]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
354b829c94b041c090ebfed7611d0507db91c21d
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22 #include "BigBuf.h"
23 static uint32_t iso14a_timeout;
24 int rsamples = 0;
25 uint8_t trigger = 0;
26 // the block number for the ISO14443-4 PCB
27 static uint8_t iso14_pcb_blocknum = 0;
28
29 //
30 // ISO14443 timing:
31 //
32 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
33 #define REQUEST_GUARD_TIME (7000/16 + 1)
34 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
35 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
36 // bool LastCommandWasRequest = FALSE;
37
38 //
39 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
40 //
41 // When the PM acts as reader and is receiving tag data, it takes
42 // 3 ticks delay in the AD converter
43 // 16 ticks until the modulation detector completes and sets curbit
44 // 8 ticks until bit_to_arm is assigned from curbit
45 // 8*16 ticks for the transfer from FPGA to ARM
46 // 4*16 ticks until we measure the time
47 // - 8*16 ticks because we measure the time of the previous transfer
48 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
49
50 // When the PM acts as a reader and is sending, it takes
51 // 4*16 ticks until we can write data to the sending hold register
52 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
53 // 8 ticks until the first transfer starts
54 // 8 ticks later the FPGA samples the data
55 // 1 tick to assign mod_sig_coil
56 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
57
58 // When the PM acts as tag and is receiving it takes
59 // 2 ticks delay in the RF part (for the first falling edge),
60 // 3 ticks for the A/D conversion,
61 // 8 ticks on average until the start of the SSC transfer,
62 // 8 ticks until the SSC samples the first data
63 // 7*16 ticks to complete the transfer from FPGA to ARM
64 // 8 ticks until the next ssp_clk rising edge
65 // 4*16 ticks until we measure the time
66 // - 8*16 ticks because we measure the time of the previous transfer
67 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
68
69 // The FPGA will report its internal sending delay in
70 uint16_t FpgaSendQueueDelay;
71 // the 5 first bits are the number of bits buffered in mod_sig_buf
72 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
73 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
74
75 // When the PM acts as tag and is sending, it takes
76 // 4*16 ticks until we can write data to the sending hold register
77 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
78 // 8 ticks until the first transfer starts
79 // 8 ticks later the FPGA samples the data
80 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
81 // + 1 tick to assign mod_sig_coil
82 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
83
84 // When the PM acts as sniffer and is receiving tag data, it takes
85 // 3 ticks A/D conversion
86 // 14 ticks to complete the modulation detection
87 // 8 ticks (on average) until the result is stored in to_arm
88 // + the delays in transferring data - which is the same for
89 // sniffing reader and tag data and therefore not relevant
90 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
91
92 // When the PM acts as sniffer and is receiving reader data, it takes
93 // 2 ticks delay in analogue RF receiver (for the falling edge of the
94 // start bit, which marks the start of the communication)
95 // 3 ticks A/D conversion
96 // 8 ticks on average until the data is stored in to_arm.
97 // + the delays in transferring data - which is the same for
98 // sniffing reader and tag data and therefore not relevant
99 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
100
101 //variables used for timing purposes:
102 //these are in ssp_clk cycles:
103 static uint32_t NextTransferTime;
104 static uint32_t LastTimeProxToAirStart;
105 static uint32_t LastProxToAirDuration;
106
107
108
109 // CARD TO READER - manchester
110 // Sequence D: 11110000 modulation with subcarrier during first half
111 // Sequence E: 00001111 modulation with subcarrier during second half
112 // Sequence F: 00000000 no modulation with subcarrier
113 // READER TO CARD - miller
114 // Sequence X: 00001100 drop after half a period
115 // Sequence Y: 00000000 no drop
116 // Sequence Z: 11000000 drop at start
117 #define SEC_D 0xf0
118 #define SEC_E 0x0f
119 #define SEC_F 0x00
120 #define SEC_X 0x0c
121 #define SEC_Y 0x00
122 #define SEC_Z 0xc0
123
124 const uint8_t OddByteParity[256] = {
125 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
126 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
141 };
142
143
144 void iso14a_set_trigger(bool enable) {
145 trigger = enable;
146 }
147
148
149 void iso14a_set_timeout(uint32_t timeout) {
150 iso14a_timeout = timeout;
151 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
152 }
153
154
155 void iso14a_set_ATS_timeout(uint8_t *ats) {
156
157 uint8_t tb1;
158 uint8_t fwi;
159 uint32_t fwt;
160
161 if (ats[0] > 1) { // there is a format byte T0
162 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
163 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
164 tb1 = ats[3];
165 } else {
166 tb1 = ats[2];
167 }
168 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
169 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
170
171 iso14a_set_timeout(fwt/(8*16));
172 }
173 }
174 }
175
176
177 //-----------------------------------------------------------------------------
178 // Generate the parity value for a byte sequence
179 //
180 //-----------------------------------------------------------------------------
181 byte_t oddparity (const byte_t bt)
182 {
183 return OddByteParity[bt];
184 }
185
186 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
187 {
188 uint16_t paritybit_cnt = 0;
189 uint16_t paritybyte_cnt = 0;
190 uint8_t parityBits = 0;
191
192 for (uint16_t i = 0; i < iLen; i++) {
193 // Generate the parity bits
194 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
195 if (paritybit_cnt == 7) {
196 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
197 parityBits = 0; // and advance to next Parity Byte
198 paritybyte_cnt++;
199 paritybit_cnt = 0;
200 } else {
201 paritybit_cnt++;
202 }
203 }
204
205 // save remaining parity bits
206 par[paritybyte_cnt] = parityBits;
207
208 }
209
210 void AppendCrc14443a(uint8_t* data, int len)
211 {
212 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
213 }
214
215 void AppendCrc14443b(uint8_t* data, int len)
216 {
217 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
218 }
219
220
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
224 // Basics:
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
237 static tUart Uart;
238
239 // Lookup-Table to decide if 4 raw bits are a modulation.
240 // We accept the following:
241 // 0001 - a 3 tick wide pause
242 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
243 // 0111 - a 2 tick wide pause shifted left
244 // 1001 - a 2 tick wide pause shifted right
245 const bool Mod_Miller_LUT[] = {
246 FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE,
247 FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
248 };
249 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
250 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
251
252 void UartReset()
253 {
254 Uart.state = STATE_UNSYNCD;
255 Uart.bitCount = 0;
256 Uart.len = 0; // number of decoded data bytes
257 Uart.parityLen = 0; // number of decoded parity bytes
258 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
259 Uart.parityBits = 0; // holds 8 parity bits
260 Uart.startTime = 0;
261 Uart.endTime = 0;
262
263 Uart.byteCntMax = 0;
264 Uart.posCnt = 0;
265 Uart.syncBit = 9999;
266 }
267
268 void UartInit(uint8_t *data, uint8_t *parity)
269 {
270 Uart.output = data;
271 Uart.parity = parity;
272 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
273 UartReset();
274 }
275
276 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
277 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
278 {
279
280 Uart.fourBits = (Uart.fourBits << 8) | bit;
281
282 if (Uart.state == STATE_UNSYNCD) { // not yet synced
283
284 Uart.syncBit = 9999; // not set
285
286 // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication")
287 // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information")
288 // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1")
289
290 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
291 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
292 // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern
293 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
294 //
295 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000
296 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000
297
298 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
299 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
300 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
301 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
302 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
303 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
304 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
305 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
306
307 if (Uart.syncBit != 9999) { // found a sync bit
308 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
309 Uart.startTime -= Uart.syncBit;
310 Uart.endTime = Uart.startTime;
311 Uart.state = STATE_START_OF_COMMUNICATION;
312 }
313
314 } else {
315
316 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
317 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
318 UartReset();
319 } else { // Modulation in first half = Sequence Z = logic "0"
320 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
321 UartReset();
322 } else {
323 Uart.bitCount++;
324 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
325 Uart.state = STATE_MILLER_Z;
326 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
327 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
328 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
329 Uart.parityBits <<= 1; // make room for the parity bit
330 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
331 Uart.bitCount = 0;
332 Uart.shiftReg = 0;
333 if((Uart.len&0x0007) == 0) { // every 8 data bytes
334 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
335 Uart.parityBits = 0;
336 }
337 }
338 }
339 }
340 } else {
341 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
342 Uart.bitCount++;
343 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
344 Uart.state = STATE_MILLER_X;
345 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
346 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
347 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
348 Uart.parityBits <<= 1; // make room for the new parity bit
349 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
350 Uart.bitCount = 0;
351 Uart.shiftReg = 0;
352 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
353 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
354 Uart.parityBits = 0;
355 }
356 }
357 } else { // no modulation in both halves - Sequence Y
358 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
359 Uart.state = STATE_UNSYNCD;
360 Uart.bitCount--; // last "0" was part of EOC sequence
361 Uart.shiftReg <<= 1; // drop it
362 if(Uart.bitCount > 0) { // if we decoded some bits
363 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
364 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
365 Uart.parityBits <<= 1; // add a (void) parity bit
366 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
367 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
368 return TRUE;
369 } else if (Uart.len & 0x0007) { // there are some parity bits to store
370 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
371 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
372 }
373 if (Uart.len) {
374 return TRUE; // we are finished with decoding the raw data sequence
375 } else {
376 UartReset(); // Nothing received - start over
377 }
378 }
379 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
380 UartReset();
381 } else { // a logic "0"
382 Uart.bitCount++;
383 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
384 Uart.state = STATE_MILLER_Y;
385 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
386 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
387 Uart.parityBits <<= 1; // make room for the parity bit
388 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
389 Uart.bitCount = 0;
390 Uart.shiftReg = 0;
391 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
392 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
393 Uart.parityBits = 0;
394 }
395 }
396 }
397 }
398 }
399
400 }
401
402 return FALSE; // not finished yet, need more data
403 }
404
405
406
407 //=============================================================================
408 // ISO 14443 Type A - Manchester decoder
409 //=============================================================================
410 // Basics:
411 // This decoder is used when the PM3 acts as a reader.
412 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
413 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
414 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
415 // The Manchester decoder needs to identify the following sequences:
416 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
417 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
418 // 8 ticks unmodulated: Sequence F = end of communication
419 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
420 // Note 1: the bitstream may start at any time. We therefore need to sync.
421 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
422 static tDemod Demod;
423
424 // Lookup-Table to decide if 4 raw bits are a modulation.
425 // We accept three or four "1" in any position
426 const bool Mod_Manchester_LUT[] = {
427 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
428 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
429 };
430
431 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
432 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
433
434
435 void DemodReset()
436 {
437 Demod.state = DEMOD_UNSYNCD;
438 Demod.len = 0; // number of decoded data bytes
439 Demod.parityLen = 0;
440 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
441 Demod.parityBits = 0; //
442 Demod.collisionPos = 0; // Position of collision bit
443 Demod.twoBits = 0xffff; // buffer for 2 Bits
444 Demod.highCnt = 0;
445 Demod.startTime = 0;
446 Demod.endTime = 0;
447
448 //
449 Demod.bitCount = 0;
450 Demod.syncBit = 0xFFFF;
451 Demod.samples = 0;
452 }
453
454 void DemodInit(uint8_t *data, uint8_t *parity)
455 {
456 Demod.output = data;
457 Demod.parity = parity;
458 DemodReset();
459 }
460
461 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
462 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
463 {
464
465 Demod.twoBits = (Demod.twoBits << 8) | bit;
466
467 if (Demod.state == DEMOD_UNSYNCD) {
468
469 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
470 if (Demod.twoBits == 0x0000) {
471 Demod.highCnt++;
472 } else {
473 Demod.highCnt = 0;
474 }
475 } else {
476 Demod.syncBit = 0xFFFF; // not set
477 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
478 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
479 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
480 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
481 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
482 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
483 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
484 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
485 if (Demod.syncBit != 0xFFFF) {
486 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
487 Demod.startTime -= Demod.syncBit;
488 Demod.bitCount = offset; // number of decoded data bits
489 Demod.state = DEMOD_MANCHESTER_DATA;
490 }
491 }
492
493 } else {
494
495 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
496 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
497 if (!Demod.collisionPos) {
498 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
499 }
500 } // modulation in first half only - Sequence D = 1
501 Demod.bitCount++;
502 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
503 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
504 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
505 Demod.parityBits <<= 1; // make room for the parity bit
506 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
507 Demod.bitCount = 0;
508 Demod.shiftReg = 0;
509 if((Demod.len&0x0007) == 0) { // every 8 data bytes
510 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
511 Demod.parityBits = 0;
512 }
513 }
514 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
515 } else { // no modulation in first half
516 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
517 Demod.bitCount++;
518 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
519 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
520 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
521 Demod.parityBits <<= 1; // make room for the new parity bit
522 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
523 Demod.bitCount = 0;
524 Demod.shiftReg = 0;
525 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
526 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
527 Demod.parityBits = 0;
528 }
529 }
530 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
531 } else { // no modulation in both halves - End of communication
532 if(Demod.bitCount > 0) { // there are some remaining data bits
533 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
534 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
535 Demod.parityBits <<= 1; // add a (void) parity bit
536 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
537 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
538 return TRUE;
539 } else if (Demod.len & 0x0007) { // there are some parity bits to store
540 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
541 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
542 }
543 if (Demod.len) {
544 return TRUE; // we are finished with decoding the raw data sequence
545 } else { // nothing received. Start over
546 DemodReset();
547 }
548 }
549 }
550 }
551 return FALSE; // not finished yet, need more data
552 }
553
554 //=============================================================================
555 // Finally, a `sniffer' for ISO 14443 Type A
556 // Both sides of communication!
557 //=============================================================================
558
559 //-----------------------------------------------------------------------------
560 // Record the sequence of commands sent by the reader to the tag, with
561 // triggering so that we start recording at the point that the tag is moved
562 // near the reader.
563 //-----------------------------------------------------------------------------
564 void RAMFUNC SniffIso14443a(uint8_t param) {
565 // param:
566 // bit 0 - trigger from first card answer
567 // bit 1 - trigger from first reader 7-bit request
568
569 LEDsoff();
570
571 // We won't start recording the frames that we acquire until we trigger;
572 // a good trigger condition to get started is probably when we see a
573 // response from the tag.
574 // triggered == FALSE -- to wait first for card
575 bool triggered = !(param & 0x03);
576
577 // Allocate memory from BigBuf for some buffers
578 // free all previous allocations first
579 BigBuf_free();
580
581 // The command (reader -> tag) that we're receiving.
582 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
583 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
584
585 // The response (tag -> reader) that we're receiving.
586 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
587 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
588
589 // The DMA buffer, used to stream samples from the FPGA
590 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
591
592 // init trace buffer
593 clear_trace();
594 set_tracing(TRUE);
595
596 uint8_t *data = dmaBuf;
597 uint8_t previous_data = 0;
598 int maxDataLen = 0;
599 int dataLen = 0;
600 bool TagIsActive = FALSE;
601 bool ReaderIsActive = FALSE;
602
603 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
604
605 // Set up the demodulator for tag -> reader responses.
606 DemodInit(receivedResponse, receivedResponsePar);
607
608 // Set up the demodulator for the reader -> tag commands
609 UartInit(receivedCmd, receivedCmdPar);
610
611 // Setup and start DMA.
612 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
613
614 // And now we loop, receiving samples.
615 for(uint32_t rsamples = 0; TRUE; ) {
616
617 if(BUTTON_PRESS()) {
618 DbpString("cancelled by button");
619 break;
620 }
621
622 LED_A_ON();
623 WDT_HIT();
624
625 int register readBufDataP = data - dmaBuf;
626 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
627 if (readBufDataP <= dmaBufDataP){
628 dataLen = dmaBufDataP - readBufDataP;
629 } else {
630 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
631 }
632 // test for length of buffer
633 if(dataLen > maxDataLen) {
634 maxDataLen = dataLen;
635 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
636 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
637 break;
638 }
639 }
640 if(dataLen < 1) continue;
641
642 // primary buffer was stopped( <-- we lost data!
643 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
644 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
645 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
646 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
647 }
648 // secondary buffer sets as primary, secondary buffer was stopped
649 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
650 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
651 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
652 }
653
654 LED_A_OFF();
655
656 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
657
658 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
659 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
660 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
661 LED_C_ON();
662
663 // check - if there is a short 7bit request from reader
664 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
665
666 if(triggered) {
667 if (!LogTrace(receivedCmd,
668 Uart.len,
669 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
670 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
671 Uart.parity,
672 TRUE)) break;
673 }
674 /* And ready to receive another command. */
675 UartReset();
676 //UartInit(receivedCmd, receivedCmdPar);
677 /* And also reset the demod code, which might have been */
678 /* false-triggered by the commands from the reader. */
679 DemodReset();
680 LED_B_OFF();
681 }
682 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
683 }
684
685 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
686 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
687 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
688 LED_B_ON();
689
690 if (!LogTrace(receivedResponse,
691 Demod.len,
692 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
693 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
694 Demod.parity,
695 FALSE)) break;
696
697 if ((!triggered) && (param & 0x01)) triggered = TRUE;
698
699 // And ready to receive another response.
700 DemodReset();
701 // And reset the Miller decoder including itS (now outdated) input buffer
702 UartInit(receivedCmd, receivedCmdPar);
703
704 LED_C_OFF();
705 }
706 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
707 }
708 }
709
710 previous_data = *data;
711 rsamples++;
712 data++;
713 if(data == dmaBuf + DMA_BUFFER_SIZE) {
714 data = dmaBuf;
715 }
716 } // main cycle
717
718 DbpString("COMMAND FINISHED");
719
720 FpgaDisableSscDma();
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
723 LEDsoff();
724 }
725
726 //-----------------------------------------------------------------------------
727 // Prepare tag messages
728 //-----------------------------------------------------------------------------
729 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
730 {
731 ToSendReset();
732
733 // Correction bit, might be removed when not needed
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(0);
737 ToSendStuffBit(0);
738 ToSendStuffBit(1); // 1
739 ToSendStuffBit(0);
740 ToSendStuffBit(0);
741 ToSendStuffBit(0);
742
743 // Send startbit
744 ToSend[++ToSendMax] = SEC_D;
745 LastProxToAirDuration = 8 * ToSendMax - 4;
746
747 for(uint16_t i = 0; i < len; i++) {
748 uint8_t b = cmd[i];
749
750 // Data bits
751 for(uint16_t j = 0; j < 8; j++) {
752 if(b & 1) {
753 ToSend[++ToSendMax] = SEC_D;
754 } else {
755 ToSend[++ToSendMax] = SEC_E;
756 }
757 b >>= 1;
758 }
759
760 // Get the parity bit
761 if (parity[i>>3] & (0x80>>(i&0x0007))) {
762 ToSend[++ToSendMax] = SEC_D;
763 LastProxToAirDuration = 8 * ToSendMax - 4;
764 } else {
765 ToSend[++ToSendMax] = SEC_E;
766 LastProxToAirDuration = 8 * ToSendMax;
767 }
768 }
769
770 // Send stopbit
771 ToSend[++ToSendMax] = SEC_F;
772
773 // Convert from last byte pos to length
774 ToSendMax++;
775 }
776
777 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
778 {
779 uint8_t par[MAX_PARITY_SIZE];
780
781 GetParity(cmd, len, par);
782 CodeIso14443aAsTagPar(cmd, len, par);
783 }
784
785
786 static void Code4bitAnswerAsTag(uint8_t cmd)
787 {
788 int i;
789
790 ToSendReset();
791
792 // Correction bit, might be removed when not needed
793 ToSendStuffBit(0);
794 ToSendStuffBit(0);
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(1); // 1
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800 ToSendStuffBit(0);
801
802 // Send startbit
803 ToSend[++ToSendMax] = SEC_D;
804
805 uint8_t b = cmd;
806 for(i = 0; i < 4; i++) {
807 if(b & 1) {
808 ToSend[++ToSendMax] = SEC_D;
809 LastProxToAirDuration = 8 * ToSendMax - 4;
810 } else {
811 ToSend[++ToSendMax] = SEC_E;
812 LastProxToAirDuration = 8 * ToSendMax;
813 }
814 b >>= 1;
815 }
816
817 // Send stopbit
818 ToSend[++ToSendMax] = SEC_F;
819
820 // Convert from last byte pos to length
821 ToSendMax++;
822 }
823
824 //-----------------------------------------------------------------------------
825 // Wait for commands from reader
826 // Stop when button is pressed
827 // Or return TRUE when command is captured
828 //-----------------------------------------------------------------------------
829 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
830 {
831 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
832 // only, since we are receiving, not transmitting).
833 // Signal field is off with the appropriate LED
834 LED_D_OFF();
835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
836
837 // Now run a `software UART' on the stream of incoming samples.
838 UartInit(received, parity);
839
840 // clear RXRDY:
841 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
842
843 for(;;) {
844 WDT_HIT();
845
846 if(BUTTON_PRESS()) return FALSE;
847
848 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
849 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
850 if(MillerDecoding(b, 0)) {
851 *len = Uart.len;
852 return TRUE;
853 }
854 }
855 }
856 }
857
858 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
859 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
860 int EmSend4bit(uint8_t resp);
861 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
862 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
863 int EmSendCmd(uint8_t *resp, uint16_t respLen);
864 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
865 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
866 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
867
868 static uint8_t* free_buffer_pointer;
869
870 typedef struct {
871 uint8_t* response;
872 size_t response_n;
873 uint8_t* modulation;
874 size_t modulation_n;
875 uint32_t ProxToAirDuration;
876 } tag_response_info_t;
877
878 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
879 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
880 // This will need the following byte array for a modulation sequence
881 // 144 data bits (18 * 8)
882 // 18 parity bits
883 // 2 Start and stop
884 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
885 // 1 just for the case
886 // ----------- +
887 // 166 bytes, since every bit that needs to be send costs us a byte
888 //
889
890
891 // Prepare the tag modulation bits from the message
892 CodeIso14443aAsTag(response_info->response,response_info->response_n);
893
894 // Make sure we do not exceed the free buffer space
895 if (ToSendMax > max_buffer_size) {
896 Dbprintf("Out of memory, when modulating bits for tag answer:");
897 Dbhexdump(response_info->response_n,response_info->response,false);
898 return false;
899 }
900
901 // Copy the byte array, used for this modulation to the buffer position
902 memcpy(response_info->modulation,ToSend,ToSendMax);
903
904 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
905 response_info->modulation_n = ToSendMax;
906 response_info->ProxToAirDuration = LastProxToAirDuration;
907
908 return true;
909 }
910
911
912 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
913 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
914 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
915 // -> need 273 bytes buffer
916 // 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370
917 // 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits
918 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453
919
920 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
921 // Retrieve and store the current buffer index
922 response_info->modulation = free_buffer_pointer;
923
924 // Determine the maximum size we can use from our buffer
925 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
926
927 // Forward the prepare tag modulation function to the inner function
928 if (prepare_tag_modulation(response_info, max_buffer_size)) {
929 // Update the free buffer offset
930 free_buffer_pointer += ToSendMax;
931 return true;
932 } else {
933 return false;
934 }
935 }
936
937 //-----------------------------------------------------------------------------
938 // Main loop of simulated tag: receive commands from reader, decide what
939 // response to send, and send it.
940 //-----------------------------------------------------------------------------
941 void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
942 {
943
944 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
945 // This can be used in a reader-only attack.
946 // (it can also be retrieved via 'hf 14a list', but hey...
947 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
948 uint8_t ar_nr_collected = 0;
949
950 uint8_t sak;
951
952 // PACK response to PWD AUTH for EV1/NTAG
953 uint8_t response8[4];
954
955 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
956 uint8_t response1[2];
957
958 switch (tagType) {
959 case 1: { // MIFARE Classic
960 // Says: I am Mifare 1k - original line
961 response1[0] = 0x04;
962 response1[1] = 0x00;
963 sak = 0x08;
964 } break;
965 case 2: { // MIFARE Ultralight
966 // Says: I am a stupid memory tag, no crypto
967 response1[0] = 0x44;
968 response1[1] = 0x00;
969 sak = 0x00;
970 } break;
971 case 3: { // MIFARE DESFire
972 // Says: I am a DESFire tag, ph33r me
973 response1[0] = 0x04;
974 response1[1] = 0x03;
975 sak = 0x20;
976 } break;
977 case 4: { // ISO/IEC 14443-4
978 // Says: I am a javacard (JCOP)
979 response1[0] = 0x04;
980 response1[1] = 0x00;
981 sak = 0x28;
982 } break;
983 case 5: { // MIFARE TNP3XXX
984 // Says: I am a toy
985 response1[0] = 0x01;
986 response1[1] = 0x0f;
987 sak = 0x01;
988 } break;
989 case 6: { // MIFARE Mini
990 // Says: I am a Mifare Mini, 320b
991 response1[0] = 0x44;
992 response1[1] = 0x00;
993 sak = 0x09;
994 } break;
995 case 7: { // NTAG?
996 // Says: I am a NTAG,
997 response1[0] = 0x44;
998 response1[1] = 0x00;
999 sak = 0x00;
1000 // PACK
1001 response8[0] = 0x80;
1002 response8[1] = 0x80;
1003 ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]);
1004 } break;
1005 default: {
1006 Dbprintf("Error: unkown tagtype (%d)",tagType);
1007 return;
1008 } break;
1009 }
1010
1011 // The second response contains the (mandatory) first 24 bits of the UID
1012 uint8_t response2[5] = {0x00};
1013
1014 // Check if the uid uses the (optional) part
1015 uint8_t response2a[5] = {0x00};
1016
1017 if (flags & FLAG_7B_UID_IN_DATA) {
1018 response2[0] = 0x88;
1019 response2[1] = data[0];
1020 response2[2] = data[1];
1021 response2[3] = data[2];
1022
1023 response2a[0] = data[3];
1024 response2a[1] = data[4];
1025 response2a[2] = data[5];
1026 response2a[3] = data[6]; //??
1027 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1028
1029 // Configure the ATQA and SAK accordingly
1030 response1[0] |= 0x40;
1031 sak |= 0x04;
1032 } else {
1033 memcpy(response2, data, 4);
1034 //num_to_bytes(uid_1st,4,response2);
1035 // Configure the ATQA and SAK accordingly
1036 response1[0] &= 0xBF;
1037 sak &= 0xFB;
1038 }
1039
1040 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1041 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1042
1043 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1044 uint8_t response3[3] = {0x00};
1045 response3[0] = sak;
1046 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1047
1048 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1049 uint8_t response3a[3] = {0x00};
1050 response3a[0] = sak & 0xFB;
1051 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1052
1053 uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce
1054 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1055 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1056 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1057 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1058 // TC(1) = 0x02: CID supported, NAD not supported
1059 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1060
1061 // Prepare GET_VERSION (different for EV-1 / NTAG)
1062 //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
1063 uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
1064
1065 // Prepare CHK_TEARING
1066 uint8_t response9[] = {0xBD,0x90,0x3f};
1067
1068 #define TAG_RESPONSE_COUNT 10
1069 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1070 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1071 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1072 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1073 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1074 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1075 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1076 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1077 { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response
1078 { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response
1079 { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response
1080 };
1081
1082 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1083 // Such a response is less time critical, so we can prepare them on the fly
1084 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1085 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1086 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1087 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1088 tag_response_info_t dynamic_response_info = {
1089 .response = dynamic_response_buffer,
1090 .response_n = 0,
1091 .modulation = dynamic_modulation_buffer,
1092 .modulation_n = 0
1093 };
1094
1095 BigBuf_free_keep_EM();
1096
1097 // allocate buffers:
1098 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1099 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1100 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1101
1102 // clear trace
1103 clear_trace();
1104 set_tracing(TRUE);
1105
1106 // Prepare the responses of the anticollision phase
1107 // there will be not enough time to do this at the moment the reader sends it REQA
1108 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1109 prepare_allocated_tag_modulation(&responses[i]);
1110 }
1111
1112 int len = 0;
1113
1114 // To control where we are in the protocol
1115 int order = 0;
1116 int lastorder;
1117
1118 // Just to allow some checks
1119 int happened = 0;
1120 int happened2 = 0;
1121 int cmdsRecvd = 0;
1122
1123 // We need to listen to the high-frequency, peak-detected path.
1124 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1125
1126 cmdsRecvd = 0;
1127 tag_response_info_t* p_response;
1128
1129 LED_A_ON();
1130 for(;;) {
1131 // Clean receive command buffer
1132
1133 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1134 DbpString("Button press");
1135 break;
1136 }
1137
1138 p_response = NULL;
1139
1140 // Okay, look at the command now.
1141 lastorder = order;
1142 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1143 p_response = &responses[0]; order = 1;
1144 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1145 p_response = &responses[0]; order = 6;
1146 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1147 p_response = &responses[1]; order = 2;
1148 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1149 p_response = &responses[2]; order = 20;
1150 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1151 p_response = &responses[3]; order = 3;
1152 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1153 p_response = &responses[4]; order = 30;
1154 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1155 uint8_t block = receivedCmd[1];
1156 if ( tagType == 7 ) {
1157 uint8_t start = 4 * block;
1158
1159 if ( block < 4 ) {
1160 //NTAG 215
1161 uint8_t blockdata[50] = {
1162 data[0],data[1],data[2], 0x88 ^ data[0] ^ data[1] ^ data[2],
1163 data[3],data[4],data[5],data[6],
1164 data[3] ^ data[4] ^ data[5] ^ data[6],0x48,0x0f,0xe0,
1165 0xe1,0x10,0x12,0x00,
1166 0x03,0x00,0xfe,0x00,
1167 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1168 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1169 0x00,0x00,0x00,0x00,
1170 0x00,0x00};
1171 AppendCrc14443a(blockdata+start, 16);
1172 EmSendCmdEx( blockdata+start, MAX_MIFARE_FRAME_SIZE, false);
1173 } else {
1174 uint8_t emdata[MAX_MIFARE_FRAME_SIZE];
1175 emlGetMemBt( emdata, start, 16);
1176 AppendCrc14443a(emdata, 16);
1177 EmSendCmdEx(emdata, sizeof(emdata), false);
1178 }
1179 p_response = NULL;
1180
1181 } else {
1182 EmSendCmdEx(data+(4*block),16,false);
1183 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1184 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1185 p_response = NULL;
1186 }
1187 } else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
1188
1189 uint8_t emdata[MAX_FRAME_SIZE];
1190 int start = receivedCmd[1] * 4;
1191 int len = (receivedCmd[2] - receivedCmd[1] + 1) * 4;
1192 emlGetMemBt( emdata, start, len);
1193 AppendCrc14443a(emdata, len);
1194 EmSendCmdEx(emdata, len+2, false);
1195 p_response = NULL;
1196
1197 } else if(receivedCmd[0] == 0x3C && tagType == 7) { // Received a READ SIGNATURE --
1198 // ECC data, taken from a NTAG215 amiibo token. might work. LEN: 32, + 2 crc
1199 uint8_t data[] = {0x56,0x06,0xa6,0x4f,0x43,0x32,0x53,0x6f,
1200 0x43,0xda,0x45,0xd6,0x61,0x38,0xaa,0x1e,
1201 0xcf,0xd3,0x61,0x36,0xca,0x5f,0xbb,0x05,
1202 0xce,0x21,0x24,0x5b,0xa6,0x7a,0x79,0x07,
1203 0x00,0x00};
1204 AppendCrc14443a(data, sizeof(data)-2);
1205 EmSendCmdEx(data,sizeof(data),false);
1206 p_response = NULL;
1207 } else if(receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
1208 uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
1209 EmSendCmdEx(data,sizeof(data),false);
1210 p_response = NULL;
1211 } else if(receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
1212 // number of counter
1213 //uint8_t counter = receivedCmd[1];
1214 //uint32_t val = bytes_to_num(receivedCmd+2,4);
1215
1216 // send ACK
1217 uint8_t ack[] = {0x0a};
1218 EmSendCmdEx(ack,sizeof(ack),false);
1219 p_response = NULL;
1220
1221 } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT --
1222 p_response = &responses[9];
1223 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1224
1225 if (tracing) {
1226 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1227 }
1228 p_response = NULL;
1229 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1230
1231 if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request.
1232 p_response = &responses[7];
1233 } else {
1234 p_response = &responses[5]; order = 7;
1235 }
1236 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1237 if (tagType == 1 || tagType == 2) { // RATS not supported
1238 EmSend4bit(CARD_NACK_NA);
1239 p_response = NULL;
1240 } else {
1241 p_response = &responses[6]; order = 70;
1242 }
1243 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1244 if (tracing) {
1245 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1246 }
1247 uint32_t nonce = bytes_to_num(response5,4);
1248 uint32_t nr = bytes_to_num(receivedCmd,4);
1249 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1250 //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
1251
1252 if(flags & FLAG_NR_AR_ATTACK )
1253 {
1254 if(ar_nr_collected < 2){
1255 // Avoid duplicates... probably not necessary, nr should vary.
1256 //if(ar_nr_responses[3] != nr){
1257 ar_nr_responses[ar_nr_collected*5] = 0;
1258 ar_nr_responses[ar_nr_collected*5+1] = 0;
1259 ar_nr_responses[ar_nr_collected*5+2] = nonce;
1260 ar_nr_responses[ar_nr_collected*5+3] = nr;
1261 ar_nr_responses[ar_nr_collected*5+4] = ar;
1262 ar_nr_collected++;
1263 //}
1264 }
1265
1266 if(ar_nr_collected > 1 ) {
1267
1268 if (MF_DBGLEVEL >= 2) {
1269 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
1270 Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
1271 ar_nr_responses[0], // UID1
1272 ar_nr_responses[1], // UID2
1273 ar_nr_responses[2], // NT
1274 ar_nr_responses[3], // AR1
1275 ar_nr_responses[4], // NR1
1276 ar_nr_responses[8], // AR2
1277 ar_nr_responses[9] // NR2
1278 );
1279 }
1280 uint8_t len = ar_nr_collected*5*4;
1281 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
1282 ar_nr_collected = 0;
1283 memset(ar_nr_responses, 0x00, len);
1284 }
1285 }
1286 } else if (receivedCmd[0] == 0x1a ) // ULC authentication
1287 {
1288
1289 }
1290 else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication
1291 {
1292 if ( tagType == 7 ) {
1293 p_response = &responses[8]; // PACK response
1294 uint32_t pwd = bytes_to_num(receivedCmd+1,4);
1295 Dbprintf("Auth attempt: %08x", pwd);
1296 }
1297 }
1298 else {
1299 // Check for ISO 14443A-4 compliant commands, look at left nibble
1300 switch (receivedCmd[0]) {
1301
1302 case 0x0B:
1303 case 0x0A: { // IBlock (command)
1304 dynamic_response_info.response[0] = receivedCmd[0];
1305 dynamic_response_info.response[1] = 0x00;
1306 dynamic_response_info.response[2] = 0x90;
1307 dynamic_response_info.response[3] = 0x00;
1308 dynamic_response_info.response_n = 4;
1309 } break;
1310
1311 case 0x1A:
1312 case 0x1B: { // Chaining command
1313 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1314 dynamic_response_info.response_n = 2;
1315 } break;
1316
1317 case 0xaa:
1318 case 0xbb: {
1319 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1320 dynamic_response_info.response_n = 2;
1321 } break;
1322
1323 case 0xBA: { //
1324 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1325 dynamic_response_info.response_n = 2;
1326 } break;
1327
1328 case 0xCA:
1329 case 0xC2: { // Readers sends deselect command
1330 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1331 dynamic_response_info.response_n = 2;
1332 } break;
1333
1334 default: {
1335 // Never seen this command before
1336 if (tracing) {
1337 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1338 }
1339 Dbprintf("Received unknown command (len=%d):",len);
1340 Dbhexdump(len,receivedCmd,false);
1341 // Do not respond
1342 dynamic_response_info.response_n = 0;
1343 } break;
1344 }
1345
1346 if (dynamic_response_info.response_n > 0) {
1347 // Copy the CID from the reader query
1348 dynamic_response_info.response[1] = receivedCmd[1];
1349
1350 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1351 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1352 dynamic_response_info.response_n += 2;
1353
1354 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1355 Dbprintf("Error preparing tag response");
1356 if (tracing) {
1357 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1358 }
1359 break;
1360 }
1361 p_response = &dynamic_response_info;
1362 }
1363 }
1364
1365 // Count number of wakeups received after a halt
1366 if(order == 6 && lastorder == 5) { happened++; }
1367
1368 // Count number of other messages after a halt
1369 if(order != 6 && lastorder == 5) { happened2++; }
1370
1371 if(cmdsRecvd > 999) {
1372 DbpString("1000 commands later...");
1373 break;
1374 }
1375 cmdsRecvd++;
1376
1377 if (p_response != NULL) {
1378 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1379 // do the tracing for the previous reader request and this tag answer:
1380 uint8_t par[MAX_PARITY_SIZE];
1381 GetParity(p_response->response, p_response->response_n, par);
1382
1383 EmLogTrace(Uart.output,
1384 Uart.len,
1385 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1386 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1387 Uart.parity,
1388 p_response->response,
1389 p_response->response_n,
1390 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1391 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1392 par);
1393 }
1394
1395 if (!tracing) {
1396 Dbprintf("Trace Full. Simulation stopped.");
1397 break;
1398 }
1399 }
1400
1401 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1402 BigBuf_free_keep_EM();
1403 LED_A_OFF();
1404
1405 Dbprintf("-[ Wake ups after halt [%d]", happened);
1406 Dbprintf("-[ Messages after halt [%d]", happened2);
1407 Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd);
1408 }
1409
1410
1411 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1412 // of bits specified in the delay parameter.
1413 void PrepareDelayedTransfer(uint16_t delay)
1414 {
1415 uint8_t bitmask = 0;
1416 uint8_t bits_to_shift = 0;
1417 uint8_t bits_shifted = 0;
1418
1419 delay &= 0x07;
1420 if (delay) {
1421 for (uint16_t i = 0; i < delay; i++) {
1422 bitmask |= (0x01 << i);
1423 }
1424 ToSend[ToSendMax++] = 0x00;
1425 for (uint16_t i = 0; i < ToSendMax; i++) {
1426 bits_to_shift = ToSend[i] & bitmask;
1427 ToSend[i] = ToSend[i] >> delay;
1428 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1429 bits_shifted = bits_to_shift;
1430 }
1431 }
1432 }
1433
1434
1435 //-------------------------------------------------------------------------------------
1436 // Transmit the command (to the tag) that was placed in ToSend[].
1437 // Parameter timing:
1438 // if NULL: transfer at next possible time, taking into account
1439 // request guard time and frame delay time
1440 // if == 0: transfer immediately and return time of transfer
1441 // if != 0: delay transfer until time specified
1442 //-------------------------------------------------------------------------------------
1443 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1444 {
1445
1446 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1447
1448 uint32_t ThisTransferTime = 0;
1449
1450 if (timing) {
1451 if(*timing == 0) { // Measure time
1452 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1453 } else {
1454 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1455 }
1456 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1457 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1458 LastTimeProxToAirStart = *timing;
1459 } else {
1460 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1461 while(GetCountSspClk() < ThisTransferTime);
1462 LastTimeProxToAirStart = ThisTransferTime;
1463 }
1464
1465 // clear TXRDY
1466 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1467
1468 uint16_t c = 0;
1469 for(;;) {
1470 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1471 AT91C_BASE_SSC->SSC_THR = cmd[c];
1472 c++;
1473 if(c >= len) {
1474 break;
1475 }
1476 }
1477 }
1478
1479 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1480 }
1481
1482
1483 //-----------------------------------------------------------------------------
1484 // Prepare reader command (in bits, support short frames) to send to FPGA
1485 //-----------------------------------------------------------------------------
1486 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1487 {
1488 int i, j;
1489 int last;
1490 uint8_t b;
1491
1492 ToSendReset();
1493
1494 // Start of Communication (Seq. Z)
1495 ToSend[++ToSendMax] = SEC_Z;
1496 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1497 last = 0;
1498
1499 size_t bytecount = nbytes(bits);
1500 // Generate send structure for the data bits
1501 for (i = 0; i < bytecount; i++) {
1502 // Get the current byte to send
1503 b = cmd[i];
1504 size_t bitsleft = MIN((bits-(i*8)),8);
1505
1506 for (j = 0; j < bitsleft; j++) {
1507 if (b & 1) {
1508 // Sequence X
1509 ToSend[++ToSendMax] = SEC_X;
1510 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1511 last = 1;
1512 } else {
1513 if (last == 0) {
1514 // Sequence Z
1515 ToSend[++ToSendMax] = SEC_Z;
1516 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1517 } else {
1518 // Sequence Y
1519 ToSend[++ToSendMax] = SEC_Y;
1520 last = 0;
1521 }
1522 }
1523 b >>= 1;
1524 }
1525
1526 // Only transmit parity bit if we transmitted a complete byte
1527 if (j == 8 && parity != NULL) {
1528 // Get the parity bit
1529 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1530 // Sequence X
1531 ToSend[++ToSendMax] = SEC_X;
1532 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1533 last = 1;
1534 } else {
1535 if (last == 0) {
1536 // Sequence Z
1537 ToSend[++ToSendMax] = SEC_Z;
1538 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1539 } else {
1540 // Sequence Y
1541 ToSend[++ToSendMax] = SEC_Y;
1542 last = 0;
1543 }
1544 }
1545 }
1546 }
1547
1548 // End of Communication: Logic 0 followed by Sequence Y
1549 if (last == 0) {
1550 // Sequence Z
1551 ToSend[++ToSendMax] = SEC_Z;
1552 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1553 } else {
1554 // Sequence Y
1555 ToSend[++ToSendMax] = SEC_Y;
1556 last = 0;
1557 }
1558 ToSend[++ToSendMax] = SEC_Y;
1559
1560 // Convert to length of command:
1561 ToSendMax++;
1562 }
1563
1564 //-----------------------------------------------------------------------------
1565 // Prepare reader command to send to FPGA
1566 //-----------------------------------------------------------------------------
1567 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1568 {
1569 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1570 }
1571
1572
1573 //-----------------------------------------------------------------------------
1574 // Wait for commands from reader
1575 // Stop when button is pressed (return 1) or field was gone (return 2)
1576 // Or return 0 when command is captured
1577 //-----------------------------------------------------------------------------
1578 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1579 {
1580 *len = 0;
1581
1582 uint32_t timer = 0, vtime = 0;
1583 int analogCnt = 0;
1584 int analogAVG = 0;
1585
1586 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1587 // only, since we are receiving, not transmitting).
1588 // Signal field is off with the appropriate LED
1589 LED_D_OFF();
1590 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1591
1592 // Set ADC to read field strength
1593 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1594 AT91C_BASE_ADC->ADC_MR =
1595 ADC_MODE_PRESCALE(63) |
1596 ADC_MODE_STARTUP_TIME(1) |
1597 ADC_MODE_SAMPLE_HOLD_TIME(15);
1598 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1599 // start ADC
1600 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1601
1602 // Now run a 'software UART' on the stream of incoming samples.
1603 UartInit(received, parity);
1604
1605 // Clear RXRDY:
1606 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1607
1608 for(;;) {
1609 WDT_HIT();
1610
1611 if (BUTTON_PRESS()) return 1;
1612
1613 // test if the field exists
1614 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1615 analogCnt++;
1616 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1617 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1618 if (analogCnt >= 32) {
1619 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1620 vtime = GetTickCount();
1621 if (!timer) timer = vtime;
1622 // 50ms no field --> card to idle state
1623 if (vtime - timer > 50) return 2;
1624 } else
1625 if (timer) timer = 0;
1626 analogCnt = 0;
1627 analogAVG = 0;
1628 }
1629 }
1630
1631 // receive and test the miller decoding
1632 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1633 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1634 if(MillerDecoding(b, 0)) {
1635 *len = Uart.len;
1636 return 0;
1637 }
1638 }
1639
1640 }
1641 }
1642
1643
1644 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1645 {
1646 uint8_t b;
1647 uint16_t i = 0;
1648 uint32_t ThisTransferTime;
1649
1650 // Modulate Manchester
1651 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1652
1653 // include correction bit if necessary
1654 if (Uart.parityBits & 0x01) {
1655 correctionNeeded = TRUE;
1656 }
1657 if(correctionNeeded) {
1658 // 1236, so correction bit needed
1659 i = 0;
1660 } else {
1661 i = 1;
1662 }
1663
1664 // clear receiving shift register and holding register
1665 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1666 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1667 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1668 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1669
1670 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1671 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1672 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1673 if (AT91C_BASE_SSC->SSC_RHR) break;
1674 }
1675
1676 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1677
1678 // Clear TXRDY:
1679 AT91C_BASE_SSC->SSC_THR = SEC_F;
1680
1681 // send cycle
1682 for(; i < respLen; ) {
1683 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1684 AT91C_BASE_SSC->SSC_THR = resp[i++];
1685 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1686 }
1687
1688 if(BUTTON_PRESS()) break;
1689 }
1690
1691 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1692 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1693 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1694 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1695 AT91C_BASE_SSC->SSC_THR = SEC_F;
1696 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1697 i++;
1698 }
1699 }
1700
1701 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1702
1703 return 0;
1704 }
1705
1706 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1707 Code4bitAnswerAsTag(resp);
1708 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1709 // do the tracing for the previous reader request and this tag answer:
1710 uint8_t par[1];
1711 GetParity(&resp, 1, par);
1712 EmLogTrace(Uart.output,
1713 Uart.len,
1714 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1715 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1716 Uart.parity,
1717 &resp,
1718 1,
1719 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1720 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1721 par);
1722 return res;
1723 }
1724
1725 int EmSend4bit(uint8_t resp){
1726 return EmSend4bitEx(resp, false);
1727 }
1728
1729 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1730 CodeIso14443aAsTagPar(resp, respLen, par);
1731 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1732 // do the tracing for the previous reader request and this tag answer:
1733 EmLogTrace(Uart.output,
1734 Uart.len,
1735 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1736 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1737 Uart.parity,
1738 resp,
1739 respLen,
1740 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1741 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1742 par);
1743 return res;
1744 }
1745
1746 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1747 uint8_t par[MAX_PARITY_SIZE];
1748 GetParity(resp, respLen, par);
1749 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1750 }
1751
1752 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1753 uint8_t par[MAX_PARITY_SIZE];
1754 GetParity(resp, respLen, par);
1755 return EmSendCmdExPar(resp, respLen, false, par);
1756 }
1757
1758 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1759 return EmSendCmdExPar(resp, respLen, false, par);
1760 }
1761
1762 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1763 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1764 {
1765 if (tracing) {
1766 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1767 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1768 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1769 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1770 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1771 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1772 reader_EndTime = tag_StartTime - exact_fdt;
1773 reader_StartTime = reader_EndTime - reader_modlen;
1774 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1775 return FALSE;
1776 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1777 } else {
1778 return TRUE;
1779 }
1780 }
1781
1782 //-----------------------------------------------------------------------------
1783 // Wait a certain time for tag response
1784 // If a response is captured return TRUE
1785 // If it takes too long return FALSE
1786 //-----------------------------------------------------------------------------
1787 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1788 {
1789 uint32_t c = 0x00;
1790
1791 // Set FPGA mode to "reader listen mode", no modulation (listen
1792 // only, since we are receiving, not transmitting).
1793 // Signal field is on with the appropriate LED
1794 LED_D_ON();
1795 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1796
1797 // Now get the answer from the card
1798 DemodInit(receivedResponse, receivedResponsePar);
1799
1800 // clear RXRDY:
1801 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1802
1803 for(;;) {
1804 WDT_HIT();
1805
1806 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1807 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1808 if(ManchesterDecoding(b, offset, 0)) {
1809 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1810 return TRUE;
1811 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1812 return FALSE;
1813 }
1814 }
1815 }
1816 }
1817
1818
1819 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1820 {
1821 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1822
1823 // Send command to tag
1824 TransmitFor14443a(ToSend, ToSendMax, timing);
1825 if(trigger)
1826 LED_A_ON();
1827
1828 // Log reader command in trace buffer
1829 if (tracing) {
1830 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1831 }
1832 }
1833
1834
1835 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1836 {
1837 ReaderTransmitBitsPar(frame, len*8, par, timing);
1838 }
1839
1840
1841 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1842 {
1843 // Generate parity and redirect
1844 uint8_t par[MAX_PARITY_SIZE];
1845 GetParity(frame, len/8, par);
1846 ReaderTransmitBitsPar(frame, len, par, timing);
1847 }
1848
1849
1850 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1851 {
1852 // Generate parity and redirect
1853 uint8_t par[MAX_PARITY_SIZE];
1854 GetParity(frame, len, par);
1855 ReaderTransmitBitsPar(frame, len*8, par, timing);
1856 }
1857
1858 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1859 {
1860 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1861 if (tracing) {
1862 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1863 }
1864 return Demod.len;
1865 }
1866
1867 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1868 {
1869 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1870 if (tracing) {
1871 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1872 }
1873 return Demod.len;
1874 }
1875
1876 /* performs iso14443a anticollision procedure
1877 * fills the uid pointer unless NULL
1878 * fills resp_data unless NULL */
1879 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1880 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1881 uint8_t sel_all[] = { 0x93,0x20 };
1882 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1883 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1884 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1885 uint8_t resp_par[MAX_PARITY_SIZE];
1886 byte_t uid_resp[4];
1887 size_t uid_resp_len;
1888
1889 uint8_t sak = 0x04; // cascade uid
1890 int cascade_level = 0;
1891 int len;
1892
1893 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1894 ReaderTransmitBitsPar(wupa,7,0, NULL);
1895
1896 // Receive the ATQA
1897 if(!ReaderReceive(resp, resp_par)) return 0;
1898
1899 if(p_hi14a_card) {
1900 memcpy(p_hi14a_card->atqa, resp, 2);
1901 p_hi14a_card->uidlen = 0;
1902 memset(p_hi14a_card->uid,0,10);
1903 }
1904
1905 // clear uid
1906 if (uid_ptr) {
1907 memset(uid_ptr,0,10);
1908 }
1909
1910 // check for proprietary anticollision:
1911 if ((resp[0] & 0x1F) == 0) {
1912 return 3;
1913 }
1914
1915 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1916 // which case we need to make a cascade 2 request and select - this is a long UID
1917 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1918 for(; sak & 0x04; cascade_level++) {
1919 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1920 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1921
1922 // SELECT_ALL
1923 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1924 if (!ReaderReceive(resp, resp_par)) return 0;
1925
1926 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1927 memset(uid_resp, 0, 4);
1928 uint16_t uid_resp_bits = 0;
1929 uint16_t collision_answer_offset = 0;
1930 // anti-collision-loop:
1931 while (Demod.collisionPos) {
1932 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1933 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1934 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1935 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1936 }
1937 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1938 uid_resp_bits++;
1939 // construct anticollosion command:
1940 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1941 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1942 sel_uid[2+i] = uid_resp[i];
1943 }
1944 collision_answer_offset = uid_resp_bits%8;
1945 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1946 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1947 }
1948 // finally, add the last bits and BCC of the UID
1949 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1950 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1951 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1952 }
1953
1954 } else { // no collision, use the response to SELECT_ALL as current uid
1955 memcpy(uid_resp, resp, 4);
1956 }
1957 uid_resp_len = 4;
1958
1959 // calculate crypto UID. Always use last 4 Bytes.
1960 if(cuid_ptr) {
1961 *cuid_ptr = bytes_to_num(uid_resp, 4);
1962 }
1963
1964 // Construct SELECT UID command
1965 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1966 memcpy(sel_uid+2, uid_resp, 4); // the UID
1967 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1968 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1969 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1970
1971 // Receive the SAK
1972 if (!ReaderReceive(resp, resp_par)) return 0;
1973 sak = resp[0];
1974
1975 // Test if more parts of the uid are coming
1976 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1977 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1978 // http://www.nxp.com/documents/application_note/AN10927.pdf
1979 uid_resp[0] = uid_resp[1];
1980 uid_resp[1] = uid_resp[2];
1981 uid_resp[2] = uid_resp[3];
1982
1983 uid_resp_len = 3;
1984 }
1985
1986 if(uid_ptr) {
1987 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1988 }
1989
1990 if(p_hi14a_card) {
1991 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1992 p_hi14a_card->uidlen += uid_resp_len;
1993 }
1994 }
1995
1996 if(p_hi14a_card) {
1997 p_hi14a_card->sak = sak;
1998 p_hi14a_card->ats_len = 0;
1999 }
2000
2001 // non iso14443a compliant tag
2002 if( (sak & 0x20) == 0) return 2;
2003
2004 // Request for answer to select
2005 AppendCrc14443a(rats, 2);
2006 ReaderTransmit(rats, sizeof(rats), NULL);
2007
2008 if (!(len = ReaderReceive(resp, resp_par))) return 0;
2009
2010
2011 if(p_hi14a_card) {
2012 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
2013 p_hi14a_card->ats_len = len;
2014 }
2015
2016 // reset the PCB block number
2017 iso14_pcb_blocknum = 0;
2018
2019 // set default timeout based on ATS
2020 iso14a_set_ATS_timeout(resp);
2021
2022 return 1;
2023 }
2024
2025 void iso14443a_setup(uint8_t fpga_minor_mode) {
2026 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
2027 // Set up the synchronous serial port
2028 FpgaSetupSsc();
2029 // connect Demodulated Signal to ADC:
2030 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2031
2032 // Signal field is on with the appropriate LED
2033 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
2034 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
2035 LED_D_ON();
2036 } else {
2037 LED_D_OFF();
2038 }
2039 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
2040
2041 // Start the timer
2042 StartCountSspClk();
2043
2044 DemodReset();
2045 UartReset();
2046 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
2047 iso14a_set_timeout(10*106); // 10ms default
2048 }
2049
2050 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
2051 uint8_t parity[MAX_PARITY_SIZE];
2052 uint8_t real_cmd[cmd_len+4];
2053 real_cmd[0] = 0x0a; //I-Block
2054 // put block number into the PCB
2055 real_cmd[0] |= iso14_pcb_blocknum;
2056 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
2057 memcpy(real_cmd+2, cmd, cmd_len);
2058 AppendCrc14443a(real_cmd,cmd_len+2);
2059
2060 ReaderTransmit(real_cmd, cmd_len+4, NULL);
2061 size_t len = ReaderReceive(data, parity);
2062 uint8_t *data_bytes = (uint8_t *) data;
2063 if (!len)
2064 return 0; //DATA LINK ERROR
2065 // if we received an I- or R(ACK)-Block with a block number equal to the
2066 // current block number, toggle the current block number
2067 else if (len >= 4 // PCB+CID+CRC = 4 bytes
2068 && ((data_bytes[0] & 0xC0) == 0 // I-Block
2069 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
2070 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
2071 {
2072 iso14_pcb_blocknum ^= 1;
2073 }
2074
2075 return len;
2076 }
2077
2078 //-----------------------------------------------------------------------------
2079 // Read an ISO 14443a tag. Send out commands and store answers.
2080 //
2081 //-----------------------------------------------------------------------------
2082 void ReaderIso14443a(UsbCommand *c)
2083 {
2084 iso14a_command_t param = c->arg[0];
2085 uint8_t *cmd = c->d.asBytes;
2086 size_t len = c->arg[1] & 0xffff;
2087 size_t lenbits = c->arg[1] >> 16;
2088 uint32_t timeout = c->arg[2];
2089 uint32_t arg0 = 0;
2090 byte_t buf[USB_CMD_DATA_SIZE];
2091 uint8_t par[MAX_PARITY_SIZE];
2092
2093 if(param & ISO14A_CONNECT) {
2094 clear_trace();
2095 }
2096
2097 set_tracing(TRUE);
2098
2099 if(param & ISO14A_REQUEST_TRIGGER) {
2100 iso14a_set_trigger(TRUE);
2101 }
2102
2103 if(param & ISO14A_CONNECT) {
2104 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2105 if(!(param & ISO14A_NO_SELECT)) {
2106 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2107 arg0 = iso14443a_select_card(NULL,card,NULL);
2108 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2109 }
2110 }
2111
2112 if(param & ISO14A_SET_TIMEOUT) {
2113 iso14a_set_timeout(timeout);
2114 }
2115
2116 if(param & ISO14A_APDU) {
2117 arg0 = iso14_apdu(cmd, len, buf);
2118 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2119 }
2120
2121 if(param & ISO14A_RAW) {
2122 if(param & ISO14A_APPEND_CRC) {
2123 if(param & ISO14A_TOPAZMODE) {
2124 AppendCrc14443b(cmd,len);
2125 } else {
2126 AppendCrc14443a(cmd,len);
2127 }
2128 len += 2;
2129 if (lenbits) lenbits += 16;
2130 }
2131 if(lenbits>0) { // want to send a specific number of bits (e.g. short commands)
2132 if(param & ISO14A_TOPAZMODE) {
2133 int bits_to_send = lenbits;
2134 uint16_t i = 0;
2135 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2136 bits_to_send -= 7;
2137 while (bits_to_send > 0) {
2138 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2139 bits_to_send -= 8;
2140 }
2141 } else {
2142 GetParity(cmd, lenbits/8, par);
2143 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2144 }
2145 } else { // want to send complete bytes only
2146 if(param & ISO14A_TOPAZMODE) {
2147 uint16_t i = 0;
2148 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2149 while (i < len) {
2150 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2151 }
2152 } else {
2153 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2154 }
2155 }
2156 arg0 = ReaderReceive(buf, par);
2157 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
2158 }
2159
2160 if(param & ISO14A_REQUEST_TRIGGER) {
2161 iso14a_set_trigger(FALSE);
2162 }
2163
2164 if(param & ISO14A_NO_DISCONNECT) {
2165 return;
2166 }
2167
2168 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2169 LEDsoff();
2170 }
2171
2172
2173 // Determine the distance between two nonces.
2174 // Assume that the difference is small, but we don't know which is first.
2175 // Therefore try in alternating directions.
2176 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2177
2178 uint16_t i;
2179 uint32_t nttmp1, nttmp2;
2180
2181 if (nt1 == nt2) return 0;
2182
2183 nttmp1 = nt1;
2184 nttmp2 = nt2;
2185
2186 for (i = 1; i < 32768; i++) {
2187 nttmp1 = prng_successor(nttmp1, 1);
2188 if (nttmp1 == nt2) return i;
2189 nttmp2 = prng_successor(nttmp2, 1);
2190 if (nttmp2 == nt1) return -i;
2191 }
2192
2193 return(-99999); // either nt1 or nt2 are invalid nonces
2194 }
2195
2196
2197 //-----------------------------------------------------------------------------
2198 // Recover several bits of the cypher stream. This implements (first stages of)
2199 // the algorithm described in "The Dark Side of Security by Obscurity and
2200 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2201 // (article by Nicolas T. Courtois, 2009)
2202 //-----------------------------------------------------------------------------
2203 void ReaderMifare(bool first_try)
2204 {
2205 // Mifare AUTH
2206 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2207 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2208 static uint8_t mf_nr_ar3;
2209
2210 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2211 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2212
2213 // free eventually allocated BigBuf memory. We want all for tracing.
2214 BigBuf_free();
2215
2216 clear_trace();
2217 set_tracing(TRUE);
2218
2219 byte_t nt_diff = 0;
2220 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2221 static byte_t par_low = 0;
2222 bool led_on = TRUE;
2223 uint8_t uid[10] ={0};
2224 uint32_t cuid;
2225
2226 uint32_t nt = 0;
2227 uint32_t previous_nt = 0;
2228 static uint32_t nt_attacked = 0;
2229 byte_t par_list[8] = {0x00};
2230 byte_t ks_list[8] = {0x00};
2231
2232 static uint32_t sync_time = 0;
2233 static uint32_t sync_cycles = 0;
2234 int catch_up_cycles = 0;
2235 int last_catch_up = 0;
2236 uint16_t consecutive_resyncs = 0;
2237 int isOK = 0;
2238
2239 if (first_try) {
2240 mf_nr_ar3 = 0;
2241 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2242 sync_time = GetCountSspClk() & 0xfffffff8;
2243 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2244 nt_attacked = 0;
2245 nt = 0;
2246 par[0] = 0;
2247 }
2248 else {
2249 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2250 mf_nr_ar3++;
2251 mf_nr_ar[3] = mf_nr_ar3;
2252 par[0] = par_low;
2253 }
2254
2255 LED_A_ON();
2256 LED_B_OFF();
2257 LED_C_OFF();
2258
2259
2260 #define DARKSIDE_MAX_TRIES 32 // number of tries to sync on PRNG cycle. Then give up.
2261 uint16_t unsuccessfull_tries = 0;
2262
2263 for(uint16_t i = 0; TRUE; i++) {
2264
2265 LED_C_ON();
2266 WDT_HIT();
2267
2268 // Test if the action was cancelled
2269 if(BUTTON_PRESS()) {
2270 isOK = -1;
2271 break;
2272 }
2273
2274 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2275 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2276 continue;
2277 }
2278
2279 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2280 catch_up_cycles = 0;
2281
2282 // if we missed the sync time already, advance to the next nonce repeat
2283 while(GetCountSspClk() > sync_time) {
2284 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2285 }
2286
2287 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2288 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2289
2290 // Receive the (4 Byte) "random" nonce
2291 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2292 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2293 continue;
2294 }
2295
2296 previous_nt = nt;
2297 nt = bytes_to_num(receivedAnswer, 4);
2298
2299 // Transmit reader nonce with fake par
2300 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2301
2302 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2303 int nt_distance = dist_nt(previous_nt, nt);
2304 if (nt_distance == 0) {
2305 nt_attacked = nt;
2306 }
2307 else {
2308 if (nt_distance == -99999) { // invalid nonce received
2309 unsuccessfull_tries++;
2310 if (!nt_attacked && unsuccessfull_tries > DARKSIDE_MAX_TRIES) {
2311 isOK = -3; // Card has an unpredictable PRNG. Give up
2312 break;
2313 } else {
2314 continue; // continue trying...
2315 }
2316 }
2317 sync_cycles = (sync_cycles - nt_distance);
2318 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2319 continue;
2320 }
2321 }
2322
2323 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2324 catch_up_cycles = -dist_nt(nt_attacked, nt);
2325 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2326 catch_up_cycles = 0;
2327 continue;
2328 }
2329 if (catch_up_cycles == last_catch_up) {
2330 consecutive_resyncs++;
2331 }
2332 else {
2333 last_catch_up = catch_up_cycles;
2334 consecutive_resyncs = 0;
2335 }
2336 if (consecutive_resyncs < 3) {
2337 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2338 }
2339 else {
2340 sync_cycles = sync_cycles + catch_up_cycles;
2341 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2342 }
2343 continue;
2344 }
2345
2346 consecutive_resyncs = 0;
2347
2348 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2349 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2350 {
2351 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2352
2353 if (nt_diff == 0)
2354 {
2355 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2356 }
2357
2358 led_on = !led_on;
2359 if(led_on) LED_B_ON(); else LED_B_OFF();
2360
2361 par_list[nt_diff] = SwapBits(par[0], 8);
2362 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2363
2364 // Test if the information is complete
2365 if (nt_diff == 0x07) {
2366 isOK = 1;
2367 break;
2368 }
2369
2370 nt_diff = (nt_diff + 1) & 0x07;
2371 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2372 par[0] = par_low;
2373 } else {
2374 if (nt_diff == 0 && first_try)
2375 {
2376 par[0]++;
2377 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2378 isOK = -2;
2379 break;
2380 }
2381 } else {
2382 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2383 }
2384 }
2385 }
2386
2387
2388 mf_nr_ar[3] &= 0x1F;
2389
2390 byte_t buf[28] = {0x00};
2391
2392 memcpy(buf + 0, uid, 4);
2393 num_to_bytes(nt, 4, buf + 4);
2394 memcpy(buf + 8, par_list, 8);
2395 memcpy(buf + 16, ks_list, 8);
2396 memcpy(buf + 24, mf_nr_ar, 4);
2397
2398 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2399
2400 set_tracing(FALSE);
2401 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2402 LEDsoff();
2403 }
2404
2405
2406 /*
2407 *MIFARE 1K simulate.
2408 *
2409 *@param flags :
2410 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2411 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2412 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2413 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2414 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2415 */
2416 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2417 {
2418 int cardSTATE = MFEMUL_NOFIELD;
2419 int _7BUID = 0;
2420 int vHf = 0; // in mV
2421 int res;
2422 uint32_t selTimer = 0;
2423 uint32_t authTimer = 0;
2424 uint16_t len = 0;
2425 uint8_t cardWRBL = 0;
2426 uint8_t cardAUTHSC = 0;
2427 uint8_t cardAUTHKEY = 0xff; // no authentication
2428 // uint32_t cardRr = 0;
2429 uint32_t cuid = 0;
2430 //uint32_t rn_enc = 0;
2431 uint32_t ans = 0;
2432 uint32_t cardINTREG = 0;
2433 uint8_t cardINTBLOCK = 0;
2434 struct Crypto1State mpcs = {0, 0};
2435 struct Crypto1State *pcs;
2436 pcs = &mpcs;
2437 uint32_t numReads = 0;//Counts numer of times reader read a block
2438 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2439 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2440 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2441 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2442
2443 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2444 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2445 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2446 //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic
2447 uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
2448 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2449
2450 uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01};
2451 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2452
2453 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2454 // This can be used in a reader-only attack.
2455 // (it can also be retrieved via 'hf 14a list', but hey...
2456 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
2457 uint8_t ar_nr_collected = 0;
2458
2459 // free eventually allocated BigBuf memory but keep Emulator Memory
2460 BigBuf_free_keep_EM();
2461
2462 // clear trace
2463 clear_trace();
2464 set_tracing(TRUE);
2465
2466 // Authenticate response - nonce
2467 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2468
2469 //-- Determine the UID
2470 // Can be set from emulator memory, incoming data
2471 // and can be 7 or 4 bytes long
2472 if (flags & FLAG_4B_UID_IN_DATA)
2473 {
2474 // 4B uid comes from data-portion of packet
2475 memcpy(rUIDBCC1,datain,4);
2476 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2477
2478 } else if (flags & FLAG_7B_UID_IN_DATA) {
2479 // 7B uid comes from data-portion of packet
2480 memcpy(&rUIDBCC1[1],datain,3);
2481 memcpy(rUIDBCC2, datain+3, 4);
2482 _7BUID = true;
2483 } else {
2484 // get UID from emul memory
2485 emlGetMemBt(receivedCmd, 7, 1);
2486 _7BUID = !(receivedCmd[0] == 0x00);
2487 if (!_7BUID) { // ---------- 4BUID
2488 emlGetMemBt(rUIDBCC1, 0, 4);
2489 } else { // ---------- 7BUID
2490 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2491 emlGetMemBt(rUIDBCC2, 3, 4);
2492 }
2493 }
2494
2495 // save uid.
2496 ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3);
2497 if ( _7BUID )
2498 ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4);
2499
2500 /*
2501 * Regardless of what method was used to set the UID, set fifth byte and modify
2502 * the ATQA for 4 or 7-byte UID
2503 */
2504 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2505 if (_7BUID) {
2506 rATQA[0] = 0x44;
2507 rUIDBCC1[0] = 0x88;
2508 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2509 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2510 }
2511
2512 // We need to listen to the high-frequency, peak-detected path.
2513 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2514
2515
2516 if (MF_DBGLEVEL >= 1) {
2517 if (!_7BUID) {
2518 Dbprintf("4B UID: %02x%02x%02x%02x",
2519 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2520 } else {
2521 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2522 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2523 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2524 }
2525 }
2526
2527 bool finished = FALSE;
2528 while (!BUTTON_PRESS() && !finished) {
2529 WDT_HIT();
2530
2531 // find reader field
2532 if (cardSTATE == MFEMUL_NOFIELD) {
2533 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2534 if (vHf > MF_MINFIELDV) {
2535 cardSTATE_TO_IDLE();
2536 LED_A_ON();
2537 }
2538 }
2539 if(cardSTATE == MFEMUL_NOFIELD) continue;
2540
2541 //Now, get data
2542 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2543 if (res == 2) { //Field is off!
2544 cardSTATE = MFEMUL_NOFIELD;
2545 LEDsoff();
2546 continue;
2547 } else if (res == 1) {
2548 break; //return value 1 means button press
2549 }
2550
2551 // REQ or WUP request in ANY state and WUP in HALTED state
2552 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2553 selTimer = GetTickCount();
2554 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2555 cardSTATE = MFEMUL_SELECT1;
2556
2557 // init crypto block
2558 LED_B_OFF();
2559 LED_C_OFF();
2560 crypto1_destroy(pcs);
2561 cardAUTHKEY = 0xff;
2562 continue;
2563 }
2564
2565 switch (cardSTATE) {
2566 case MFEMUL_NOFIELD:
2567 case MFEMUL_HALTED:
2568 case MFEMUL_IDLE:{
2569 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2570 break;
2571 }
2572 case MFEMUL_SELECT1:{
2573 // select all
2574 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2575 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2576 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2577 break;
2578 }
2579
2580 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2581 {
2582 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2583 }
2584 // select card
2585 if (len == 9 &&
2586 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2587 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2588 cuid = bytes_to_num(rUIDBCC1, 4);
2589 if (!_7BUID) {
2590 cardSTATE = MFEMUL_WORK;
2591 LED_B_ON();
2592 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2593 break;
2594 } else {
2595 cardSTATE = MFEMUL_SELECT2;
2596 }
2597 }
2598 break;
2599 }
2600 case MFEMUL_AUTH1:{
2601 if( len != 8)
2602 {
2603 cardSTATE_TO_IDLE();
2604 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2605 break;
2606 }
2607
2608 uint32_t ar = bytes_to_num(receivedCmd, 4);
2609 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2610
2611 //Collect AR/NR
2612 //if(ar_nr_collected < 2 && cardAUTHSC == 2){
2613 if(ar_nr_collected < 2){
2614 if(ar_nr_responses[2] != ar)
2615 {// Avoid duplicates... probably not necessary, ar should vary.
2616 //ar_nr_responses[ar_nr_collected*5] = 0;
2617 //ar_nr_responses[ar_nr_collected*5+1] = 0;
2618 ar_nr_responses[ar_nr_collected*5+2] = nonce;
2619 ar_nr_responses[ar_nr_collected*5+3] = nr;
2620 ar_nr_responses[ar_nr_collected*5+4] = ar;
2621 ar_nr_collected++;
2622 }
2623 // Interactive mode flag, means we need to send ACK
2624 if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
2625 {
2626 finished = true;
2627 }
2628 }
2629
2630 // --- crypto
2631 //crypto1_word(pcs, ar , 1);
2632 //cardRr = nr ^ crypto1_word(pcs, 0, 0);
2633
2634 //test if auth OK
2635 //if (cardRr != prng_successor(nonce, 64)){
2636
2637 //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2638 // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2639 // cardRr, prng_successor(nonce, 64));
2640 // Shouldn't we respond anything here?
2641 // Right now, we don't nack or anything, which causes the
2642 // reader to do a WUPA after a while. /Martin
2643 // -- which is the correct response. /piwi
2644 //cardSTATE_TO_IDLE();
2645 //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2646 //break;
2647 //}
2648
2649 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2650
2651 num_to_bytes(ans, 4, rAUTH_AT);
2652 // --- crypto
2653 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2654 LED_C_ON();
2655 cardSTATE = MFEMUL_WORK;
2656 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2657 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2658 GetTickCount() - authTimer);
2659 break;
2660 }
2661 case MFEMUL_SELECT2:{
2662 if (!len) {
2663 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2664 break;
2665 }
2666 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2667 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2668 break;
2669 }
2670
2671 // select 2 card
2672 if (len == 9 &&
2673 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2674 EmSendCmd(rSAK, sizeof(rSAK));
2675 cuid = bytes_to_num(rUIDBCC2, 4);
2676 cardSTATE = MFEMUL_WORK;
2677 LED_B_ON();
2678 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2679 break;
2680 }
2681
2682 // i guess there is a command). go into the work state.
2683 if (len != 4) {
2684 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2685 break;
2686 }
2687 cardSTATE = MFEMUL_WORK;
2688 //goto lbWORK;
2689 //intentional fall-through to the next case-stmt
2690 }
2691
2692 case MFEMUL_WORK:{
2693 if (len == 0) {
2694 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2695 break;
2696 }
2697
2698 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2699
2700 if(encrypted_data) {
2701 // decrypt seqence
2702 mf_crypto1_decrypt(pcs, receivedCmd, len);
2703 }
2704
2705 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2706 authTimer = GetTickCount();
2707 cardAUTHSC = receivedCmd[1] / 4; // received block num
2708 cardAUTHKEY = receivedCmd[0] - 0x60;
2709 crypto1_destroy(pcs);//Added by martin
2710 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2711
2712 if (!encrypted_data) { // first authentication
2713 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2714
2715 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2716 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2717 } else { // nested authentication
2718 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2719 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2720 num_to_bytes(ans, 4, rAUTH_AT);
2721 }
2722
2723 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2724 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2725 cardSTATE = MFEMUL_AUTH1;
2726 break;
2727 }
2728
2729 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2730 // BUT... ACK --> NACK
2731 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2732 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2733 break;
2734 }
2735
2736 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2737 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2738 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2739 break;
2740 }
2741
2742 if(len != 4) {
2743 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2744 break;
2745 }
2746
2747 if(receivedCmd[0] == 0x30 // read block
2748 || receivedCmd[0] == 0xA0 // write block
2749 || receivedCmd[0] == 0xC0 // inc
2750 || receivedCmd[0] == 0xC1 // dec
2751 || receivedCmd[0] == 0xC2 // restore
2752 || receivedCmd[0] == 0xB0) { // transfer
2753 if (receivedCmd[1] >= 16 * 4) {
2754 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2755 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2756 break;
2757 }
2758
2759 if (receivedCmd[1] / 4 != cardAUTHSC) {
2760 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2761 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2762 break;
2763 }
2764 }
2765 // read block
2766 if (receivedCmd[0] == 0x30) {
2767 if (MF_DBGLEVEL >= 4) {
2768 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2769 }
2770 emlGetMem(response, receivedCmd[1], 1);
2771 AppendCrc14443a(response, 16);
2772 mf_crypto1_encrypt(pcs, response, 18, response_par);
2773 EmSendCmdPar(response, 18, response_par);
2774 numReads++;
2775 if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
2776 Dbprintf("%d reads done, exiting", numReads);
2777 finished = true;
2778 }
2779 break;
2780 }
2781 // write block
2782 if (receivedCmd[0] == 0xA0) {
2783 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2784 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2785 cardSTATE = MFEMUL_WRITEBL2;
2786 cardWRBL = receivedCmd[1];
2787 break;
2788 }
2789 // increment, decrement, restore
2790 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2791 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2792 if (emlCheckValBl(receivedCmd[1])) {
2793 if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2794 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2795 break;
2796 }
2797 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2798 if (receivedCmd[0] == 0xC1)
2799 cardSTATE = MFEMUL_INTREG_INC;
2800 if (receivedCmd[0] == 0xC0)
2801 cardSTATE = MFEMUL_INTREG_DEC;
2802 if (receivedCmd[0] == 0xC2)
2803 cardSTATE = MFEMUL_INTREG_REST;
2804 cardWRBL = receivedCmd[1];
2805 break;
2806 }
2807 // transfer
2808 if (receivedCmd[0] == 0xB0) {
2809 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2810 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2811 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2812 else
2813 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2814 break;
2815 }
2816 // halt
2817 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2818 LED_B_OFF();
2819 LED_C_OFF();
2820 cardSTATE = MFEMUL_HALTED;
2821 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2822 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2823 break;
2824 }
2825 // RATS
2826 if (receivedCmd[0] == 0xe0) {//RATS
2827 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2828 break;
2829 }
2830 // command not allowed
2831 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2832 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2833 break;
2834 }
2835 case MFEMUL_WRITEBL2:{
2836 if (len == 18){
2837 mf_crypto1_decrypt(pcs, receivedCmd, len);
2838 emlSetMem(receivedCmd, cardWRBL, 1);
2839 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2840 cardSTATE = MFEMUL_WORK;
2841 } else {
2842 cardSTATE_TO_IDLE();
2843 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2844 }
2845 break;
2846 }
2847
2848 case MFEMUL_INTREG_INC:{
2849 mf_crypto1_decrypt(pcs, receivedCmd, len);
2850 memcpy(&ans, receivedCmd, 4);
2851 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2852 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2853 cardSTATE_TO_IDLE();
2854 break;
2855 }
2856 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2857 cardINTREG = cardINTREG + ans;
2858 cardSTATE = MFEMUL_WORK;
2859 break;
2860 }
2861 case MFEMUL_INTREG_DEC:{
2862 mf_crypto1_decrypt(pcs, receivedCmd, len);
2863 memcpy(&ans, receivedCmd, 4);
2864 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2865 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2866 cardSTATE_TO_IDLE();
2867 break;
2868 }
2869 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2870 cardINTREG = cardINTREG - ans;
2871 cardSTATE = MFEMUL_WORK;
2872 break;
2873 }
2874 case MFEMUL_INTREG_REST:{
2875 mf_crypto1_decrypt(pcs, receivedCmd, len);
2876 memcpy(&ans, receivedCmd, 4);
2877 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2878 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2879 cardSTATE_TO_IDLE();
2880 break;
2881 }
2882 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2883 cardSTATE = MFEMUL_WORK;
2884 break;
2885 }
2886 }
2887 }
2888
2889 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2890 LEDsoff();
2891
2892 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2893 {
2894 //May just aswell send the collected ar_nr in the response aswell
2895 uint8_t len = ar_nr_collected*5*4;
2896 cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
2897 }
2898
2899 if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
2900 {
2901 if(ar_nr_collected > 1 ) {
2902 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2903 Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x",
2904 ar_nr_responses[0], // UID1
2905 ar_nr_responses[1], // UID2
2906 ar_nr_responses[2], // NT
2907 ar_nr_responses[3], // AR1
2908 ar_nr_responses[4], // NR1
2909 ar_nr_responses[8], // AR2
2910 ar_nr_responses[9] // NR2
2911 );
2912 } else {
2913 Dbprintf("Failed to obtain two AR/NR pairs!");
2914 if(ar_nr_collected > 0 ) {
2915 Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2916 ar_nr_responses[0], // UID1
2917 ar_nr_responses[1], // UID2
2918 ar_nr_responses[2], // NT
2919 ar_nr_responses[3], // AR1
2920 ar_nr_responses[4] // NR1
2921 );
2922 }
2923 }
2924 }
2925 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2926 }
2927
2928
2929 //-----------------------------------------------------------------------------
2930 // MIFARE sniffer.
2931 //
2932 //-----------------------------------------------------------------------------
2933 void RAMFUNC SniffMifare(uint8_t param) {
2934 // param:
2935 // bit 0 - trigger from first card answer
2936 // bit 1 - trigger from first reader 7-bit request
2937
2938 // free eventually allocated BigBuf memory
2939 BigBuf_free();
2940
2941 // C(red) A(yellow) B(green)
2942 LEDsoff();
2943 // init trace buffer
2944 clear_trace();
2945 set_tracing(TRUE);
2946
2947 // The command (reader -> tag) that we're receiving.
2948 // The length of a received command will in most cases be no more than 18 bytes.
2949 // So 32 should be enough!
2950 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2951 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2952 // The response (tag -> reader) that we're receiving.
2953 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2954 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2955
2956 // allocate the DMA buffer, used to stream samples from the FPGA
2957 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2958 uint8_t *data = dmaBuf;
2959 uint8_t previous_data = 0;
2960 int maxDataLen = 0;
2961 int dataLen = 0;
2962 bool ReaderIsActive = FALSE;
2963 bool TagIsActive = FALSE;
2964
2965 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2966
2967 // Set up the demodulator for tag -> reader responses.
2968 DemodInit(receivedResponse, receivedResponsePar);
2969
2970 // Set up the demodulator for the reader -> tag commands
2971 UartInit(receivedCmd, receivedCmdPar);
2972
2973 // Setup for the DMA.
2974 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2975
2976 LED_D_OFF();
2977
2978 // init sniffer
2979 MfSniffInit();
2980
2981 // And now we loop, receiving samples.
2982 for(uint32_t sniffCounter = 0; TRUE; ) {
2983
2984 if(BUTTON_PRESS()) {
2985 DbpString("cancelled by button");
2986 break;
2987 }
2988
2989 LED_A_ON();
2990 WDT_HIT();
2991
2992 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2993 // check if a transaction is completed (timeout after 2000ms).
2994 // if yes, stop the DMA transfer and send what we have so far to the client
2995 if (MfSniffSend(2000)) {
2996 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2997 sniffCounter = 0;
2998 data = dmaBuf;
2999 maxDataLen = 0;
3000 ReaderIsActive = FALSE;
3001 TagIsActive = FALSE;
3002 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
3003 }
3004 }
3005
3006 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
3007 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
3008 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
3009 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
3010 } else {
3011 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
3012 }
3013 // test for length of buffer
3014 if(dataLen > maxDataLen) { // we are more behind than ever...
3015 maxDataLen = dataLen;
3016 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
3017 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
3018 break;
3019 }
3020 }
3021 if(dataLen < 1) continue;
3022
3023 // primary buffer was stopped ( <-- we lost data!
3024 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
3025 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
3026 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
3027 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
3028 }
3029 // secondary buffer sets as primary, secondary buffer was stopped
3030 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
3031 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
3032 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
3033 }
3034
3035 LED_A_OFF();
3036
3037 if (sniffCounter & 0x01) {
3038
3039 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
3040 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
3041 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
3042 LED_C_INV();
3043 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
3044
3045 /* And ready to receive another command. */
3046 //UartInit(receivedCmd, receivedCmdPar);
3047 UartReset();
3048
3049 /* And also reset the demod code */
3050 DemodReset();
3051 }
3052 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
3053 }
3054
3055 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
3056 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
3057 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
3058 LED_C_INV();
3059
3060 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
3061
3062 // And ready to receive another response.
3063 DemodReset();
3064
3065 // And reset the Miller decoder including its (now outdated) input buffer
3066 UartInit(receivedCmd, receivedCmdPar);
3067 }
3068 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
3069 }
3070 }
3071
3072 previous_data = *data;
3073 sniffCounter++;
3074 data++;
3075 if(data == dmaBuf + DMA_BUFFER_SIZE) {
3076 data = dmaBuf;
3077 }
3078
3079 } // main cycle
3080
3081 DbpString("COMMAND FINISHED");
3082
3083 FpgaDisableSscDma();
3084 MfSniffEnd();
3085
3086 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
3087 LEDsoff();
3088 }
Impressum, Datenschutz