1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
28 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuning(void)
185 uint8_t LF_Results
[256];
186 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
187 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
202 for (i
=255; i
>=19; i
--) {
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
206 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
207 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
208 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
210 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results
[i
] > peak
) {
213 peak
= LF_Results
[i
];
219 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
226 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
235 void MeasureAntennaTuningHf(void)
237 int vHf
= 0; // in mV
239 DbpString("Measuring HF antenna, press button to exit");
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
247 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
249 Dbprintf("%d mV",vHf
);
250 if (BUTTON_PRESS()) break;
252 DbpString("cancelled");
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void ReadMem(int addr
)
261 const uint8_t *data
= ((uint8_t *)addr
);
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
267 /* osimage version information is linked in */
268 extern struct version_information version_information
;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
271 void SendVersion(void)
273 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
274 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
280 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
281 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
282 strcat(VersionString
, "bootrom version information appears invalid\n");
284 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
285 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
288 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
289 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
291 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
292 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
294 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
298 uint32_t compressed_data_section_size
= common_area
.arg1
;
299 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
302 * Prints runtime information about the PM3.
304 void SendStatus(void)
306 BigBuf_print_status();
308 printConfig(); //LF Sampling config
310 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
311 Dbprintf(" ToSendMax........%d",ToSendMax
);
312 Dbprintf(" ToSendBit........%d",ToSendBit
);
315 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
319 void StandAloneMode()
321 DbpString("Stand-alone mode! No PC necessary.");
322 // Oooh pretty -- notify user we're in elite samy mode now
324 LED(LED_ORANGE
, 200);
326 LED(LED_ORANGE
, 200);
328 LED(LED_ORANGE
, 200);
330 LED(LED_ORANGE
, 200);
339 #ifdef WITH_ISO14443a_StandAlone
340 void StandAloneMode14a()
343 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
346 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
347 int cardRead
[OPTS
] = {0};
348 uint8_t readUID
[10] = {0};
349 uint32_t uid_1st
[OPTS
]={0};
350 uint32_t uid_2nd
[OPTS
]={0};
351 uint32_t uid_tmp1
= 0;
352 uint32_t uid_tmp2
= 0;
353 iso14a_card_select_t hi14a_card
[OPTS
];
355 LED(selected
+ 1, 0);
363 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
367 LED(selected
+ 1, 0);
371 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
372 /* need this delay to prevent catching some weird data */
374 /* Code for reading from 14a tag */
375 uint8_t uid
[10] ={0};
377 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
382 if (BUTTON_PRESS()) {
383 if (cardRead
[selected
]) {
384 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
387 else if (cardRead
[(selected
+1)%OPTS
]) {
388 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
389 selected
= (selected
+1)%OPTS
;
390 break; // playing = 1;
393 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
397 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
401 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
402 memcpy(readUID
,uid
,10*sizeof(uint8_t));
403 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
404 // Set UID byte order
405 for (int i
=0; i
<4; i
++)
407 dst
= (uint8_t *)&uid_tmp2
;
408 for (int i
=0; i
<4; i
++)
410 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
411 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
415 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
416 uid_1st
[selected
] = (uid_tmp1
)>>8;
417 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
420 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
421 uid_1st
[selected
] = uid_tmp1
;
422 uid_2nd
[selected
] = uid_tmp2
;
428 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
429 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
432 LED(LED_ORANGE
, 200);
434 LED(LED_ORANGE
, 200);
437 LED(selected
+ 1, 0);
439 // Next state is replay:
442 cardRead
[selected
] = 1;
444 /* MF Classic UID clone */
445 else if (iGotoClone
==1)
449 LED(selected
+ 1, 0);
450 LED(LED_ORANGE
, 250);
454 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
456 // wait for button to be released
457 while(BUTTON_PRESS())
459 // Delay cloning until card is in place
462 Dbprintf("Starting clone. [Bank: %u]", selected
);
463 // need this delay to prevent catching some weird data
465 // Begin clone function here:
466 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
467 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
468 memcpy(c.d.asBytes, data, 16);
471 Block read is similar:
472 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
473 We need to imitate that call with blockNo 0 to set a uid.
475 The get and set commands are handled in this file:
476 // Work with "magic Chinese" card
477 case CMD_MIFARE_CSETBLOCK:
478 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
480 case CMD_MIFARE_CGETBLOCK:
481 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
484 mfCSetUID provides example logic for UID set workflow:
485 -Read block0 from card in field with MifareCGetBlock()
486 -Configure new values without replacing reserved bytes
487 memcpy(block0, uid, 4); // Copy UID bytes from byte array
489 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
490 Bytes 5-7 are reserved SAK and ATQA for mifare classic
491 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
493 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
494 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
495 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
496 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
497 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
501 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
502 memcpy(newBlock0
,oldBlock0
,16);
503 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
505 newBlock0
[0] = uid_1st
[selected
]>>24;
506 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
507 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
508 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
509 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
510 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
511 MifareCSetBlock(0, 0xFF,0, newBlock0
);
512 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
513 if (memcmp(testBlock0
,newBlock0
,16)==0)
515 DbpString("Cloned successfull!");
516 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
519 selected
= (selected
+ 1) % OPTS
;
522 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
527 LED(selected
+ 1, 0);
530 // Change where to record (or begin playing)
531 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
534 LED(selected
+ 1, 0);
536 // Begin transmitting
540 DbpString("Playing");
543 int button_action
= BUTTON_HELD(1000);
544 if (button_action
== 0) { // No button action, proceed with sim
545 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
546 uint8_t flags
= ( uid_2nd
[selected
] > 0x00 ) ? FLAG_7B_UID_IN_DATA
: FLAG_4B_UID_IN_DATA
;
547 num_to_bytes(uid_1st
[selected
], 3, data
);
548 num_to_bytes(uid_2nd
[selected
], 4, data
);
550 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
551 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
552 DbpString("Mifare Classic");
553 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
555 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
556 DbpString("Mifare Ultralight");
557 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
559 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
560 DbpString("Mifare DESFire");
561 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
564 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
565 SimulateIso14443aTag(1, flags
, data
);
568 else if (button_action
== BUTTON_SINGLE_CLICK
) {
569 selected
= (selected
+ 1) % OPTS
;
570 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
574 else if (button_action
== BUTTON_HOLD
) {
575 Dbprintf("Playtime over. Begin cloning...");
582 /* We pressed a button so ignore it here with a delay */
585 LED(selected
+ 1, 0);
588 while(BUTTON_PRESS())
594 // samy's sniff and repeat routine
598 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
600 int high
[OPTS
], low
[OPTS
];
605 // Turn on selected LED
606 LED(selected
+ 1, 0);
613 // Was our button held down or pressed?
614 int button_pressed
= BUTTON_HELD(1000);
617 // Button was held for a second, begin recording
618 if (button_pressed
> 0 && cardRead
== 0)
621 LED(selected
+ 1, 0);
625 DbpString("Starting recording");
627 // wait for button to be released
628 while(BUTTON_PRESS())
631 /* need this delay to prevent catching some weird data */
634 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
635 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
638 LED(selected
+ 1, 0);
639 // Finished recording
641 // If we were previously playing, set playing off
642 // so next button push begins playing what we recorded
649 else if (button_pressed
> 0 && cardRead
== 1)
652 LED(selected
+ 1, 0);
656 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
658 // wait for button to be released
659 while(BUTTON_PRESS())
662 /* need this delay to prevent catching some weird data */
665 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
666 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
669 LED(selected
+ 1, 0);
670 // Finished recording
672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
680 // Change where to record (or begin playing)
681 else if (button_pressed
)
683 // Next option if we were previously playing
685 selected
= (selected
+ 1) % OPTS
;
689 LED(selected
+ 1, 0);
691 // Begin transmitting
695 DbpString("Playing");
696 // wait for button to be released
697 while(BUTTON_PRESS())
699 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
700 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
701 DbpString("Done playing");
702 if (BUTTON_HELD(1000) > 0)
704 DbpString("Exiting");
709 /* We pressed a button so ignore it here with a delay */
712 // when done, we're done playing, move to next option
713 selected
= (selected
+ 1) % OPTS
;
716 LED(selected
+ 1, 0);
719 while(BUTTON_PRESS())
728 Listen and detect an external reader. Determine the best location
732 Inside the ListenReaderField() function, there is two mode.
733 By default, when you call the function, you will enter mode 1.
734 If you press the PM3 button one time, you will enter mode 2.
735 If you press the PM3 button a second time, you will exit the function.
737 DESCRIPTION OF MODE 1:
738 This mode just listens for an external reader field and lights up green
739 for HF and/or red for LF. This is the original mode of the detectreader
742 DESCRIPTION OF MODE 2:
743 This mode will visually represent, using the LEDs, the actual strength of the
744 current compared to the maximum current detected. Basically, once you know
745 what kind of external reader is present, it will help you spot the best location to place
746 your antenna. You will probably not get some good results if there is a LF and a HF reader
747 at the same place! :-)
751 static const char LIGHT_SCHEME
[] = {
752 0x0, /* ---- | No field detected */
753 0x1, /* X--- | 14% of maximum current detected */
754 0x2, /* -X-- | 29% of maximum current detected */
755 0x4, /* --X- | 43% of maximum current detected */
756 0x8, /* ---X | 57% of maximum current detected */
757 0xC, /* --XX | 71% of maximum current detected */
758 0xE, /* -XXX | 86% of maximum current detected */
759 0xF, /* XXXX | 100% of maximum current detected */
761 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
763 void ListenReaderField(int limit
)
765 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
766 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
767 int mode
=1, display_val
, display_max
, i
;
771 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
774 // switch off FPGA - we don't want to measure our own signal
775 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
776 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
780 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
782 if(limit
!= HF_ONLY
) {
783 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
787 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
789 if (limit
!= LF_ONLY
) {
790 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
795 if (BUTTON_PRESS()) {
800 DbpString("Signal Strength Mode");
804 DbpString("Stopped");
812 if (limit
!= HF_ONLY
) {
814 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
820 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
821 // see if there's a significant change
822 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
823 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
830 if (limit
!= LF_ONLY
) {
832 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
838 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
839 // see if there's a significant change
840 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
841 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
849 if (limit
== LF_ONLY
) {
851 display_max
= lf_max
;
852 } else if (limit
== HF_ONLY
) {
854 display_max
= hf_max
;
855 } else { /* Pick one at random */
856 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
858 display_max
= hf_max
;
861 display_max
= lf_max
;
864 for (i
=0; i
<LIGHT_LEN
; i
++) {
865 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
866 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
867 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
868 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
869 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
877 void UsbPacketReceived(uint8_t *packet
, int len
)
879 UsbCommand
*c
= (UsbCommand
*)packet
;
881 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
885 case CMD_SET_LF_SAMPLING_CONFIG
:
886 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
888 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
889 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
891 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
892 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
894 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
895 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
897 case CMD_HID_DEMOD_FSK
:
898 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
900 case CMD_HID_SIM_TAG
:
901 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
903 case CMD_FSK_SIM_TAG
:
904 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
906 case CMD_ASK_SIM_TAG
:
907 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
909 case CMD_PSK_SIM_TAG
:
910 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
912 case CMD_HID_CLONE_TAG
:
913 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
915 case CMD_IO_DEMOD_FSK
:
916 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
918 case CMD_IO_CLONE_TAG
:
919 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
921 case CMD_EM410X_DEMOD
:
922 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
924 case CMD_EM410X_WRITE_TAG
:
925 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
927 case CMD_READ_TI_TYPE
:
930 case CMD_WRITE_TI_TYPE
:
931 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
933 case CMD_SIMULATE_TAG_125K
:
935 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
938 case CMD_LF_SIMULATE_BIDIR
:
939 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
941 case CMD_INDALA_CLONE_TAG
:
942 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
944 case CMD_INDALA_CLONE_TAG_L
:
945 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
947 case CMD_T55XX_READ_BLOCK
:
948 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
950 case CMD_T55XX_WRITE_BLOCK
:
951 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
952 cmd_send(CMD_ACK
,0,0,0,0,0);
954 case CMD_T55XX_READ_TRACE
:
957 case CMD_PCF7931_READ
:
959 cmd_send(CMD_ACK
,0,0,0,0,0);
961 case CMD_EM4X_READ_WORD
:
962 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
964 case CMD_EM4X_WRITE_WORD
:
965 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
967 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
968 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
973 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
974 SnoopHitag(c
->arg
[0]);
976 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
977 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
979 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
980 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
985 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
986 AcquireRawAdcSamplesIso15693();
988 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
989 RecordRawAdcSamplesIso15693();
992 case CMD_ISO_15693_COMMAND
:
993 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
996 case CMD_ISO_15693_FIND_AFI
:
997 BruteforceIso15693Afi(c
->arg
[0]);
1000 case CMD_ISO_15693_DEBUG
:
1001 SetDebugIso15693(c
->arg
[0]);
1004 case CMD_READER_ISO_15693
:
1005 ReaderIso15693(c
->arg
[0]);
1007 case CMD_SIMTAG_ISO_15693
:
1008 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1013 case CMD_SIMULATE_TAG_LEGIC_RF
:
1014 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1017 case CMD_WRITER_LEGIC_RF
:
1018 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1021 case CMD_READER_LEGIC_RF
:
1022 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1026 #ifdef WITH_ISO14443b
1027 case CMD_READ_SRI512_TAG
:
1028 ReadSTMemoryIso14443b(0x0F);
1030 case CMD_READ_SRIX4K_TAG
:
1031 ReadSTMemoryIso14443b(0x7F);
1033 case CMD_SNOOP_ISO_14443B
:
1036 case CMD_SIMULATE_TAG_ISO_14443B
:
1037 SimulateIso14443bTag();
1039 case CMD_ISO_14443B_COMMAND
:
1040 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1044 #ifdef WITH_ISO14443a
1045 case CMD_SNOOP_ISO_14443a
:
1046 SniffIso14443a(c
->arg
[0]);
1048 case CMD_READER_ISO_14443a
:
1051 case CMD_SIMULATE_TAG_ISO_14443a
:
1052 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1055 case CMD_EPA_PACE_COLLECT_NONCE
:
1056 EPA_PACE_Collect_Nonce(c
);
1058 case CMD_EPA_PACE_REPLAY
:
1062 case CMD_READER_MIFARE
:
1063 ReaderMifare(c
->arg
[0]);
1065 case CMD_MIFARE_READBL
:
1066 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1068 case CMD_MIFAREU_READBL
:
1069 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1071 case CMD_MIFAREUC_AUTH
:
1072 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1074 case CMD_MIFAREU_READCARD
:
1075 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1077 case CMD_MIFAREUC_SETPWD
:
1078 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1080 case CMD_MIFARE_READSC
:
1081 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1083 case CMD_MIFARE_WRITEBL
:
1084 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1086 //case CMD_MIFAREU_WRITEBL_COMPAT:
1087 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1089 case CMD_MIFAREU_WRITEBL
:
1090 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1092 case CMD_MIFARE_NESTED
:
1093 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1095 case CMD_MIFARE_CHKKEYS
:
1096 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1098 case CMD_SIMULATE_MIFARE_CARD
:
1099 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1103 case CMD_MIFARE_SET_DBGMODE
:
1104 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1106 case CMD_MIFARE_EML_MEMCLR
:
1107 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1109 case CMD_MIFARE_EML_MEMSET
:
1110 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1112 case CMD_MIFARE_EML_MEMGET
:
1113 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1115 case CMD_MIFARE_EML_CARDLOAD
:
1116 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1119 // Work with "magic Chinese" card
1120 case CMD_MIFARE_CSETBLOCK
:
1121 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1123 case CMD_MIFARE_CGETBLOCK
:
1124 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1126 case CMD_MIFARE_CIDENT
:
1131 case CMD_MIFARE_SNIFFER
:
1132 SniffMifare(c
->arg
[0]);
1136 case CMD_MIFARE_DESFIRE_READBL
: break;
1137 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1138 case CMD_MIFARE_DESFIRE_AUTH1
:
1139 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1141 case CMD_MIFARE_DESFIRE_AUTH2
:
1142 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1144 case CMD_MIFARE_DES_READER
:
1145 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1147 case CMD_MIFARE_DESFIRE_INFO
:
1148 MifareDesfireGetInformation();
1150 case CMD_MIFARE_DESFIRE
:
1151 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1154 case CMD_MIFARE_COLLECT_NONCES
:
1155 MifareCollectNonces(c
->arg
[0], c
->arg
[1]);
1160 // Makes use of ISO14443a FPGA Firmware
1161 case CMD_SNOOP_ICLASS
:
1164 case CMD_SIMULATE_TAG_ICLASS
:
1165 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1167 case CMD_READER_ICLASS
:
1168 ReaderIClass(c
->arg
[0]);
1170 case CMD_READER_ICLASS_REPLAY
:
1171 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1173 case CMD_ICLASS_EML_MEMSET
:
1174 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1178 case CMD_BUFF_CLEAR
:
1182 case CMD_MEASURE_ANTENNA_TUNING
:
1183 MeasureAntennaTuning();
1186 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1187 MeasureAntennaTuningHf();
1190 case CMD_LISTEN_READER_FIELD
:
1191 ListenReaderField(c
->arg
[0]);
1194 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1195 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1197 LED_D_OFF(); // LED D indicates field ON or OFF
1200 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1203 uint8_t *BigBuf
= BigBuf_get_addr();
1204 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1205 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1206 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1208 // Trigger a finish downloading signal with an ACK frame
1209 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1213 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1214 uint8_t *b
= BigBuf_get_addr();
1215 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1216 cmd_send(CMD_ACK
,0,0,0,0,0);
1223 case CMD_SET_LF_DIVISOR
:
1224 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1225 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1228 case CMD_SET_ADC_MUX
:
1230 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1231 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1232 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1233 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1244 cmd_send(CMD_ACK
,0,0,0,0,0);
1254 case CMD_SETUP_WRITE
:
1255 case CMD_FINISH_WRITE
:
1256 case CMD_HARDWARE_RESET
:
1260 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1262 // We're going to reset, and the bootrom will take control.
1266 case CMD_START_FLASH
:
1267 if(common_area
.flags
.bootrom_present
) {
1268 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1271 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1275 case CMD_DEVICE_INFO
: {
1276 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1277 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1278 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1282 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1287 void __attribute__((noreturn
)) AppMain(void)
1291 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1292 /* Initialize common area */
1293 memset(&common_area
, 0, sizeof(common_area
));
1294 common_area
.magic
= COMMON_AREA_MAGIC
;
1295 common_area
.version
= 1;
1297 common_area
.flags
.osimage_present
= 1;
1307 // The FPGA gets its clock from us from PCK0 output, so set that up.
1308 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1309 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1310 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1311 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1312 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1313 AT91C_PMC_PRES_CLK_4
;
1314 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1317 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1319 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1321 // Load the FPGA image, which we have stored in our flash.
1322 // (the HF version by default)
1323 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1331 byte_t rx
[sizeof(UsbCommand
)];
1336 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1338 UsbPacketReceived(rx
,rx_len
);
1344 #ifndef WITH_ISO14443a_StandAlone
1345 if (BUTTON_HELD(1000) > 0)
1349 #ifdef WITH_ISO14443a
1350 #ifdef WITH_ISO14443a_StandAlone
1351 if (BUTTON_HELD(1000) > 0)
1352 StandAloneMode14a();