLE 0x5 
1644 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1645 uint8_t * forward_ptr
; //ptr for forward message preparation 
1646 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1647 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1649 //==================================================================== 
1650 // prepares command bits 
1652 //==================================================================== 
1653 //-------------------------------------------------------------------- 
1654 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1655     //-------------------------------------------------------------------- 
1657     *forward_ptr
++ = 0; //start bit 
1658     *forward_ptr
++ = 0; //second pause for 4050 code 
1660     *forward_ptr
++ = cmd
; 
1662     *forward_ptr
++ = cmd
; 
1664     *forward_ptr
++ = cmd
; 
1666     *forward_ptr
++ = cmd
; 
1668     return 6; //return number of emited bits 
1671 //==================================================================== 
1672 // prepares address bits 
1674 //==================================================================== 
1676 //-------------------------------------------------------------------- 
1677 uint8_t Prepare_Addr( uint8_t addr 
) { 
1678     //-------------------------------------------------------------------- 
1680     register uint8_t line_parity
; 
1685         *forward_ptr
++ = addr
; 
1686         line_parity 
^= addr
; 
1690     *forward_ptr
++ = (line_parity 
& 1); 
1692     return 7; //return number of emited bits 
1695 //==================================================================== 
1696 // prepares data bits intreleaved with parity bits 
1698 //==================================================================== 
1700 //-------------------------------------------------------------------- 
1701 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1702     //-------------------------------------------------------------------- 
1704     register uint8_t line_parity
; 
1705     register uint8_t column_parity
; 
1706     register uint8_t i
, j
; 
1707     register uint16_t data
; 
1712     for(i
=0; i
<4; i
++) { 
1714         for(j
=0; j
<8; j
++) { 
1715             line_parity 
^= data
; 
1716             column_parity 
^= (data 
& 1) << j
; 
1717             *forward_ptr
++ = data
; 
1720         *forward_ptr
++ = line_parity
; 
1725     for(j
=0; j
<8; j
++) { 
1726         *forward_ptr
++ = column_parity
; 
1727         column_parity 
>>= 1; 
1731     return 45; //return number of emited bits 
1734 //==================================================================== 
1735 // Forward Link send function 
1736 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1737 // fwd_bit_count set with number of bits to be sent 
1738 //==================================================================== 
1739 void SendForward(uint8_t fwd_bit_count
) { 
1741     fwd_write_ptr 
= forwardLink_data
; 
1742     fwd_bit_sz 
= fwd_bit_count
; 
1747     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1748     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1749     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1751     // Give it a bit of time for the resonant antenna to settle. 
1752     // And for the tag to fully power up 
1755     // force 1st mod pulse (start gap must be longer for 4305) 
1756     fwd_bit_sz
--; //prepare next bit modulation 
1758     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1759     SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1760     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1761     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1762     SpinDelayUs(16*8); //16 cycles on (8us each) 
1764     // now start writting 
1765     while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1766         if(((*fwd_write_ptr
++) & 1) == 1) 
1767             SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1769             //These timings work for 4469/4269/4305 (with the 55*8 above) 
1770             FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1771             SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1772             FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1773             FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1774             SpinDelayUs(9*8); //16 cycles on (8us each) 
1779 void EM4xLogin(uint32_t Password
) { 
1781     uint8_t fwd_bit_count
; 
1783     forward_ptr 
= forwardLink_data
; 
1784     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1785     fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1787     SendForward(fwd_bit_count
); 
1789     //Wait for command to complete 
1794 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1796     uint8_t fwd_bit_count
; 
1797     uint8_t *dest 
= BigBuf_get_addr(); 
1800     //If password mode do login 
1801     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1803     forward_ptr 
= forwardLink_data
; 
1804     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1805     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1807     m 
= BigBuf_max_traceLen(); 
1808     // Clear destination buffer before sending the command 
1809     memset(dest
, 128, m
); 
1810     // Connect the A/D to the peak-detected low-frequency path. 
1811     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1812     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1815     SendForward(fwd_bit_count
); 
1817     // Now do the acquisition 
1820         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1821             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1823         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1824             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1829     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1833 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1835     uint8_t fwd_bit_count
; 
1837     //If password mode do login 
1838     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1840     forward_ptr 
= forwardLink_data
; 
1841     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1842     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1843     fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1845     SendForward(fwd_bit_count
); 
1847     //Wait for write to complete 
1849     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off