]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/nonce2key/nonce2key.c
3a902ac5229dac8d1547c14f5580b7d74778597b
[proxmark3-svn] / client / nonce2key / nonce2key.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011
3 // Roel - Dec 2009
4 // Unknown author
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // MIFARE Darkside hack
11 //-----------------------------------------------------------------------------
12 #include "nonce2key.h"
13
14 int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
15 struct Crypto1State *state;
16 uint32_t i, pos, rr = 0, nr_diff;
17 byte_t bt, ks3x[8], par[8][8];
18
19 // Reset the last three significant bits of the reader nonce
20 nr &= 0xffffff1f;
21
22 PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr);
23
24 for ( pos = 0; pos < 8; pos++ ) {
25 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
26 bt = (par_info >> (pos*8)) & 0xff;
27
28 for ( i = 0; i < 8; i++) {
29 par[7-pos][i] = (bt >> i) & 0x01;
30 }
31 }
32
33 printf("+----+--------+---+-----+---------------+\n");
34 printf("|diff|{nr} |ks3|ks3^5|parity |\n");
35 printf("+----+--------+---+-----+---------------+\n");
36 for ( i = 0; i < 8; i++) {
37 nr_diff = nr | i << 5;
38 printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5);
39
40 for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]);
41 printf("%01x|\n", par[i][7]);
42 }
43 printf("+----+--------+---+-----+---------------+\n");
44
45 clock_t t1 = clock();
46
47 state = lfsr_common_prefix(nr, rr, ks3x, par);
48 lfsr_rollback_word(state, uid ^ nt, 0);
49 crypto1_get_lfsr(state, key);
50 crypto1_destroy(state);
51
52 t1 = clock() - t1;
53 if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1);
54 return 0;
55 }
56
57 // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype
58 int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
59
60 struct Crypto1State *state;
61 uint32_t i, pos, key_count;
62 byte_t ks3x[8];
63
64 uint64_t key_recovered;
65
66 int64_t *state_s;
67 static uint8_t last_blockno;
68 static uint8_t last_keytype;
69 static uint32_t last_uid;
70 static int64_t *last_keylist;
71
72 if (last_uid != uid &&
73 last_blockno != blockno &&
74 last_keytype != keytype &&
75 last_keylist != NULL)
76 {
77 free(last_keylist);
78 last_keylist = NULL;
79 }
80 last_uid = uid;
81 last_blockno = blockno;
82 last_keytype = keytype;
83
84 // Reset the last three significant bits of the reader nonce
85 nr &= 0xffffff1f;
86
87 PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr);
88
89 for (pos=0; pos<8; pos++) {
90 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
91 }
92
93 PrintAndLog("parity is all zero, try special attack. Just wait for few more seconds...");
94
95 state = lfsr_common_prefix_ex(nr, ks3x);
96 state_s = (int64_t*)state;
97 PrintAndLog("Prefix");
98
99 for (i = 0; (state) && ((state + i)->odd != -1); i++) {
100 lfsr_rollback_word(state + i, uid ^ nt, 0);
101 crypto1_get_lfsr(state + i, &key_recovered);
102 *(state_s + i) = key_recovered;
103 }
104
105 PrintAndLog("zero");
106 if(!state)
107 return 1;
108
109 qsort(state_s, i, sizeof(*state_s), compar_int);
110 *(state_s + i) = -1;
111
112 //Create the intersection:
113 if ( last_keylist != NULL) {
114
115 int64_t *p1, *p2, *p3;
116 p1 = p3 = last_keylist;
117 p2 = state_s;
118
119 PrintAndLog("one");
120 while ( *p1 != -1 && *p2 != -1 ) {
121 if (compar_int(p1, p2) == 0) {
122 printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
123 *p3++ = *p1++;
124 p2++;
125 }
126 else {
127 while (compar_int(p1, p2) == -1) ++p1;
128 while (compar_int(p1, p2) == 1) ++p2;
129 }
130 }
131 key_count = p3 - last_keylist;;
132 } else {
133 key_count = 0;
134 }
135
136 printf("key_count:%d\n", key_count);
137
138 // The list may still contain several key candidates. Test each of them with mfCheckKeys
139 uint8_t keyBlock[6] = {0,0,0,0,0,0};
140 uint64_t key64;
141 PrintAndLog("two");
142 for (i = 0; i < key_count; i++) {
143 key64 = *(last_keylist + i);
144 num_to_bytes(key64, 6, keyBlock);
145 key64 = 0;
146 if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) {
147 *key = key64;
148 free(last_keylist);
149 last_keylist = NULL;
150 free(state);
151 return 0;
152 }
153 }
154
155 free(last_keylist);
156 last_keylist = state_s;
157 return 1;
158 }
159
160 // 32 bit recover key from 2 nonces
161 bool tryMfk32(nonces_t data, uint64_t *outputkey) {
162 struct Crypto1State *s,*t;
163 uint64_t outkey = 0;
164 uint64_t key=0; // recovered key
165 uint32_t uid = data.cuid;
166 uint32_t nt = data.nonce; // first tag challenge (nonce)
167 uint32_t nr0_enc = data.nr; // first encrypted reader challenge
168 uint32_t ar0_enc = data.ar; // first encrypted reader response
169 uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
170 uint32_t ar1_enc = data.ar2; // second encrypted reader response
171 clock_t t1 = clock();
172 bool isSuccess = FALSE;
173 uint8_t counter = 0;
174
175
176 s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0);
177
178 for(t = s; t->odd | t->even; ++t) {
179 lfsr_rollback_word(t, 0, 0);
180 lfsr_rollback_word(t, nr0_enc, 1);
181 lfsr_rollback_word(t, uid ^ nt, 0);
182 crypto1_get_lfsr(t, &key);
183 crypto1_word(t, uid ^ nt, 0);
184 crypto1_word(t, nr1_enc, 1);
185 if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) {
186 //PrintAndLog("Found Key: [%012"llx"]", key);
187 outkey = key;
188 ++counter;
189 if (counter==20) break;
190 }
191 }
192 isSuccess = (counter > 0);
193 t1 = clock() - t1;
194 if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter);
195 *outputkey = ( isSuccess ) ? outkey : 0;
196 crypto1_destroy(s);
197 return isSuccess;
198 }
199
200 bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
201 struct Crypto1State *s, *t;
202 uint64_t outkey = 0;
203 uint64_t key = 0; // recovered key
204 uint32_t uid = data.cuid;
205 uint32_t nt0 = data.nonce; // first tag challenge (nonce)
206 uint32_t nr0_enc = data.nr; // first encrypted reader challenge
207 uint32_t ar0_enc = data.ar; // first encrypted reader response
208 //uint32_t uid1 = le32toh(data+16);
209 uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
210 uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
211 uint32_t ar1_enc = data.ar2; // second encrypted reader response
212 bool isSuccess = FALSE;
213 int counter = 0;
214
215 //PrintAndLog("Enter mfkey32_moebius");
216 clock_t t1 = clock();
217
218 s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0);
219
220 for(t = s; t->odd | t->even; ++t) {
221 lfsr_rollback_word(t, 0, 0);
222 lfsr_rollback_word(t, nr0_enc, 1);
223 lfsr_rollback_word(t, uid ^ nt0, 0);
224 crypto1_get_lfsr(t, &key);
225
226 crypto1_word(t, uid ^ nt1, 0);
227 crypto1_word(t, nr1_enc, 1);
228 if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) {
229 //PrintAndLog("Found Key: [%012"llx"]",key);
230 outkey=key;
231 ++counter;
232 if (counter==20) break;
233 }
234 }
235 isSuccess = (counter > 0);
236 t1 = clock() - t1;
237 if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter);
238 *outputkey = ( isSuccess ) ? outkey : 0;
239 crypto1_destroy(s);
240 return isSuccess;
241 }
242
243 int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
244 uint32_t uid = le32toh(data);
245 uint32_t nt = le32toh(data+4); // tag challenge
246 uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
247 uint32_t ar_enc = le32toh(data+12); // encrypted reader response
248 uint32_t at_enc = le32toh(data+16); // encrypted tag response
249 return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
250 }
251
252 int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
253 uint64_t key = 0; // recovered key
254 uint32_t ks2; // keystream used to encrypt reader response
255 uint32_t ks3; // keystream used to encrypt tag response
256 struct Crypto1State *revstate;
257
258 PrintAndLog("Enter mfkey64");
259 clock_t t1 = clock();
260
261 // Extract the keystream from the messages
262 ks2 = ar_enc ^ prng_successor(nt, 64);
263 ks3 = at_enc ^ prng_successor(nt, 96);
264 revstate = lfsr_recovery64(ks2, ks3);
265 lfsr_rollback_word(revstate, 0, 0);
266 lfsr_rollback_word(revstate, 0, 0);
267 lfsr_rollback_word(revstate, nr_enc, 1);
268 lfsr_rollback_word(revstate, uid ^ nt, 0);
269 crypto1_get_lfsr(revstate, &key);
270 PrintAndLog("Found Key: [%012"llx"]", key);
271 crypto1_destroy(revstate);
272 *outputkey = key;
273
274 t1 = clock() - t1;
275 if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
276 return 0;
277 }
Impressum, Datenschutz