]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
3dcf48cc30ccb9a5dba093c5fdcaca5e60da0e5b
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #ifdef WITH_LCD
30 #include "LCD.h"
31 #endif
32
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
36 #endif
37
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
39
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
45
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend[TOSEND_BUFFER_SIZE];
48 int ToSendMax = 0;
49 static int ToSendBit;
50 struct common_area common_area __attribute__((section(".commonarea")));
51
52 void ToSendReset(void)
53 {
54 ToSendMax = -1;
55 ToSendBit = 8;
56 }
57
58 void ToSendStuffBit(int b)
59 {
60 if(ToSendBit >= 8) {
61 ToSendMax++;
62 ToSend[ToSendMax] = 0;
63 ToSendBit = 0;
64 }
65
66 if(b) {
67 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
68 }
69
70 ToSendBit++;
71
72 if(ToSendMax >= sizeof(ToSend)) {
73 ToSendBit = 0;
74 DbpString("ToSendStuffBit overflowed!");
75 }
76 }
77
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
81
82 void DbpString(char *str)
83 {
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
86 }
87
88 #if 0
89 void DbpIntegers(int x1, int x2, int x3)
90 {
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
92 }
93 #endif
94
95 void Dbprintf(const char *fmt, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string[128];
98 va_list ap;
99
100 va_start(ap, fmt);
101 kvsprintf(fmt, output_string, 10, ap);
102 va_end(ap);
103
104 DbpString(output_string);
105 }
106
107 // prints HEX & ASCII
108 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
109 int l=0,i;
110 char ascii[9];
111
112 while (len>0) {
113 if (len>8) l=8;
114 else l=len;
115
116 memcpy(ascii,d,l);
117 ascii[l]=0;
118
119 // filter safe ascii
120 for (i=0;i<l;i++)
121 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
122
123 if (bAsci) {
124 Dbprintf("%-8s %*D",ascii,l,d," ");
125 } else {
126 Dbprintf("%*D",l,d," ");
127 }
128
129 len-=8;
130 d+=8;
131 }
132 }
133
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 // return that.
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch)
140 {
141 uint32_t d;
142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
144 AT91C_BASE_ADC->ADC_MR =
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
148
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 //
153 // The maths are:
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
155 //
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
157 //
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
159
160 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
161
162 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
163
164 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
165 ;
166 d = AT91C_BASE_ADC->ADC_CDR[ch];
167
168 return d;
169 }
170
171 int AvgAdc(int ch) // was static - merlok
172 {
173 int i;
174 int a = 0;
175
176 for(i = 0; i < 32; i++) {
177 a += ReadAdc(ch);
178 }
179
180 return (a + 15) >> 5;
181 }
182
183 void MeasureAntennaTuning(void)
184 {
185 uint8_t LF_Results[256];
186 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
187 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
188
189 LED_B_ON();
190
191 /*
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
198 */
199
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
202 for (i=255; i>=19; i--) {
203 WDT_HIT();
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
205 SpinDelay(20);
206 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
207 if (i==95) vLf125 = adcval; // voltage at 125Khz
208 if (i==89) vLf134 = adcval; // voltage at 134Khz
209
210 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results[i] > peak) {
212 peakv = adcval;
213 peak = LF_Results[i];
214 peakf = i;
215 //ptr = i;
216 }
217 }
218
219 for (i=18; i >= 0; i--) LF_Results[i] = 0;
220
221 LED_A_ON();
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
225 SpinDelay(20);
226 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
227
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
230 LED_A_OFF();
231 LED_B_OFF();
232 return;
233 }
234
235 void MeasureAntennaTuningHf(void)
236 {
237 int vHf = 0; // in mV
238
239 DbpString("Measuring HF antenna, press button to exit");
240
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
244
245 for (;;) {
246 SpinDelay(20);
247 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
248
249 Dbprintf("%d mV",vHf);
250 if (BUTTON_PRESS()) break;
251 }
252 DbpString("cancelled");
253
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
255
256 }
257
258
259 void ReadMem(int addr)
260 {
261 const uint8_t *data = ((uint8_t *)addr);
262
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
265 }
266
267 /* osimage version information is linked in */
268 extern struct version_information version_information;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
271 void SendVersion(void)
272 {
273 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
274 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
275
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
279 */
280 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
281 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
282 strcat(VersionString, "bootrom version information appears invalid\n");
283 } else {
284 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
285 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
286 }
287
288 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
290
291 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
292 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
298 uint32_t compressed_data_section_size = common_area.arg1;
299 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
300 }
301 /**
302 * Prints runtime information about the PM3.
303 **/
304 void SendStatus(void)
305 {
306 BigBuf_print_status();
307 Fpga_print_status();
308 printConfig(); //LF Sampling config
309 Dbprintf("Various");
310 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
311 Dbprintf(" ToSendMax........%d",ToSendMax);
312 Dbprintf(" ToSendBit........%d",ToSendBit);
313 }
314
315 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
316
317 #define OPTS 2
318
319 void StandAloneMode()
320 {
321 DbpString("Stand-alone mode! No PC necessary.");
322 // Oooh pretty -- notify user we're in elite samy mode now
323 LED(LED_RED, 200);
324 LED(LED_ORANGE, 200);
325 LED(LED_GREEN, 200);
326 LED(LED_ORANGE, 200);
327 LED(LED_RED, 200);
328 LED(LED_ORANGE, 200);
329 LED(LED_GREEN, 200);
330 LED(LED_ORANGE, 200);
331 LED(LED_RED, 200);
332
333 }
334
335 #endif
336
337
338
339 #ifdef WITH_ISO14443a_StandAlone
340 void StandAloneMode14a()
341 {
342 StandAloneMode();
343 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
344
345 int selected = 0;
346 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
347 int cardRead[OPTS] = {0};
348 uint8_t readUID[10] = {0};
349 uint32_t uid_1st[OPTS]={0};
350 uint32_t uid_2nd[OPTS]={0};
351 uint32_t uid_tmp1 = 0;
352 uint32_t uid_tmp2 = 0;
353 iso14a_card_select_t hi14a_card[OPTS];
354
355 LED(selected + 1, 0);
356
357 for (;;)
358 {
359 usb_poll();
360 WDT_HIT();
361 SpinDelay(300);
362
363 if (iGotoRecord == 1 || cardRead[selected] == 0)
364 {
365 iGotoRecord = 0;
366 LEDsoff();
367 LED(selected + 1, 0);
368 LED(LED_RED2, 0);
369
370 // record
371 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
372 /* need this delay to prevent catching some weird data */
373 SpinDelay(500);
374 /* Code for reading from 14a tag */
375 uint8_t uid[10] ={0};
376 uint32_t cuid;
377 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
378
379 for ( ; ; )
380 {
381 WDT_HIT();
382 if (BUTTON_PRESS()) {
383 if (cardRead[selected]) {
384 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
385 break;
386 }
387 else if (cardRead[(selected+1)%OPTS]) {
388 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
389 selected = (selected+1)%OPTS;
390 break; // playing = 1;
391 }
392 else {
393 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
394 SpinDelay(300);
395 }
396 }
397 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
398 continue;
399 else
400 {
401 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
402 memcpy(readUID,uid,10*sizeof(uint8_t));
403 uint8_t *dst = (uint8_t *)&uid_tmp1;
404 // Set UID byte order
405 for (int i=0; i<4; i++)
406 dst[i] = uid[3-i];
407 dst = (uint8_t *)&uid_tmp2;
408 for (int i=0; i<4; i++)
409 dst[i] = uid[7-i];
410 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
411 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
412 }
413 else {
414 if (uid_tmp2) {
415 Dbprintf("Bank[%d] received a 7-byte UID",selected);
416 uid_1st[selected] = (uid_tmp1)>>8;
417 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
418 }
419 else {
420 Dbprintf("Bank[%d] received a 4-byte UID",selected);
421 uid_1st[selected] = uid_tmp1;
422 uid_2nd[selected] = uid_tmp2;
423 }
424 break;
425 }
426 }
427 }
428 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
429 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
430 LEDsoff();
431 LED(LED_GREEN, 200);
432 LED(LED_ORANGE, 200);
433 LED(LED_GREEN, 200);
434 LED(LED_ORANGE, 200);
435
436 LEDsoff();
437 LED(selected + 1, 0);
438
439 // Next state is replay:
440 playing = 1;
441
442 cardRead[selected] = 1;
443 }
444 /* MF Classic UID clone */
445 else if (iGotoClone==1)
446 {
447 iGotoClone=0;
448 LEDsoff();
449 LED(selected + 1, 0);
450 LED(LED_ORANGE, 250);
451
452
453 // record
454 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
455
456 // wait for button to be released
457 while(BUTTON_PRESS())
458 {
459 // Delay cloning until card is in place
460 WDT_HIT();
461 }
462 Dbprintf("Starting clone. [Bank: %u]", selected);
463 // need this delay to prevent catching some weird data
464 SpinDelay(500);
465 // Begin clone function here:
466 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
467 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
468 memcpy(c.d.asBytes, data, 16);
469 SendCommand(&c);
470
471 Block read is similar:
472 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
473 We need to imitate that call with blockNo 0 to set a uid.
474
475 The get and set commands are handled in this file:
476 // Work with "magic Chinese" card
477 case CMD_MIFARE_CSETBLOCK:
478 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
479 break;
480 case CMD_MIFARE_CGETBLOCK:
481 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
482 break;
483
484 mfCSetUID provides example logic for UID set workflow:
485 -Read block0 from card in field with MifareCGetBlock()
486 -Configure new values without replacing reserved bytes
487 memcpy(block0, uid, 4); // Copy UID bytes from byte array
488 // Mifare UID BCC
489 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
490 Bytes 5-7 are reserved SAK and ATQA for mifare classic
491 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
492 */
493 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
494 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
495 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
496 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
497 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
498 playing = 1;
499 }
500 else {
501 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
502 memcpy(newBlock0,oldBlock0,16);
503 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
504
505 newBlock0[0] = uid_1st[selected]>>24;
506 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
507 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
508 newBlock0[3] = 0xFF & (uid_1st[selected]);
509 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
510 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
511 MifareCSetBlock(0, 0xFF,0, newBlock0);
512 MifareCGetBlock(0x3F, 1, 0, testBlock0);
513 if (memcmp(testBlock0,newBlock0,16)==0)
514 {
515 DbpString("Cloned successfull!");
516 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
517 playing = 0;
518 iGotoRecord = 1;
519 selected = (selected + 1) % OPTS;
520 }
521 else {
522 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
523 playing = 1;
524 }
525 }
526 LEDsoff();
527 LED(selected + 1, 0);
528
529 }
530 // Change where to record (or begin playing)
531 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
532 {
533 LEDsoff();
534 LED(selected + 1, 0);
535
536 // Begin transmitting
537 if (playing)
538 {
539 LED(LED_GREEN, 0);
540 DbpString("Playing");
541 for ( ; ; ) {
542 WDT_HIT();
543 int button_action = BUTTON_HELD(1000);
544 if (button_action == 0) { // No button action, proceed with sim
545 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
546 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
547 num_to_bytes(uid_1st[selected], 3, data);
548 num_to_bytes(uid_2nd[selected], 4, data);
549
550 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
551 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
552 DbpString("Mifare Classic");
553 SimulateIso14443aTag(1, flags, data); // Mifare Classic
554 }
555 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
556 DbpString("Mifare Ultralight");
557 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
558 }
559 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
560 DbpString("Mifare DESFire");
561 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
562 }
563 else {
564 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
565 SimulateIso14443aTag(1, flags, data);
566 }
567 }
568 else if (button_action == BUTTON_SINGLE_CLICK) {
569 selected = (selected + 1) % OPTS;
570 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
571 iGotoRecord = 1;
572 break;
573 }
574 else if (button_action == BUTTON_HOLD) {
575 Dbprintf("Playtime over. Begin cloning...");
576 iGotoClone = 1;
577 break;
578 }
579 WDT_HIT();
580 }
581
582 /* We pressed a button so ignore it here with a delay */
583 SpinDelay(300);
584 LEDsoff();
585 LED(selected + 1, 0);
586 }
587 else
588 while(BUTTON_PRESS())
589 WDT_HIT();
590 }
591 }
592 }
593 #elif WITH_LF
594 // samy's sniff and repeat routine
595 void SamyRun()
596 {
597 StandAloneMode();
598 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
599
600 int high[OPTS], low[OPTS];
601 int selected = 0;
602 int playing = 0;
603 int cardRead = 0;
604
605 // Turn on selected LED
606 LED(selected + 1, 0);
607
608 for (;;)
609 {
610 usb_poll();
611 WDT_HIT();
612
613 // Was our button held down or pressed?
614 int button_pressed = BUTTON_HELD(1000);
615 SpinDelay(300);
616
617 // Button was held for a second, begin recording
618 if (button_pressed > 0 && cardRead == 0)
619 {
620 LEDsoff();
621 LED(selected + 1, 0);
622 LED(LED_RED2, 0);
623
624 // record
625 DbpString("Starting recording");
626
627 // wait for button to be released
628 while(BUTTON_PRESS())
629 WDT_HIT();
630
631 /* need this delay to prevent catching some weird data */
632 SpinDelay(500);
633
634 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
635 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
636
637 LEDsoff();
638 LED(selected + 1, 0);
639 // Finished recording
640
641 // If we were previously playing, set playing off
642 // so next button push begins playing what we recorded
643 playing = 0;
644
645 cardRead = 1;
646
647 }
648
649 else if (button_pressed > 0 && cardRead == 1)
650 {
651 LEDsoff();
652 LED(selected + 1, 0);
653 LED(LED_ORANGE, 0);
654
655 // record
656 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
657
658 // wait for button to be released
659 while(BUTTON_PRESS())
660 WDT_HIT();
661
662 /* need this delay to prevent catching some weird data */
663 SpinDelay(500);
664
665 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
666 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
667
668 LEDsoff();
669 LED(selected + 1, 0);
670 // Finished recording
671
672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
674 playing = 0;
675
676 cardRead = 0;
677
678 }
679
680 // Change where to record (or begin playing)
681 else if (button_pressed)
682 {
683 // Next option if we were previously playing
684 if (playing)
685 selected = (selected + 1) % OPTS;
686 playing = !playing;
687
688 LEDsoff();
689 LED(selected + 1, 0);
690
691 // Begin transmitting
692 if (playing)
693 {
694 LED(LED_GREEN, 0);
695 DbpString("Playing");
696 // wait for button to be released
697 while(BUTTON_PRESS())
698 WDT_HIT();
699 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
700 CmdHIDsimTAG(high[selected], low[selected], 0);
701 DbpString("Done playing");
702 if (BUTTON_HELD(1000) > 0)
703 {
704 DbpString("Exiting");
705 LEDsoff();
706 return;
707 }
708
709 /* We pressed a button so ignore it here with a delay */
710 SpinDelay(300);
711
712 // when done, we're done playing, move to next option
713 selected = (selected + 1) % OPTS;
714 playing = !playing;
715 LEDsoff();
716 LED(selected + 1, 0);
717 }
718 else
719 while(BUTTON_PRESS())
720 WDT_HIT();
721 }
722 }
723 }
724
725 #endif
726 /*
727 OBJECTIVE
728 Listen and detect an external reader. Determine the best location
729 for the antenna.
730
731 INSTRUCTIONS:
732 Inside the ListenReaderField() function, there is two mode.
733 By default, when you call the function, you will enter mode 1.
734 If you press the PM3 button one time, you will enter mode 2.
735 If you press the PM3 button a second time, you will exit the function.
736
737 DESCRIPTION OF MODE 1:
738 This mode just listens for an external reader field and lights up green
739 for HF and/or red for LF. This is the original mode of the detectreader
740 function.
741
742 DESCRIPTION OF MODE 2:
743 This mode will visually represent, using the LEDs, the actual strength of the
744 current compared to the maximum current detected. Basically, once you know
745 what kind of external reader is present, it will help you spot the best location to place
746 your antenna. You will probably not get some good results if there is a LF and a HF reader
747 at the same place! :-)
748
749 LIGHT SCHEME USED:
750 */
751 static const char LIGHT_SCHEME[] = {
752 0x0, /* ---- | No field detected */
753 0x1, /* X--- | 14% of maximum current detected */
754 0x2, /* -X-- | 29% of maximum current detected */
755 0x4, /* --X- | 43% of maximum current detected */
756 0x8, /* ---X | 57% of maximum current detected */
757 0xC, /* --XX | 71% of maximum current detected */
758 0xE, /* -XXX | 86% of maximum current detected */
759 0xF, /* XXXX | 100% of maximum current detected */
760 };
761 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
762
763 void ListenReaderField(int limit)
764 {
765 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
766 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
767 int mode=1, display_val, display_max, i;
768
769 #define LF_ONLY 1
770 #define HF_ONLY 2
771 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
772
773
774 // switch off FPGA - we don't want to measure our own signal
775 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
776 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
777
778 LEDsoff();
779
780 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
781
782 if(limit != HF_ONLY) {
783 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
784 lf_baseline = lf_av;
785 }
786
787 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
788
789 if (limit != LF_ONLY) {
790 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
791 hf_baseline = hf_av;
792 }
793
794 for(;;) {
795 if (BUTTON_PRESS()) {
796 SpinDelay(500);
797 switch (mode) {
798 case 1:
799 mode=2;
800 DbpString("Signal Strength Mode");
801 break;
802 case 2:
803 default:
804 DbpString("Stopped");
805 LEDsoff();
806 return;
807 break;
808 }
809 }
810 WDT_HIT();
811
812 if (limit != HF_ONLY) {
813 if(mode == 1) {
814 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
815 LED_D_ON();
816 else
817 LED_D_OFF();
818 }
819
820 lf_av_new = AvgAdc(ADC_CHAN_LF);
821 // see if there's a significant change
822 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
823 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
824 lf_av = lf_av_new;
825 if (lf_av > lf_max)
826 lf_max = lf_av;
827 }
828 }
829
830 if (limit != LF_ONLY) {
831 if (mode == 1){
832 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
833 LED_B_ON();
834 else
835 LED_B_OFF();
836 }
837
838 hf_av_new = AvgAdc(ADC_CHAN_HF);
839 // see if there's a significant change
840 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
841 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
842 hf_av = hf_av_new;
843 if (hf_av > hf_max)
844 hf_max = hf_av;
845 }
846 }
847
848 if(mode == 2) {
849 if (limit == LF_ONLY) {
850 display_val = lf_av;
851 display_max = lf_max;
852 } else if (limit == HF_ONLY) {
853 display_val = hf_av;
854 display_max = hf_max;
855 } else { /* Pick one at random */
856 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
857 display_val = hf_av;
858 display_max = hf_max;
859 } else {
860 display_val = lf_av;
861 display_max = lf_max;
862 }
863 }
864 for (i=0; i<LIGHT_LEN; i++) {
865 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
866 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
867 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
868 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
869 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
870 break;
871 }
872 }
873 }
874 }
875 }
876
877 void UsbPacketReceived(uint8_t *packet, int len)
878 {
879 UsbCommand *c = (UsbCommand *)packet;
880
881 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
882
883 switch(c->cmd) {
884 #ifdef WITH_LF
885 case CMD_SET_LF_SAMPLING_CONFIG:
886 setSamplingConfig((sample_config *) c->d.asBytes);
887 break;
888 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
889 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
890 break;
891 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
892 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
893 break;
894 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
895 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
896 break;
897 case CMD_HID_DEMOD_FSK:
898 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
899 break;
900 case CMD_HID_SIM_TAG:
901 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
902 break;
903 case CMD_FSK_SIM_TAG:
904 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
905 break;
906 case CMD_ASK_SIM_TAG:
907 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
908 break;
909 case CMD_PSK_SIM_TAG:
910 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
911 break;
912 case CMD_HID_CLONE_TAG:
913 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
914 break;
915 case CMD_IO_DEMOD_FSK:
916 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
917 break;
918 case CMD_IO_CLONE_TAG:
919 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
920 break;
921 case CMD_EM410X_DEMOD:
922 CmdEM410xdemod(c->arg[0], 0, 0, 1);
923 break;
924 case CMD_EM410X_WRITE_TAG:
925 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
926 break;
927 case CMD_READ_TI_TYPE:
928 ReadTItag();
929 break;
930 case CMD_WRITE_TI_TYPE:
931 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
932 break;
933 case CMD_SIMULATE_TAG_125K:
934 LED_A_ON();
935 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
936 LED_A_OFF();
937 break;
938 case CMD_LF_SIMULATE_BIDIR:
939 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
940 break;
941 case CMD_INDALA_CLONE_TAG:
942 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
943 break;
944 case CMD_INDALA_CLONE_TAG_L:
945 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
946 break;
947 case CMD_T55XX_READ_BLOCK:
948 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
949 break;
950 case CMD_T55XX_WRITE_BLOCK:
951 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
952 cmd_send(CMD_ACK,0,0,0,0,0);
953 break;
954 case CMD_T55XX_READ_TRACE:
955 T55xxReadTrace();
956 break;
957 case CMD_PCF7931_READ:
958 ReadPCF7931();
959 cmd_send(CMD_ACK,0,0,0,0,0);
960 break;
961 case CMD_EM4X_READ_WORD:
962 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
963 break;
964 case CMD_EM4X_WRITE_WORD:
965 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
966 break;
967 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
968 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
969 break;
970 #endif
971
972 #ifdef WITH_HITAG
973 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
974 SnoopHitag(c->arg[0]);
975 break;
976 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
977 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
978 break;
979 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
980 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
981 break;
982 #endif
983
984 #ifdef WITH_ISO15693
985 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
986 AcquireRawAdcSamplesIso15693();
987 break;
988 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
989 RecordRawAdcSamplesIso15693();
990 break;
991
992 case CMD_ISO_15693_COMMAND:
993 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
994 break;
995
996 case CMD_ISO_15693_FIND_AFI:
997 BruteforceIso15693Afi(c->arg[0]);
998 break;
999
1000 case CMD_ISO_15693_DEBUG:
1001 SetDebugIso15693(c->arg[0]);
1002 break;
1003
1004 case CMD_READER_ISO_15693:
1005 ReaderIso15693(c->arg[0]);
1006 break;
1007 case CMD_SIMTAG_ISO_15693:
1008 SimTagIso15693(c->arg[0], c->d.asBytes);
1009 break;
1010 #endif
1011
1012 #ifdef WITH_LEGICRF
1013 case CMD_SIMULATE_TAG_LEGIC_RF:
1014 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1015 break;
1016
1017 case CMD_WRITER_LEGIC_RF:
1018 LegicRfWriter(c->arg[1], c->arg[0]);
1019 break;
1020
1021 case CMD_READER_LEGIC_RF:
1022 LegicRfReader(c->arg[0], c->arg[1]);
1023 break;
1024 #endif
1025
1026 #ifdef WITH_ISO14443b
1027 case CMD_READ_SRI512_TAG:
1028 ReadSTMemoryIso14443b(0x0F);
1029 break;
1030 case CMD_READ_SRIX4K_TAG:
1031 ReadSTMemoryIso14443b(0x7F);
1032 break;
1033 case CMD_SNOOP_ISO_14443B:
1034 SnoopIso14443b();
1035 break;
1036 case CMD_SIMULATE_TAG_ISO_14443B:
1037 SimulateIso14443bTag();
1038 break;
1039 case CMD_ISO_14443B_COMMAND:
1040 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1041 break;
1042 #endif
1043
1044 #ifdef WITH_ISO14443a
1045 case CMD_SNOOP_ISO_14443a:
1046 SniffIso14443a(c->arg[0]);
1047 break;
1048 case CMD_READER_ISO_14443a:
1049 ReaderIso14443a(c);
1050 break;
1051 case CMD_SIMULATE_TAG_ISO_14443a:
1052 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1053 break;
1054
1055 case CMD_EPA_PACE_COLLECT_NONCE:
1056 EPA_PACE_Collect_Nonce(c);
1057 break;
1058 case CMD_EPA_PACE_REPLAY:
1059 EPA_PACE_Replay(c);
1060 break;
1061
1062 case CMD_READER_MIFARE:
1063 ReaderMifare(c->arg[0]);
1064 break;
1065 case CMD_MIFARE_READBL:
1066 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1067 break;
1068 case CMD_MIFAREU_READBL:
1069 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1070 break;
1071 case CMD_MIFAREUC_AUTH:
1072 MifareUC_Auth(c->arg[0],c->d.asBytes);
1073 break;
1074 case CMD_MIFAREU_READCARD:
1075 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1076 break;
1077 case CMD_MIFAREUC_SETPWD:
1078 MifareUSetPwd(c->arg[0], c->d.asBytes);
1079 break;
1080 case CMD_MIFARE_READSC:
1081 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1082 break;
1083 case CMD_MIFARE_WRITEBL:
1084 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1085 break;
1086 //case CMD_MIFAREU_WRITEBL_COMPAT:
1087 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1088 //break;
1089 case CMD_MIFAREU_WRITEBL:
1090 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1091 break;
1092 case CMD_MIFARE_NESTED:
1093 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1094 break;
1095 case CMD_MIFARE_CHKKEYS:
1096 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1097 break;
1098 case CMD_SIMULATE_MIFARE_CARD:
1099 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1100 break;
1101
1102 // emulator
1103 case CMD_MIFARE_SET_DBGMODE:
1104 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1105 break;
1106 case CMD_MIFARE_EML_MEMCLR:
1107 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1108 break;
1109 case CMD_MIFARE_EML_MEMSET:
1110 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1111 break;
1112 case CMD_MIFARE_EML_MEMGET:
1113 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1114 break;
1115 case CMD_MIFARE_EML_CARDLOAD:
1116 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1117 break;
1118
1119 // Work with "magic Chinese" card
1120 case CMD_MIFARE_CSETBLOCK:
1121 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1122 break;
1123 case CMD_MIFARE_CGETBLOCK:
1124 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1125 break;
1126 case CMD_MIFARE_CIDENT:
1127 MifareCIdent();
1128 break;
1129
1130 // mifare sniffer
1131 case CMD_MIFARE_SNIFFER:
1132 SniffMifare(c->arg[0]);
1133 break;
1134
1135 //mifare desfire
1136 case CMD_MIFARE_DESFIRE_READBL: break;
1137 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1138 case CMD_MIFARE_DESFIRE_AUTH1:
1139 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1140 break;
1141 case CMD_MIFARE_DESFIRE_AUTH2:
1142 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1143 break;
1144 case CMD_MIFARE_DES_READER:
1145 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1146 break;
1147 case CMD_MIFARE_DESFIRE_INFO:
1148 MifareDesfireGetInformation();
1149 break;
1150 case CMD_MIFARE_DESFIRE:
1151 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1152 break;
1153
1154 case CMD_MIFARE_COLLECT_NONCES:
1155 MifareCollectNonces(c->arg[0], c->arg[1]);
1156 break;
1157 #endif
1158
1159 #ifdef WITH_ICLASS
1160 // Makes use of ISO14443a FPGA Firmware
1161 case CMD_SNOOP_ICLASS:
1162 SnoopIClass();
1163 break;
1164 case CMD_SIMULATE_TAG_ICLASS:
1165 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1166 break;
1167 case CMD_READER_ICLASS:
1168 ReaderIClass(c->arg[0]);
1169 break;
1170 case CMD_READER_ICLASS_REPLAY:
1171 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1172 break;
1173 case CMD_ICLASS_EML_MEMSET:
1174 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1175 break;
1176 #endif
1177
1178 case CMD_BUFF_CLEAR:
1179 BigBuf_Clear();
1180 break;
1181
1182 case CMD_MEASURE_ANTENNA_TUNING:
1183 MeasureAntennaTuning();
1184 break;
1185
1186 case CMD_MEASURE_ANTENNA_TUNING_HF:
1187 MeasureAntennaTuningHf();
1188 break;
1189
1190 case CMD_LISTEN_READER_FIELD:
1191 ListenReaderField(c->arg[0]);
1192 break;
1193
1194 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1195 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1196 SpinDelay(200);
1197 LED_D_OFF(); // LED D indicates field ON or OFF
1198 break;
1199
1200 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1201
1202 LED_B_ON();
1203 uint8_t *BigBuf = BigBuf_get_addr();
1204 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1205 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1206 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1207 }
1208 // Trigger a finish downloading signal with an ACK frame
1209 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1210 LED_B_OFF();
1211 break;
1212
1213 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1214 uint8_t *b = BigBuf_get_addr();
1215 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1216 cmd_send(CMD_ACK,0,0,0,0,0);
1217 break;
1218 }
1219 case CMD_READ_MEM:
1220 ReadMem(c->arg[0]);
1221 break;
1222
1223 case CMD_SET_LF_DIVISOR:
1224 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1225 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1226 break;
1227
1228 case CMD_SET_ADC_MUX:
1229 switch(c->arg[0]) {
1230 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1231 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1232 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1233 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1234 }
1235 break;
1236
1237 case CMD_VERSION:
1238 SendVersion();
1239 break;
1240 case CMD_STATUS:
1241 SendStatus();
1242 break;
1243 case CMD_PING:
1244 cmd_send(CMD_ACK,0,0,0,0,0);
1245 break;
1246 #ifdef WITH_LCD
1247 case CMD_LCD_RESET:
1248 LCDReset();
1249 break;
1250 case CMD_LCD:
1251 LCDSend(c->arg[0]);
1252 break;
1253 #endif
1254 case CMD_SETUP_WRITE:
1255 case CMD_FINISH_WRITE:
1256 case CMD_HARDWARE_RESET:
1257 usb_disable();
1258 SpinDelay(1000);
1259 SpinDelay(1000);
1260 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1261 for(;;) {
1262 // We're going to reset, and the bootrom will take control.
1263 }
1264 break;
1265
1266 case CMD_START_FLASH:
1267 if(common_area.flags.bootrom_present) {
1268 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1269 }
1270 usb_disable();
1271 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1272 for(;;);
1273 break;
1274
1275 case CMD_DEVICE_INFO: {
1276 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1277 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1278 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1279 break;
1280 }
1281 default:
1282 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1283 break;
1284 }
1285 }
1286
1287 void __attribute__((noreturn)) AppMain(void)
1288 {
1289 SpinDelay(100);
1290 clear_trace();
1291 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1292 /* Initialize common area */
1293 memset(&common_area, 0, sizeof(common_area));
1294 common_area.magic = COMMON_AREA_MAGIC;
1295 common_area.version = 1;
1296 }
1297 common_area.flags.osimage_present = 1;
1298
1299 LED_D_OFF();
1300 LED_C_OFF();
1301 LED_B_OFF();
1302 LED_A_OFF();
1303
1304 // Init USB device
1305 usb_enable();
1306
1307 // The FPGA gets its clock from us from PCK0 output, so set that up.
1308 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1309 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1310 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1311 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1312 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1313 AT91C_PMC_PRES_CLK_4;
1314 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1315
1316 // Reset SPI
1317 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1318 // Reset SSC
1319 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1320
1321 // Load the FPGA image, which we have stored in our flash.
1322 // (the HF version by default)
1323 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1324
1325 StartTickCount();
1326
1327 #ifdef WITH_LCD
1328 LCDInit();
1329 #endif
1330
1331 byte_t rx[sizeof(UsbCommand)];
1332 size_t rx_len;
1333
1334 for(;;) {
1335 if (usb_poll()) {
1336 rx_len = usb_read(rx,sizeof(UsbCommand));
1337 if (rx_len) {
1338 UsbPacketReceived(rx,rx_len);
1339 }
1340 }
1341 WDT_HIT();
1342
1343 #ifdef WITH_LF
1344 #ifndef WITH_ISO14443a_StandAlone
1345 if (BUTTON_HELD(1000) > 0)
1346 SamyRun();
1347 #endif
1348 #endif
1349 #ifdef WITH_ISO14443a
1350 #ifdef WITH_ISO14443a_StandAlone
1351 if (BUTTON_HELD(1000) > 0)
1352 StandAloneMode14a();
1353 #endif
1354 #endif
1355 }
1356 }
Impressum, Datenschutz