1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
16 #include "../include/proxmark3.h"
25 #include "../include/hitag2.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void BufferClear(void)
48 memset(BigBuf
,0,sizeof(BigBuf
));
49 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(32) |
146 ADC_MODE_STARTUP_TIME(16) |
147 ADC_MODE_SAMPLE_HOLD_TIME(8);
148 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
150 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
151 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
153 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
158 int AvgAdc(int ch
) // was static - merlok
163 for(i
= 0; i
< 32; i
++) {
167 return (a
+ 15) >> 5;
170 void MeasureAntennaTuning(void)
172 uint8_t LF_Results
[256];
173 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
174 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
179 * Sweeps the useful LF range of the proxmark from
180 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
181 * read the voltage in the antenna, the result left
182 * in the buffer is a graph which should clearly show
183 * the resonating frequency of your LF antenna
184 * ( hopefully around 95 if it is tuned to 125kHz!)
187 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
189 for (i
=255; i
>=19; i
--) {
191 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
193 // Vref = 3.3V, and a 10000:240 voltage divider on the input
194 // can measure voltages up to 137500 mV
195 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
196 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
197 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
199 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
200 if(LF_Results
[i
] > peak
) {
202 peak
= LF_Results
[i
];
208 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
211 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
212 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
215 // Vref = 3300mV, and an 10:1 voltage divider on the input
216 // can measure voltages up to 33000 mV
217 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
219 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),LF_Results
,256);
220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
226 void MeasureAntennaTuningHf(void)
228 int vHf
= 0; // in mV
230 DbpString("Measuring HF antenna, press button to exit");
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
237 // Vref = 3300mV, and an 10:1 voltage divider on the input
238 // can measure voltages up to 33000 mV
239 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
241 Dbprintf("%d mV",vHf
);
242 if (BUTTON_PRESS()) break;
244 DbpString("cancelled");
248 void SimulateTagHfListen(void)
250 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
255 // We're using this mode just so that I can test it out; the simulated
256 // tag mode would work just as well and be simpler.
257 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
258 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
260 // We need to listen to the high-frequency, peak-detected path.
261 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
267 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
268 AT91C_BASE_SSC
->SSC_THR
= 0xff;
270 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
271 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
285 if(i
>= FREE_BUFFER_SIZE
) {
291 DbpString("simulate tag (now type bitsamples)");
294 void ReadMem(int addr
)
296 const uint8_t *data
= ((uint8_t *)addr
);
298 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
299 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
302 /* osimage version information is linked in */
303 extern struct version_information version_information
;
304 /* bootrom version information is pointed to from _bootphase1_version_pointer */
305 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
306 void SendVersion(void)
308 char temp
[512]; /* Limited data payload in USB packets */
309 DbpString("Prox/RFID mark3 RFID instrument");
311 /* Try to find the bootrom version information. Expect to find a pointer at
312 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
313 * pointer, then use it.
315 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
316 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
317 DbpString("bootrom version information appears invalid");
319 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
323 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
326 FpgaGatherVersion(temp
, sizeof(temp
));
329 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
333 // samy's sniff and repeat routine
336 DbpString("Stand-alone mode! No PC necessary.");
337 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
339 // 3 possible options? no just 2 for now
342 int high
[OPTS
], low
[OPTS
];
344 // Oooh pretty -- notify user we're in elite samy mode now
346 LED(LED_ORANGE
, 200);
348 LED(LED_ORANGE
, 200);
350 LED(LED_ORANGE
, 200);
352 LED(LED_ORANGE
, 200);
359 // Turn on selected LED
360 LED(selected
+ 1, 0);
367 // Was our button held down or pressed?
368 int button_pressed
= BUTTON_HELD(1000);
371 // Button was held for a second, begin recording
372 if (button_pressed
> 0 && cardRead
== 0)
375 LED(selected
+ 1, 0);
379 DbpString("Starting recording");
381 // wait for button to be released
382 while(BUTTON_PRESS())
385 /* need this delay to prevent catching some weird data */
388 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
389 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
392 LED(selected
+ 1, 0);
393 // Finished recording
395 // If we were previously playing, set playing off
396 // so next button push begins playing what we recorded
403 else if (button_pressed
> 0 && cardRead
== 1)
406 LED(selected
+ 1, 0);
410 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
412 // wait for button to be released
413 while(BUTTON_PRESS())
416 /* need this delay to prevent catching some weird data */
419 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
420 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
423 LED(selected
+ 1, 0);
424 // Finished recording
426 // If we were previously playing, set playing off
427 // so next button push begins playing what we recorded
434 // Change where to record (or begin playing)
435 else if (button_pressed
)
437 // Next option if we were previously playing
439 selected
= (selected
+ 1) % OPTS
;
443 LED(selected
+ 1, 0);
445 // Begin transmitting
449 DbpString("Playing");
450 // wait for button to be released
451 while(BUTTON_PRESS())
453 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
454 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
455 DbpString("Done playing");
456 if (BUTTON_HELD(1000) > 0)
458 DbpString("Exiting");
463 /* We pressed a button so ignore it here with a delay */
466 // when done, we're done playing, move to next option
467 selected
= (selected
+ 1) % OPTS
;
470 LED(selected
+ 1, 0);
473 while(BUTTON_PRESS())
482 Listen and detect an external reader. Determine the best location
486 Inside the ListenReaderField() function, there is two mode.
487 By default, when you call the function, you will enter mode 1.
488 If you press the PM3 button one time, you will enter mode 2.
489 If you press the PM3 button a second time, you will exit the function.
491 DESCRIPTION OF MODE 1:
492 This mode just listens for an external reader field and lights up green
493 for HF and/or red for LF. This is the original mode of the detectreader
496 DESCRIPTION OF MODE 2:
497 This mode will visually represent, using the LEDs, the actual strength of the
498 current compared to the maximum current detected. Basically, once you know
499 what kind of external reader is present, it will help you spot the best location to place
500 your antenna. You will probably not get some good results if there is a LF and a HF reader
501 at the same place! :-)
505 static const char LIGHT_SCHEME
[] = {
506 0x0, /* ---- | No field detected */
507 0x1, /* X--- | 14% of maximum current detected */
508 0x2, /* -X-- | 29% of maximum current detected */
509 0x4, /* --X- | 43% of maximum current detected */
510 0x8, /* ---X | 57% of maximum current detected */
511 0xC, /* --XX | 71% of maximum current detected */
512 0xE, /* -XXX | 86% of maximum current detected */
513 0xF, /* XXXX | 100% of maximum current detected */
515 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
517 void ListenReaderField(int limit
)
519 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
520 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
521 int mode
=1, display_val
, display_max
, i
;
528 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
530 if(limit
!= HF_ONLY
) {
531 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
535 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
537 if (limit
!= LF_ONLY
) {
538 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
543 if (BUTTON_PRESS()) {
548 DbpString("Signal Strength Mode");
552 DbpString("Stopped");
560 if (limit
!= HF_ONLY
) {
562 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
567 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
568 // see if there's a significant change
569 if(abs(lf_av
- lf_av_new
) > 10) {
570 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
578 if (limit
!= LF_ONLY
) {
580 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
585 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
586 // see if there's a significant change
587 if(abs(hf_av
- hf_av_new
) > 10) {
588 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
597 if (limit
== LF_ONLY
) {
599 display_max
= lf_max
;
600 } else if (limit
== HF_ONLY
) {
602 display_max
= hf_max
;
603 } else { /* Pick one at random */
604 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
606 display_max
= hf_max
;
609 display_max
= lf_max
;
612 for (i
=0; i
<LIGHT_LEN
; i
++) {
613 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
614 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
615 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
616 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
617 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
625 void UsbPacketReceived(uint8_t *packet
, int len
)
627 UsbCommand
*c
= (UsbCommand
*)packet
;
629 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
633 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
634 AcquireRawAdcSamples125k(c
->arg
[0]);
635 cmd_send(CMD_ACK
,0,0,0,0,0);
637 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
638 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
640 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
641 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
642 cmd_send(CMD_ACK
,0,0,0,0,0);
644 case CMD_HID_DEMOD_FSK
:
645 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
647 case CMD_HID_SIM_TAG
:
648 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
650 case CMD_HID_CLONE_TAG
:
651 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
653 case CMD_IO_DEMOD_FSK
:
654 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
656 case CMD_IO_CLONE_TAG
:
657 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
659 case CMD_EM410X_WRITE_TAG
:
660 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
662 case CMD_READ_TI_TYPE
:
665 case CMD_WRITE_TI_TYPE
:
666 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
668 case CMD_SIMULATE_TAG_125K
:
669 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 0);
670 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
672 case CMD_LF_SIMULATE_BIDIR
:
673 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
675 case CMD_INDALA_CLONE_TAG
:
676 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
678 case CMD_INDALA_CLONE_TAG_L
:
679 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
681 case CMD_T55XX_READ_BLOCK
:
682 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
684 case CMD_T55XX_WRITE_BLOCK
:
685 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
687 case CMD_T55XX_READ_TRACE
:
690 case CMD_PCF7931_READ
:
692 cmd_send(CMD_ACK
,0,0,0,0,0);
694 case CMD_EM4X_READ_WORD
:
695 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
697 case CMD_EM4X_WRITE_WORD
:
698 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
703 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
704 SnoopHitag(c
->arg
[0]);
706 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
707 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
709 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
710 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
715 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
716 AcquireRawAdcSamplesIso15693();
718 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
719 RecordRawAdcSamplesIso15693();
722 case CMD_ISO_15693_COMMAND
:
723 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
726 case CMD_ISO_15693_FIND_AFI
:
727 BruteforceIso15693Afi(c
->arg
[0]);
730 case CMD_ISO_15693_DEBUG
:
731 SetDebugIso15693(c
->arg
[0]);
734 case CMD_READER_ISO_15693
:
735 ReaderIso15693(c
->arg
[0]);
737 case CMD_SIMTAG_ISO_15693
:
738 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
743 case CMD_SIMULATE_TAG_LEGIC_RF
:
744 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
747 case CMD_WRITER_LEGIC_RF
:
748 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
751 case CMD_READER_LEGIC_RF
:
752 LegicRfReader(c
->arg
[0], c
->arg
[1]);
756 #ifdef WITH_ISO14443b
757 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
758 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
760 case CMD_READ_SRI512_TAG
:
761 ReadSTMemoryIso14443(0x0F);
763 case CMD_READ_SRIX4K_TAG
:
764 ReadSTMemoryIso14443(0x7F);
766 case CMD_SNOOP_ISO_14443
:
769 case CMD_SIMULATE_TAG_ISO_14443
:
770 SimulateIso14443Tag();
772 case CMD_ISO_14443B_COMMAND
:
773 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
777 #ifdef WITH_ISO14443a
778 case CMD_SNOOP_ISO_14443a
:
779 SnoopIso14443a(c
->arg
[0]);
781 case CMD_READER_ISO_14443a
:
784 case CMD_SIMULATE_TAG_ISO_14443a
:
785 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
788 case CMD_EPA_PACE_COLLECT_NONCE
:
789 EPA_PACE_Collect_Nonce(c
);
796 case CMD_READER_MIFARE
:
797 ReaderMifare(c
->arg
[0]);
799 case CMD_MIFARE_READBL
:
800 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
802 case CMD_MIFAREU_READBL
:
803 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
805 case CMD_MIFAREUC_AUTH1
:
806 MifareUC_Auth1(c
->arg
[0],c
->d
.asBytes
);
808 case CMD_MIFAREUC_AUTH2
:
809 MifareUC_Auth2(c
->arg
[0],c
->d
.asBytes
);
811 case CMD_MIFAREU_READCARD
:
812 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
814 case CMD_MIFAREUC_READCARD
:
815 MifareUReadCard(c
->arg
[0],c
->arg
[1],c
->d
.asBytes
);
817 case CMD_MIFARE_READSC
:
818 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
820 case CMD_MIFARE_WRITEBL
:
821 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 case CMD_MIFAREU_WRITEBL_COMPAT
:
824 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
826 case CMD_MIFAREU_WRITEBL
:
827 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
829 case CMD_MIFARE_NESTED
:
830 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
832 case CMD_MIFARE_CHKKEYS
:
833 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
835 case CMD_SIMULATE_MIFARE_CARD
:
836 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
840 case CMD_MIFARE_SET_DBGMODE
:
841 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
843 case CMD_MIFARE_EML_MEMCLR
:
844 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
846 case CMD_MIFARE_EML_MEMSET
:
847 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFARE_EML_MEMGET
:
850 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
852 case CMD_MIFARE_EML_CARDLOAD
:
853 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
856 // Work with "magic Chinese" card
857 case CMD_MIFARE_CSETBLOCK
:
858 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
860 case CMD_MIFARE_CGETBLOCK
:
861 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
863 case CMD_MIFARE_CIDENT
:
868 case CMD_MIFARE_SNIFFER
:
869 SniffMifare(c
->arg
[0]);
873 case CMD_MIFARE_DESFIRE_READBL
:
875 case CMD_MIFARE_DESFIRE_WRITEBL
:
877 case CMD_MIFARE_DESFIRE_AUTH1
:
878 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
880 case CMD_MIFARE_DESFIRE_AUTH2
:
881 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
883 // case CMD_MIFARE_DES_READER:
884 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
886 case CMD_MIFARE_DESFIRE_INFO
:
887 MifareDesfireGetInformation();
889 case CMD_MIFARE_DESFIRE
:
890 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
896 // Makes use of ISO14443a FPGA Firmware
897 case CMD_SNOOP_ICLASS
:
900 case CMD_SIMULATE_TAG_ICLASS
:
901 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
903 case CMD_READER_ICLASS
:
904 ReaderIClass(c
->arg
[0]);
906 case CMD_READER_ICLASS_REPLAY
:
907 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
911 case CMD_SIMULATE_TAG_HF_LISTEN
:
912 SimulateTagHfListen();
919 case CMD_MEASURE_ANTENNA_TUNING
:
920 MeasureAntennaTuning();
923 case CMD_MEASURE_ANTENNA_TUNING_HF
:
924 MeasureAntennaTuningHf();
927 case CMD_LISTEN_READER_FIELD
:
928 ListenReaderField(c
->arg
[0]);
931 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
934 LED_D_OFF(); // LED D indicates field ON or OFF
937 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
940 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
941 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
942 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
944 // Trigger a finish downloading signal with an ACK frame
945 cmd_send(CMD_ACK
,0,0,0,0,0);
949 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
950 uint8_t *b
= (uint8_t *)BigBuf
;
951 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
952 cmd_send(CMD_ACK
,0,0,0,0,0);
959 case CMD_SET_LF_DIVISOR
:
960 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
961 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
964 case CMD_SET_ADC_MUX
:
966 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
967 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
968 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
969 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
985 case CMD_SETUP_WRITE
:
986 case CMD_FINISH_WRITE
:
987 case CMD_HARDWARE_RESET
:
991 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
993 // We're going to reset, and the bootrom will take control.
997 case CMD_START_FLASH
:
998 if(common_area
.flags
.bootrom_present
) {
999 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1002 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1006 case CMD_DEVICE_INFO
: {
1007 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1008 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1009 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1013 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1018 void __attribute__((noreturn
)) AppMain(void)
1022 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1023 /* Initialize common area */
1024 memset(&common_area
, 0, sizeof(common_area
));
1025 common_area
.magic
= COMMON_AREA_MAGIC
;
1026 common_area
.version
= 1;
1028 common_area
.flags
.osimage_present
= 1;
1038 // The FPGA gets its clock from us from PCK0 output, so set that up.
1039 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1040 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1041 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1042 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1043 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1044 AT91C_PMC_PRES_CLK_4
;
1045 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1048 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1050 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1052 // Load the FPGA image, which we have stored in our flash.
1053 // (the HF version by default)
1054 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1062 byte_t rx
[sizeof(UsbCommand
)];
1067 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1069 UsbPacketReceived(rx
,rx_len
);
1075 if (BUTTON_HELD(1000) > 0)