]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/mifare/mifarehost.c
3a961ef788401d990683750f507d6857dbaf7c96
[proxmark3-svn] / client / mifare / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include "mifarehost.h"
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <pthread.h>
17
18 #include "crapto1/crapto1.h"
19 #include "comms.h"
20 #include "usb_cmd.h"
21 #include "cmdmain.h"
22 #include "ui.h"
23 #include "parity.h"
24 #include "util.h"
25 #include "iso14443crc.h"
26 #include "util_posix.h"
27
28 #include "mifare.h"
29 #include "mifare4.h"
30
31 // mifare tracer flags used in mfTraceDecode()
32 #define TRACE_IDLE 0x00
33 #define TRACE_AUTH1 0x01
34 #define TRACE_AUTH2 0x02
35 #define TRACE_AUTH_OK 0x03
36 #define TRACE_READ_DATA 0x04
37 #define TRACE_WRITE_OK 0x05
38 #define TRACE_WRITE_DATA 0x06
39 #define TRACE_ERROR 0xFF
40
41
42 static int compare_uint64(const void *a, const void *b) {
43 // didn't work: (the result is truncated to 32 bits)
44 //return (*(int64_t*)b - *(int64_t*)a);
45
46 // better:
47 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
48 else if (*(uint64_t*)b < *(uint64_t*)a) return 1;
49 else return -1;
50 }
51
52
53 // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
54 static uint32_t intersection(uint64_t *list1, uint64_t *list2)
55 {
56 if (list1 == NULL || list2 == NULL) {
57 return 0;
58 }
59 uint64_t *p1, *p2, *p3;
60 p1 = p3 = list1;
61 p2 = list2;
62
63 while ( *p1 != -1 && *p2 != -1 ) {
64 if (compare_uint64(p1, p2) == 0) {
65 *p3++ = *p1++;
66 p2++;
67 }
68 else {
69 while (compare_uint64(p1, p2) < 0) ++p1;
70 while (compare_uint64(p1, p2) > 0) ++p2;
71 }
72 }
73 *p3 = -1;
74 return p3 - list1;
75 }
76
77
78 // Darkside attack (hf mf mifare)
79 static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
80 struct Crypto1State *states;
81 uint32_t i, pos;
82 uint8_t bt, ks3x[8], par[8][8];
83 uint64_t key_recovered;
84 uint64_t *keylist;
85
86 // Reset the last three significant bits of the reader nonce
87 nr &= 0xffffff1f;
88
89 for (pos=0; pos<8; pos++) {
90 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
91 bt = (par_info >> (pos*8)) & 0xff;
92 for (i=0; i<8; i++) {
93 par[7-pos][i] = (bt >> i) & 0x01;
94 }
95 }
96
97 states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0));
98
99 if (states == NULL) {
100 *keys = NULL;
101 return 0;
102 }
103
104 keylist = (uint64_t*)states;
105
106 for (i = 0; keylist[i]; i++) {
107 lfsr_rollback_word(states+i, uid^nt, 0);
108 crypto1_get_lfsr(states+i, &key_recovered);
109 keylist[i] = key_recovered;
110 }
111 keylist[i] = -1;
112
113 *keys = keylist;
114 return i;
115 }
116
117
118 int mfDarkside(uint64_t *key)
119 {
120 uint32_t uid = 0;
121 uint32_t nt = 0, nr = 0, ar = 0;
122 uint64_t par_list = 0, ks_list = 0;
123 uint64_t *keylist = NULL, *last_keylist = NULL;
124 uint32_t keycount = 0;
125 int16_t isOK = 0;
126
127 UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}};
128
129 // message
130 printf("-------------------------------------------------------------------------\n");
131 printf("Executing command. Expected execution time: 25sec on average\n");
132 printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
133 printf("-------------------------------------------------------------------------\n");
134
135
136 while (true) {
137 clearCommandBuffer();
138 SendCommand(&c);
139
140 //flush queue
141 while (ukbhit()) {
142 int c = getchar(); (void) c;
143 }
144
145 // wait cycle
146 while (true) {
147 printf(".");
148 fflush(stdout);
149 if (ukbhit()) {
150 return -5;
151 break;
152 }
153
154 UsbCommand resp;
155 if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
156 isOK = resp.arg[0];
157 if (isOK < 0) {
158 return isOK;
159 }
160 uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
161 nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
162 par_list = bytes_to_num(resp.d.asBytes + 8, 8);
163 ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
164 nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4);
165 ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4);
166 break;
167 }
168 }
169
170 if (par_list == 0 && c.arg[0] == true) {
171 PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
172 }
173 c.arg[0] = false;
174
175 keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist);
176
177 if (keycount == 0) {
178 PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
179 PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
180 continue;
181 }
182
183 if (par_list == 0) {
184 qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
185 keycount = intersection(last_keylist, keylist);
186 if (keycount == 0) {
187 free(last_keylist);
188 last_keylist = keylist;
189 continue;
190 }
191 }
192
193 if (keycount > 1) {
194 PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount);
195 } else {
196 PrintAndLog("Found a possible key. Trying to authenticate...\n");
197 }
198
199 *key = -1;
200 uint8_t keyBlock[USB_CMD_DATA_SIZE];
201 int max_keys = USB_CMD_DATA_SIZE/6;
202 for (int i = 0; i < keycount; i += max_keys) {
203 int size = keycount - i > max_keys ? max_keys : keycount - i;
204 for (int j = 0; j < size; j++) {
205 if (par_list == 0) {
206 num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock+(j*6));
207 } else {
208 num_to_bytes(keylist[i*max_keys + j], 6, keyBlock+(j*6));
209 }
210 }
211 if (!mfCheckKeys(0, 0, false, size, keyBlock, key)) {
212 break;
213 }
214 }
215
216 if (*key != -1) {
217 free(last_keylist);
218 free(keylist);
219 break;
220 } else {
221 PrintAndLog("Authentication failed. Trying again...");
222 free(last_keylist);
223 last_keylist = keylist;
224 }
225 }
226
227 return 0;
228 }
229
230
231 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
232
233 *key = -1;
234
235 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), clear_trace, keycnt}};
236 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
237 SendCommand(&c);
238
239 UsbCommand resp;
240 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000))
241 return 1;
242
243 if ((resp.arg[0] & 0xff) != 0x01) {
244 if (((int)resp.arg[1]) < 0)
245 return (int)resp.arg[1];
246
247 return 2;
248 }
249
250 *key = bytes_to_num(resp.d.asBytes, 6);
251 return 0;
252 }
253
254 int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint8_t timeout14a, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, sector_t * e_sector){
255
256 uint8_t keyPtr = 0;
257
258 if (e_sector == NULL)
259 return -1;
260
261 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), (clear_trace | 0x02)|((timeout14a & 0xff) << 8), keycnt}};
262 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
263 SendCommand(&c);
264
265 UsbCommand resp;
266 if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth
267 if ((resp.arg[0] & 0xff) != 0x01) return 2;
268
269 bool foundAKey = false;
270 for(int sec = 0; sec < sectorCnt; sec++){
271 for(int keyAB = 0; keyAB < 2; keyAB++){
272 keyPtr = *(resp.d.asBytes + keyAB * 40 + sec);
273 if (keyPtr){
274 e_sector[sec].foundKey[keyAB] = true;
275 e_sector[sec].Key[keyAB] = bytes_to_num(keyBlock + (keyPtr - 1) * 6, 6);
276 foundAKey = true;
277 }
278 }
279 }
280 return foundAKey ? 0 : 3;
281 }
282
283 // Compare 16 Bits out of cryptostate
284 int Compare16Bits(const void * a, const void * b) {
285 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
286 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
287 else return -1;
288 }
289
290 typedef
291 struct {
292 union {
293 struct Crypto1State *slhead;
294 uint64_t *keyhead;
295 } head;
296 union {
297 struct Crypto1State *sltail;
298 uint64_t *keytail;
299 } tail;
300 uint32_t len;
301 uint32_t uid;
302 uint32_t blockNo;
303 uint32_t keyType;
304 uint32_t nt;
305 uint32_t ks1;
306 } StateList_t;
307
308
309 // wrapper function for multi-threaded lfsr_recovery32
310 void
311 #ifdef __has_attribute
312 #if __has_attribute(force_align_arg_pointer)
313 __attribute__((force_align_arg_pointer))
314 #endif
315 #endif
316 *nested_worker_thread(void *arg)
317 {
318 struct Crypto1State *p1;
319 StateList_t *statelist = arg;
320
321 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
322 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
323 statelist->len = p1 - statelist->head.slhead;
324 statelist->tail.sltail = --p1;
325 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
326
327 return statelist->head.slhead;
328 }
329
330
331 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
332 {
333 uint32_t i, j;
334 uint32_t uid;
335 UsbCommand resp;
336
337 int num_unique_nonces;
338
339 StateList_t statelists[2];
340 struct Crypto1State *p1, *p2, *p3, *p4;
341
342 uint8_t *keyBlock = NULL;
343 uint64_t key64;
344
345 int isOK = 1;
346
347 uint64_t next_print_time = 0;
348 uint64_t start_time;
349 float brute_force_time;
350 float brute_force_per_second;
351
352 // flush queue
353 (void)WaitForResponseTimeout(CMD_ACK,NULL,100);
354
355 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
356 memcpy(c.d.asBytes, key, 6);
357 SendCommand(&c);
358
359 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
360 // some cards can cause it to get stuck in a loop, so break out of it
361 UsbCommand c = {CMD_PING};
362 SendCommand(&c);
363 (void)WaitForResponseTimeout(CMD_ACK,NULL,500);
364 return -1;
365 }
366
367 if (resp.arg[0]) {
368 return resp.arg[0]; // error during nested
369 }
370
371 memcpy(&uid, resp.d.asBytes, 4);
372 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
373
374 for (i = 0; i < 2; i++) {
375 statelists[i].blockNo = resp.arg[2] & 0xff;
376 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
377 statelists[i].uid = uid;
378 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
379 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
380 }
381
382 if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1)
383 num_unique_nonces = 1;
384 else
385 num_unique_nonces = 2;
386
387 // calc keys
388
389 pthread_t thread_id[2];
390
391 // create and run worker threads
392 for (i = 0; i < 2; i++) {
393 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
394 }
395
396 // wait for threads to terminate:
397 for (i = 0; i < 2; i++) {
398 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
399 }
400
401
402 // the first 16 Bits of the cryptostate already contain part of our key.
403 // Create the intersection of the two lists based on these 16 Bits and
404 // roll back the cryptostate
405 p1 = p3 = statelists[0].head.slhead;
406 p2 = p4 = statelists[1].head.slhead;
407 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
408 if (Compare16Bits(p1, p2) == 0) {
409 struct Crypto1State savestate, *savep = &savestate;
410 savestate = *p1;
411 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
412 *p3 = *p1;
413 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
414 p3++;
415 p1++;
416 }
417 savestate = *p2;
418 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
419 *p4 = *p2;
420 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
421 p4++;
422 p2++;
423 }
424 }
425 else {
426 while (Compare16Bits(p1, p2) == -1) p1++;
427 while (Compare16Bits(p1, p2) == 1) p2++;
428 }
429 }
430 *(uint64_t*)p3 = -1;
431 *(uint64_t*)p4 = -1;
432 statelists[0].len = p3 - statelists[0].head.slhead;
433 statelists[1].len = p4 - statelists[1].head.slhead;
434 statelists[0].tail.sltail=--p3;
435 statelists[1].tail.sltail=--p4;
436
437 for (i = 0; i < 2; i++) {
438 PrintAndLog("statelist %d: length:%d block:%02d keytype:%d nt:%08X ks1:%08X", i, statelists[i].len, statelists[i].blockNo, statelists[i].keyType, statelists[i].nt, statelists[i].ks1);
439 }
440
441 // the statelists now contain possible keys. The key we are searching for must be in the
442 // intersection of both lists. Create the intersection:
443 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
444
445 if (num_unique_nonces > 1) {
446 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
447 statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
448 }
449 else {
450 PrintAndLog("Nonce 1 and 2 are the same!");
451 }
452
453 if (statelists[0].len > 100) {
454 PrintAndLog("We have %d keys to check. This will take a very long time!", statelists[0].len);
455 PrintAndLog("Press button to abort.");
456 }
457 else if (statelists[0].len < 1) {
458 PrintAndLog("No candidate keys to check!");
459 }
460 else {
461 PrintAndLog("We have %d key(s) to check.", statelists[0].len);
462 }
463
464 uint32_t max_keys = (statelists[0].len > (USB_CMD_DATA_SIZE / 6)) ? (USB_CMD_DATA_SIZE / 6) : statelists[0].len;
465 keyBlock = calloc(max_keys, 6);
466
467 if (keyBlock == NULL) {
468 free(statelists[0].head.slhead);
469 free(statelists[1].head.slhead);
470 return -4;
471 }
472
473 memset(resultKey, 0, 6);
474 start_time = msclock();
475 next_print_time = start_time + 1 * 1000;
476 // The list may still contain several key candidates. Test each of them with mfCheckKeys
477 for (i = 0; i < statelists[0].len; i+=max_keys) {
478 if (next_print_time <= msclock()) {
479 brute_force_per_second = ((float)i) / (((float)(msclock() - start_time)) / 1000.0);
480 brute_force_time = ((float)(statelists[0].len - i)) / brute_force_per_second;
481 next_print_time = msclock() + 10 * 1000;
482 PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", statelists[0].len - i, brute_force_per_second, brute_force_time);
483 }
484
485 if ((i+max_keys) >= statelists[0].len)
486 max_keys = statelists[0].len - i;
487
488 for (j = 0; j < max_keys; j++) {
489 crypto1_get_lfsr(statelists[0].head.slhead + i + j, &key64);
490 num_to_bytes(key64, 6, keyBlock+(j*6));
491 }
492
493 key64 = 0;
494 isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, true, max_keys, keyBlock, &key64);
495
496 if (isOK == 1) { // timeout
497 isOK = -1;
498 break;
499 }
500 else if (isOK < 0) { // -2 is button pressed
501 break;
502 }
503 else if (!isOK) {
504 num_to_bytes(key64, 6, resultKey);
505 break;
506 }
507 }
508
509 if (isOK == 0 && statelists[0].len != 1)
510 PrintAndLog("Key found in %0.2f seconds after checking %d keys\n", ((float)(msclock() - start_time)) / 1000.0, i+max_keys);
511
512 free(statelists[0].head.slhead);
513 free(statelists[1].head.slhead);
514 free(keyBlock);
515
516 return isOK;
517 }
518
519 // MIFARE
520 int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
521
522 UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
523 memcpy(c.d.asBytes, key, 6);
524 clearCommandBuffer();
525 SendCommand(&c);
526
527 UsbCommand resp;
528 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
529 uint8_t isOK = resp.arg[0] & 0xff;
530
531 if (isOK) {
532 memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16);
533 return 0;
534 } else {
535 return 1;
536 }
537 } else {
538 PrintAndLogEx(ERR, "Command execute timeout");
539 return 2;
540 }
541
542 return 0;
543 }
544
545 // EMULATOR
546
547 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
548 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
549 SendCommand(&c);
550
551 UsbCommand resp;
552 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
553 memcpy(data, resp.d.asBytes, blocksCount * 16);
554 return 0;
555 }
556
557 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
558 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
559 memcpy(c.d.asBytes, data, blocksCount * 16);
560 SendCommand(&c);
561 return 0;
562 }
563
564 // "MAGIC" CARD
565
566 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
567 uint8_t isOK = 0;
568
569 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
570 SendCommand(&c);
571
572 UsbCommand resp;
573 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
574 isOK = resp.arg[0] & 0xff;
575 memcpy(data, resp.d.asBytes, 16);
576 if (!isOK) return 2;
577 } else {
578 PrintAndLog("Command execute timeout");
579 return 1;
580 }
581 return 0;
582 }
583
584 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
585
586 uint8_t isOK = 0;
587 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
588 memcpy(c.d.asBytes, data, 16);
589 SendCommand(&c);
590
591 UsbCommand resp;
592 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
593 isOK = resp.arg[0] & 0xff;
594 if (uid != NULL)
595 memcpy(uid, resp.d.asBytes, 4);
596 if (!isOK)
597 return 2;
598 } else {
599 PrintAndLog("Command execute timeout");
600 return 1;
601 }
602
603 return 0;
604 }
605
606 int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) {
607 uint8_t isOK = 0;
608 uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04;
609 UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}};
610 SendCommand(&c);
611
612 UsbCommand resp;
613 WaitForResponse(CMD_ACK,&resp);
614 isOK = resp.arg[0] & 0xff;
615
616 return isOK;
617 }
618
619 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) {
620 uint8_t oldblock0[16] = {0x00};
621 uint8_t block0[16] = {0x00};
622 int gen = 0, res;
623
624 gen = mfCIdentify();
625
626 /* generation 1a magic card by default */
627 uint8_t cmdParams = CSETBLOCK_SINGLE_OPER;
628 if (gen == 2) {
629 /* generation 1b magic card */
630 cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B;
631 }
632
633 res = mfCGetBlock(0, oldblock0, cmdParams);
634
635 if (res == 0) {
636 memcpy(block0, oldblock0, 16);
637 PrintAndLog("old block 0: %s", sprint_hex(block0,16));
638 } else {
639 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
640 }
641
642 // fill in the new values
643 // UID
644 memcpy(block0, uid, 4);
645 // Mifare UID BCC
646 block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
647 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
648 if (sak != NULL)
649 block0[5] = sak[0];
650 if (atqa != NULL) {
651 block0[6] = atqa[1];
652 block0[7] = atqa[0];
653 }
654 PrintAndLog("new block 0: %s", sprint_hex(block0, 16));
655
656 res = mfCSetBlock(0, block0, oldUID, false, cmdParams);
657 if (res) {
658 PrintAndLog("Can't set block 0. Error: %d", res);
659 return res;
660 }
661
662 return 0;
663 }
664
665 int mfCIdentify() {
666 UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}};
667 SendCommand(&c);
668 UsbCommand resp;
669 WaitForResponse(CMD_ACK,&resp);
670
671 uint8_t isGeneration = resp.arg[0] & 0xff;
672 switch( isGeneration ){
673 case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
674 case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
675 default: PrintAndLog("No chinese magic backdoor command detected"); break;
676 }
677
678 return (int) isGeneration;
679 }
680
681
682 // SNIFFER
683
684 // constants
685 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
686
687 // variables
688 char logHexFileName[FILE_PATH_SIZE] = {0x00};
689 static uint8_t traceCard[4096] = {0x00};
690 static char traceFileName[FILE_PATH_SIZE] = {0x00};
691 static int traceState = TRACE_IDLE;
692 static uint8_t traceCurBlock = 0;
693 static uint8_t traceCurKey = 0;
694
695 struct Crypto1State *traceCrypto1 = NULL;
696
697 struct Crypto1State *revstate;
698 uint64_t lfsr;
699 uint64_t ui64Key;
700 uint32_t ks2;
701 uint32_t ks3;
702
703 uint32_t uid; // serial number
704 uint32_t nt; // tag challenge
705 uint32_t nt_enc; // encrypted tag challenge
706 uint8_t nt_enc_par; // encrypted tag challenge parity
707 uint32_t nr_enc; // encrypted reader challenge
708 uint32_t ar_enc; // encrypted reader response
709 uint8_t ar_enc_par; // encrypted reader response parity
710 uint32_t at_enc; // encrypted tag response
711 uint8_t at_enc_par; // encrypted tag response parity
712
713 int isTraceCardEmpty(void) {
714 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
715 }
716
717 int isBlockEmpty(int blockN) {
718 for (int i = 0; i < 16; i++)
719 if (traceCard[blockN * 16 + i] != 0) return 0;
720
721 return 1;
722 }
723
724 int isBlockTrailer(int blockN) {
725 return ((blockN & 0x03) == 0x03);
726 }
727
728 int saveTraceCard(void) {
729 FILE * f;
730
731 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
732
733 f = fopen(traceFileName, "w+");
734 if ( !f ) return 1;
735
736 for (int i = 0; i < 64; i++) { // blocks
737 for (int j = 0; j < 16; j++) // bytes
738 fprintf(f, "%02x", *(traceCard + i * 16 + j));
739 if (i < 63)
740 fprintf(f,"\n");
741 }
742 fclose(f);
743 return 0;
744 }
745
746 int loadTraceCard(uint8_t *tuid) {
747 FILE * f;
748 char buf[64] = {0x00};
749 uint8_t buf8[64] = {0x00};
750 int i, blockNum;
751
752 if (!isTraceCardEmpty())
753 saveTraceCard();
754
755 memset(traceCard, 0x00, 4096);
756 memcpy(traceCard, tuid + 3, 4);
757
758 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
759
760 f = fopen(traceFileName, "r");
761 if (!f) return 1;
762
763 blockNum = 0;
764
765 while(!feof(f)){
766
767 memset(buf, 0, sizeof(buf));
768 if (fgets(buf, sizeof(buf), f) == NULL) {
769 PrintAndLog("File reading error.");
770 fclose(f);
771 return 2;
772 }
773
774 if (strlen(buf) < 32){
775 if (feof(f)) break;
776 PrintAndLog("File content error. Block data must include 32 HEX symbols");
777 fclose(f);
778 return 2;
779 }
780 for (i = 0; i < 32; i += 2)
781 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
782
783 memcpy(traceCard + blockNum * 16, buf8, 16);
784
785 blockNum++;
786 }
787 fclose(f);
788
789 return 0;
790 }
791
792 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
793
794 if (traceCrypto1)
795 crypto1_destroy(traceCrypto1);
796
797 traceCrypto1 = NULL;
798
799 if (wantSaveToEmlFile)
800 loadTraceCard(tuid);
801
802 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
803 traceCard[5] = sak;
804 memcpy(&traceCard[6], atqa, 2);
805 traceCurBlock = 0;
806 uid = bytes_to_num(tuid + 3, 4);
807
808 traceState = TRACE_IDLE;
809
810 return 0;
811 }
812
813 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
814 uint8_t bt = 0;
815 int i;
816
817 if (len != 1) {
818 for (i = 0; i < len; i++)
819 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
820 } else {
821 bt = 0;
822 for (i = 0; i < 4; i++)
823 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
824
825 data[0] = bt;
826 }
827 return;
828 }
829
830 bool NTParityCheck(uint32_t ntx) {
831 if (
832 (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((nt_enc_par >> 5) & 0x01) ^ (nt_enc & 0x01)) ||
833 (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((nt_enc_par >> 6) & 0x01) ^ (nt_enc >> 8 & 0x01)) ||
834 (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01))
835 )
836 return false;
837
838 uint32_t ar = prng_successor(ntx, 64);
839 if (
840 (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) ||
841 (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ar_enc_par >> 6) & 0x01) ^ (ar_enc >> 8 & 0x01)) ||
842 (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ar_enc_par >> 7) & 0x01) ^ (ar_enc >> 16 & 0x01))
843 )
844 return false;
845
846 uint32_t at = prng_successor(ntx, 96);
847 if (
848 (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ar_enc_par >> 4) & 0x01) ^ (at_enc >> 24 & 0x01)) ||
849 (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((at_enc_par >> 5) & 0x01) ^ (at_enc & 0x01)) ||
850 (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((at_enc_par >> 6) & 0x01) ^ (at_enc >> 8 & 0x01)) ||
851 (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01))
852 )
853 return false;
854
855 return true;
856 }
857
858
859 int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEmlFile) {
860 uint8_t data[64];
861
862 if (traceState == TRACE_ERROR) return 1;
863 if (len > 64) {
864 traceState = TRACE_ERROR;
865 return 1;
866 }
867
868 memcpy(data, data_src, len);
869 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
870 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
871 uint8_t parity[16];
872 oddparitybuf(data, len, parity);
873 PrintAndLog("dec> %s [%s]", sprint_hex(data, len), printBitsPar(parity, len));
874 AddLogHex(logHexFileName, "dec> ", data, len);
875 }
876
877 switch (traceState) {
878 case TRACE_IDLE:
879 // check packet crc16!
880 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
881 PrintAndLog("dec> CRC ERROR!!!");
882 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
883 traceState = TRACE_ERROR; // do not decrypt the next commands
884 return 1;
885 }
886
887 // AUTHENTICATION
888 if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
889 traceState = TRACE_AUTH1;
890 traceCurBlock = data[1];
891 traceCurKey = data[0] == 60 ? 1:0;
892 return 0;
893 }
894
895 // READ
896 if ((len ==4) && ((data[0] == 0x30))) {
897 traceState = TRACE_READ_DATA;
898 traceCurBlock = data[1];
899 return 0;
900 }
901
902 // WRITE
903 if ((len ==4) && ((data[0] == 0xA0))) {
904 traceState = TRACE_WRITE_OK;
905 traceCurBlock = data[1];
906 return 0;
907 }
908
909 // HALT
910 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
911 traceState = TRACE_ERROR; // do not decrypt the next commands
912 return 0;
913 }
914
915 return 0;
916 break;
917
918 case TRACE_READ_DATA:
919 if (len == 18) {
920 traceState = TRACE_IDLE;
921
922 if (isBlockTrailer(traceCurBlock)) {
923 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
924 } else {
925 memcpy(traceCard + traceCurBlock * 16, data, 16);
926 }
927 if (wantSaveToEmlFile) saveTraceCard();
928 return 0;
929 } else {
930 traceState = TRACE_ERROR;
931 return 1;
932 }
933 break;
934
935 case TRACE_WRITE_OK:
936 if ((len == 1) && (data[0] == 0x0a)) {
937 traceState = TRACE_WRITE_DATA;
938
939 return 0;
940 } else {
941 traceState = TRACE_ERROR;
942 return 1;
943 }
944 break;
945
946 case TRACE_WRITE_DATA:
947 if (len == 18) {
948 traceState = TRACE_IDLE;
949
950 memcpy(traceCard + traceCurBlock * 16, data, 16);
951 if (wantSaveToEmlFile) saveTraceCard();
952 return 0;
953 } else {
954 traceState = TRACE_ERROR;
955 return 1;
956 }
957 break;
958
959 case TRACE_AUTH1:
960 if (len == 4) {
961 traceState = TRACE_AUTH2;
962 if (!traceCrypto1) {
963 nt = bytes_to_num(data, 4);
964 } else {
965 nt_enc = bytes_to_num(data, 4);
966 nt_enc_par = parity;
967 }
968 return 0;
969 } else {
970 traceState = TRACE_ERROR;
971 return 1;
972 }
973 break;
974
975 case TRACE_AUTH2:
976 if (len == 8) {
977 traceState = TRACE_AUTH_OK;
978
979 nr_enc = bytes_to_num(data, 4);
980 ar_enc = bytes_to_num(data + 4, 4);
981 ar_enc_par = parity << 4;
982 return 0;
983 } else {
984 traceState = TRACE_ERROR;
985 return 1;
986 }
987 break;
988
989 case TRACE_AUTH_OK:
990 if (len ==4) {
991 traceState = TRACE_IDLE;
992
993 at_enc = bytes_to_num(data, 4);
994 at_enc_par = parity;
995 if (!traceCrypto1) {
996
997 // decode key here)
998 ks2 = ar_enc ^ prng_successor(nt, 64);
999 ks3 = at_enc ^ prng_successor(nt, 96);
1000 revstate = lfsr_recovery64(ks2, ks3);
1001 lfsr_rollback_word(revstate, 0, 0);
1002 lfsr_rollback_word(revstate, 0, 0);
1003 lfsr_rollback_word(revstate, nr_enc, 1);
1004 lfsr_rollback_word(revstate, uid ^ nt, 0);
1005
1006 crypto1_get_lfsr(revstate, &lfsr);
1007 crypto1_destroy(revstate);
1008 ui64Key = lfsr;
1009 printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n",
1010 (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
1011 validate_prng_nonce(nt) ? "WEAK": "HARDEND",
1012 ks2,
1013 ks3);
1014 AddLogUint64(logHexFileName, "key> ", lfsr);
1015 } else {
1016 if (validate_prng_nonce(nt)) {
1017 struct Crypto1State *pcs;
1018 pcs = crypto1_create(ui64Key);
1019 uint32_t nt1 = crypto1_word(pcs, nt_enc ^ uid, 1) ^ nt_enc;
1020 uint32_t ar = prng_successor(nt1, 64);
1021 uint32_t at = prng_successor(nt1, 96);
1022 printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid, nt1, printBitsPar(&nt_enc_par, 4), ar, at);
1023 uint32_t nr1 = crypto1_word(pcs, nr_enc, 1) ^ nr_enc;
1024 uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ar_enc;
1025 uint32_t at1 = crypto1_word(pcs, 0, 0) ^ at_enc;
1026 crypto1_destroy(pcs);
1027 printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1, ar1, at1);
1028
1029 if (NTParityCheck(nt1))
1030 printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF));
1031 else
1032 printf("key> the same key test. check nt parity error.\n");
1033
1034 uint32_t ntc = prng_successor(nt, 90);
1035 uint32_t ntx = 0;
1036 int ntcnt = 0;
1037 for (int i = 0; i < 16383; i++) {
1038 ntc = prng_successor(ntc, 1);
1039 if (NTParityCheck(ntc)){
1040 if (!ntcnt)
1041 ntx = ntc;
1042 ntcnt++;
1043 }
1044 }
1045 if (ntcnt)
1046 printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt);
1047 else
1048 printf("key> don't have any nt candidate( \n");
1049
1050 nt = ntx;
1051 ks2 = ar_enc ^ prng_successor(ntx, 64);
1052 ks3 = at_enc ^ prng_successor(ntx, 96);
1053
1054 // decode key
1055 revstate = lfsr_recovery64(ks2, ks3);
1056 lfsr_rollback_word(revstate, 0, 0);
1057 lfsr_rollback_word(revstate, 0, 0);
1058 lfsr_rollback_word(revstate, nr_enc, 1);
1059 lfsr_rollback_word(revstate, uid ^ nt, 0);
1060
1061 crypto1_get_lfsr(revstate, &lfsr);
1062 crypto1_destroy(revstate);
1063 ui64Key = lfsr;
1064 printf("key> probable key:%x%x ks2:%08x ks3:%08x\n",
1065 (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF),
1066 ks2,
1067 ks3);
1068 AddLogUint64(logHexFileName, "key> ", lfsr);
1069 } else {
1070 printf("key> hardnested not implemented!\n");
1071
1072 crypto1_destroy(traceCrypto1);
1073
1074 // not implemented
1075 traceState = TRACE_ERROR;
1076 }
1077 }
1078
1079 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
1080 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
1081
1082 if (traceCurKey) {
1083 num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
1084 } else {
1085 num_to_bytes(lfsr, 6, traceCard + blockShift);
1086 }
1087 if (wantSaveToEmlFile) saveTraceCard();
1088
1089 if (traceCrypto1) {
1090 crypto1_destroy(traceCrypto1);
1091 }
1092
1093 // set cryptosystem state
1094 traceCrypto1 = lfsr_recovery64(ks2, ks3);
1095 return 0;
1096 } else {
1097 traceState = TRACE_ERROR;
1098 return 1;
1099 }
1100 break;
1101
1102 default:
1103 traceState = TRACE_ERROR;
1104 return 1;
1105 }
1106
1107 return 0;
1108 }
1109
1110 // DECODING
1111
1112 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
1113 /*
1114 uint32_t nt; // tag challenge
1115 uint32_t ar_enc; // encrypted reader response
1116 uint32_t at_enc; // encrypted tag response
1117 */
1118 if (traceCrypto1) {
1119 crypto1_destroy(traceCrypto1);
1120 }
1121 ks2 = ar_enc ^ prng_successor(nt, 64);
1122 ks3 = at_enc ^ prng_successor(nt, 96);
1123 traceCrypto1 = lfsr_recovery64(ks2, ks3);
1124
1125 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
1126
1127 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
1128 crypto1_destroy(traceCrypto1);
1129 return 0;
1130 }
1131
1132 /** validate_prng_nonce
1133 * Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
1134 * returns
1135 * true = weak prng
1136 * false = hardend prng
1137 */
1138 bool validate_prng_nonce(uint32_t nonce) {
1139 uint16_t *dist = 0;
1140 uint16_t x, i;
1141
1142 dist = malloc(2 << 16);
1143 if(!dist)
1144 return -1;
1145
1146 // init prng table:
1147 for (x = i = 1; i; ++i) {
1148 dist[(x & 0xff) << 8 | x >> 8] = i;
1149 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
1150 }
1151
1152 uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535;
1153
1154 free(dist);
1155 return (res == 16);
1156 }
1157
1158 /* Detect Tag Prng,
1159 * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce.
1160 * the tag nonce is check to see if it has a predictable PRNG.
1161 * @returns
1162 * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
1163 * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
1164 */
1165 int DetectClassicPrng(void){
1166
1167 UsbCommand resp, respA;
1168 uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA
1169 uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS;
1170
1171 UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}};
1172 memcpy(c.d.asBytes, cmd, sizeof(cmd));
1173
1174 clearCommandBuffer();
1175 SendCommand(&c);
1176 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
1177 PrintAndLog("PRNG UID: Reply timeout.");
1178 return -1;
1179 }
1180
1181 // if select tag failed.
1182 if (resp.arg[0] == 0) {
1183 PrintAndLog("PRNG error: selecting tag failed, can't detect prng.");
1184 return -1;
1185 }
1186
1187 if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) {
1188 PrintAndLog("PRNG data: Reply timeout.");
1189 return -1;
1190 }
1191
1192 // check respA
1193 if (respA.arg[0] != 4) {
1194 PrintAndLog("PRNG data error: Wrong length: %d", respA.arg[0]);
1195 return -1;
1196 }
1197
1198 uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]);
1199 return validate_prng_nonce(nonce);
1200 }
Impressum, Datenschutz