oops... should this file should not have been there
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19
20
21 /**
22 * Function to do a modulation and then get samples.
23 * @param delay_off
24 * @param period_0
25 * @param period_1
26 * @param command
27 */
28 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
29 {
30
31 int divisor_used = 95; // 125 KHz
32 // see if 'h' was specified
33
34 if (command[strlen((char *) command) - 1] == 'h')
35 divisor_used = 88; // 134.8 KHz
36
37 sample_config sc = { 0,0,1, divisor_used, 0};
38 setSamplingConfig(&sc);
39
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
43 SpinDelay(2500);
44
45 LFSetupFPGAForADC(sc.divisor, 1);
46
47 // And a little more time for the tag to fully power up
48 SpinDelay(2000);
49
50 // now modulate the reader field
51 while(*command != '\0' && *command != ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
53 LED_D_OFF();
54 SpinDelayUs(delay_off);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
56
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
58 LED_D_ON();
59 if(*(command++) == '0')
60 SpinDelayUs(period_0);
61 else
62 SpinDelayUs(period_1);
63 }
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
65 LED_D_OFF();
66 SpinDelayUs(delay_off);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
68
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
70
71 // now do the read
72 DoAcquisition_config(false);
73 }
74
75
76
77 /* blank r/w tag data stream
78 ...0000000000000000 01111111
79 1010101010101010101010101010101010101010101010101010101010101010
80 0011010010100001
81 01111111
82 101010101010101[0]000...
83
84 [5555fe852c5555555555555555fe0000]
85 */
86 void ReadTItag(void)
87 {
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
92 #define FSAMPLE 2000000
93 #define FREQLO 123200
94 #define FREQHI 134200
95
96 signed char *dest = (signed char *)BigBuf_get_addr();
97 uint16_t n = BigBuf_max_traceLen();
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
100
101 int i, cycles=0, samples=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
106
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
110
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
116
117 // get TI tag data into the buffer
118 AcquireTiType();
119
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
121
122 for (i=0; i<n-1; i++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest[i]<0) && (dest[i+1]>0) ) {
125 cycles++;
126 // after 16 cycles, measure the frequency
127 if (cycles>15) {
128 cycles=0;
129 samples=i-samples; // number of samples in these 16 cycles
130
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0 = (shift0>>1) | (shift1 << 31);
134 shift1 = (shift1>>1) | (shift2 << 31);
135 shift2 = (shift2>>1) | (shift3 << 31);
136 shift3 >>= 1;
137
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
141 // low frequency represents a 1
142 shift3 |= (1<<31);
143 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
144 // high frequency represents a 0
145 } else {
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3 = shift2 = shift1 = shift0 = 0;
149 }
150 samples = i;
151
152 // for each bit we receive, test if we've detected a valid tag
153
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
159 cycles = 0xF0B; //use this as a flag (ugly but whatever)
160 break;
161 }
162 }
163 }
164 }
165 }
166
167 // if flag is set we have a tag
168 if (cycles!=0xF0B) {
169 DbpString("Info: No valid tag detected.");
170 } else {
171 // put 64 bit data into shift1 and shift0
172 shift0 = (shift0>>24) | (shift1 << 8);
173 shift1 = (shift1>>24) | (shift2 << 8);
174
175 // align 16 bit crc into lower half of shift2
176 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
177
178 // if r/w tag, check ident match
179 if (shift3 & (1<<15) ) {
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
182 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
183 DbpString("Error: Ident mismatch!");
184 } else {
185 DbpString("Info: TI tag ident is valid");
186 }
187 } else {
188 DbpString("Info: TI tag is readonly");
189 }
190
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
194 // calculate CRC
195 uint32_t crc=0;
196
197 crc = update_crc16(crc, (shift0)&0xff);
198 crc = update_crc16(crc, (shift0>>8)&0xff);
199 crc = update_crc16(crc, (shift0>>16)&0xff);
200 crc = update_crc16(crc, (shift0>>24)&0xff);
201 crc = update_crc16(crc, (shift1)&0xff);
202 crc = update_crc16(crc, (shift1>>8)&0xff);
203 crc = update_crc16(crc, (shift1>>16)&0xff);
204 crc = update_crc16(crc, (shift1>>24)&0xff);
205
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
208 if (crc != (shift2&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
210 } else {
211 DbpString("Info: CRC is good");
212 }
213 }
214 }
215
216 void WriteTIbyte(uint8_t b)
217 {
218 int i = 0;
219
220 // modulate 8 bits out to the antenna
221 for (i=0; i<8; i++)
222 {
223 if (b&(1<<i)) {
224 // stop modulating antenna
225 LOW(GPIO_SSC_DOUT);
226 SpinDelayUs(1000);
227 // modulate antenna
228 HIGH(GPIO_SSC_DOUT);
229 SpinDelayUs(1000);
230 } else {
231 // stop modulating antenna
232 LOW(GPIO_SSC_DOUT);
233 SpinDelayUs(300);
234 // modulate antenna
235 HIGH(GPIO_SSC_DOUT);
236 SpinDelayUs(1700);
237 }
238 }
239 }
240
241 void AcquireTiType(void)
242 {
243 int i, j, n;
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
246 #define TIBUFLEN 1250
247
248 // clear buffer
249 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
250 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
251
252 // Set up the synchronous serial port
253 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
254 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
255
256 // steal this pin from the SSP and use it to control the modulation
257 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
258 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
259
260 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
262
263 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
264 // 48/2 = 24 MHz clock must be divided by 12
265 AT91C_BASE_SSC->SSC_CMR = 12;
266
267 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
268 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
269 AT91C_BASE_SSC->SSC_TCMR = 0;
270 AT91C_BASE_SSC->SSC_TFMR = 0;
271
272 LED_D_ON();
273
274 // modulate antenna
275 HIGH(GPIO_SSC_DOUT);
276
277 // Charge TI tag for 50ms.
278 SpinDelay(50);
279
280 // stop modulating antenna and listen
281 LOW(GPIO_SSC_DOUT);
282
283 LED_D_OFF();
284
285 i = 0;
286 for(;;) {
287 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
288 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
289 i++; if(i >= TIBUFLEN) break;
290 }
291 WDT_HIT();
292 }
293
294 // return stolen pin to SSP
295 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
296 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
297
298 char *dest = (char *)BigBuf_get_addr();
299 n = TIBUFLEN*32;
300 // unpack buffer
301 for (i=TIBUFLEN-1; i>=0; i--) {
302 for (j=0; j<32; j++) {
303 if(BigBuf[i] & (1 << j)) {
304 dest[--n] = 1;
305 } else {
306 dest[--n] = -1;
307 }
308 }
309 }
310 }
311
312 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
313 // if crc provided, it will be written with the data verbatim (even if bogus)
314 // if not provided a valid crc will be computed from the data and written.
315 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
316 {
317 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
318 if(crc == 0) {
319 crc = update_crc16(crc, (idlo)&0xff);
320 crc = update_crc16(crc, (idlo>>8)&0xff);
321 crc = update_crc16(crc, (idlo>>16)&0xff);
322 crc = update_crc16(crc, (idlo>>24)&0xff);
323 crc = update_crc16(crc, (idhi)&0xff);
324 crc = update_crc16(crc, (idhi>>8)&0xff);
325 crc = update_crc16(crc, (idhi>>16)&0xff);
326 crc = update_crc16(crc, (idhi>>24)&0xff);
327 }
328 Dbprintf("Writing to tag: %x%08x, crc=%x",
329 (unsigned int) idhi, (unsigned int) idlo, crc);
330
331 // TI tags charge at 134.2Khz
332 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
333 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
334 // connects to SSP_DIN and the SSP_DOUT logic level controls
335 // whether we're modulating the antenna (high)
336 // or listening to the antenna (low)
337 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
338 LED_A_ON();
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 // writing algorithm:
345 // a high bit consists of a field off for 1ms and field on for 1ms
346 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
347 // initiate a charge time of 50ms (field on) then immediately start writing bits
348 // start by writing 0xBB (keyword) and 0xEB (password)
349 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
350 // finally end with 0x0300 (write frame)
351 // all data is sent lsb firts
352 // finish with 15ms programming time
353
354 // modulate antenna
355 HIGH(GPIO_SSC_DOUT);
356 SpinDelay(50); // charge time
357
358 WriteTIbyte(0xbb); // keyword
359 WriteTIbyte(0xeb); // password
360 WriteTIbyte( (idlo )&0xff );
361 WriteTIbyte( (idlo>>8 )&0xff );
362 WriteTIbyte( (idlo>>16)&0xff );
363 WriteTIbyte( (idlo>>24)&0xff );
364 WriteTIbyte( (idhi )&0xff );
365 WriteTIbyte( (idhi>>8 )&0xff );
366 WriteTIbyte( (idhi>>16)&0xff );
367 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
368 WriteTIbyte( (crc )&0xff ); // crc lo
369 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
370 WriteTIbyte(0x00); // write frame lo
371 WriteTIbyte(0x03); // write frame hi
372 HIGH(GPIO_SSC_DOUT);
373 SpinDelay(50); // programming time
374
375 LED_A_OFF();
376
377 // get TI tag data into the buffer
378 AcquireTiType();
379
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
381 DbpString("Now use tiread to check");
382 }
383
384 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
385 {
386 int i;
387 uint8_t *tab = BigBuf_get_addr();
388
389 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
390 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
391
392 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
393
394 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
395 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
396
397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
399
400 i = 0;
401 for(;;) {
402 //wait until SSC_CLK goes HIGH
403 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
404 if(BUTTON_PRESS()) {
405 DbpString("Stopped");
406 return;
407 }
408 WDT_HIT();
409 }
410 if (ledcontrol)
411 LED_D_ON();
412
413 if(tab[i])
414 OPEN_COIL();
415 else
416 SHORT_COIL();
417
418 if (ledcontrol)
419 LED_D_OFF();
420 //wait until SSC_CLK goes LOW
421 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
422 if(BUTTON_PRESS()) {
423 DbpString("Stopped");
424 return;
425 }
426 WDT_HIT();
427 }
428
429 i++;
430 if(i == period) {
431
432 i = 0;
433 if (gap) {
434 SHORT_COIL();
435 SpinDelayUs(gap);
436 }
437 }
438 }
439 }
440
441 //Testing to fix timing issues by marshmellow (MM)
442 void SimulateTagLowFrequencyMM(int period, int gap, int ledcontrol)
443 {
444 int i;
445 uint8_t *tab = BigBuf_get_addr();
446
447 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
448 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
449
450 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
451
452 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
453 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
454
455 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
456 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
457
458 i = 0;
459 while(!BUTTON_PRESS()) {
460
461 WDT_HIT();
462 //wait until reader carrier is HIGH
463 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
464 WDT_HIT();
465 }
466 if (i>0){
467 if (tab[i]!=tab[i-1]){
468 // transition
469 if (ledcontrol)
470 LED_D_ON();
471
472 // modulate coil
473 if(tab[i])
474 OPEN_COIL();
475 else
476 SHORT_COIL();
477
478 if (ledcontrol)
479 LED_D_OFF();
480
481 } else { //no transition
482 //NOTE: it appears the COIL transition messes with the detection of the carrier, so if a transition happened
483 // skip test for readers Carrier = LOW, otherwise we get a bit behind
484
485 //wait until reader carrier is LOW
486 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
487 WDT_HIT();
488 }
489 }
490 } else {
491 // transition
492 if (ledcontrol)
493 LED_D_ON();
494
495 // modulate coil
496 if(tab[i])
497 OPEN_COIL();
498 else
499 SHORT_COIL();
500
501 if (ledcontrol)
502 LED_D_OFF();
503 }
504 WDT_HIT();
505
506
507 i++;
508 if(i == period) {
509 // end of data stream, gap then repeat
510 i = 0;
511 if (gap) {
512 SHORT_COIL();
513 SpinDelayUs(gap);
514 }
515 }
516 }
517 DbpString("Stopped");
518 return;
519 }
520
521 #define DEBUG_FRAME_CONTENTS 1
522 void SimulateTagLowFrequencyBidir(int divisor, int t0)
523 {
524 }
525
526 // compose fc/8 fc/10 waveform (FSK2)
527 static void fc(int c, int *n)
528 {
529 uint8_t *dest = BigBuf_get_addr();
530 int idx;
531
532 // for when we want an fc8 pattern every 4 logical bits
533 if(c==0) {
534 dest[((*n)++)]=1;
535 dest[((*n)++)]=1;
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 }
543
544 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
545 if(c==8) {
546 for (idx=0; idx<6; idx++) {
547 dest[((*n)++)]=1;
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 }
556 }
557
558 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
559 if(c==10) {
560 for (idx=0; idx<5; idx++) {
561 dest[((*n)++)]=1;
562 dest[((*n)++)]=1;
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=1;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 }
572 }
573 }
574 // compose fc/X fc/Y waveform (FSKx)
575 static void fcAll(uint8_t c, int *n, uint8_t clock, uint16_t *modCnt)
576 {
577 uint8_t *dest = BigBuf_get_addr();
578 uint8_t idx;
579 uint8_t fcCnt;
580 // c = count of field clock for this bit
581 uint8_t mod = clock % c;
582 uint8_t modAdj = c/mod;
583 bool modAdjOk=FALSE;
584 if (c % mod==0) modAdjOk=TRUE;
585 // loop through clock - step field clock
586 for (idx=0; idx < (uint8_t) clock/c; idx++){
587 // loop through field clock length - put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
588 for (fcCnt=0; fcCnt < c; fcCnt++){ //fudge slow transition from low to high - shorten wave by 1
589 if (fcCnt < c/2+1){
590 dest[((*n)++)]=0;
591 } else {
592 //fudge low to high transition
593 //if (idx==clock/c && dest[*n-1]==1 && mod>0) dest[((*n++))]=0;
594 //if (c==8 && fcCnt==5) continue;
595 dest[((*n)++)]=1;
596 }
597 }
598 }
599 if (mod>0) (*modCnt)++;
600 if ((mod>0) && modAdjOk){ //fsk2
601 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
602 for (fcCnt=0; fcCnt < c; fcCnt++){ //fudge slow transition from low to high - shorten wave by 1
603 if (fcCnt < c/2+1){
604 dest[((*n)++)]=0;
605 } else {
606 //if (c==8 && fcCnt==5) continue;
607 dest[((*n)++)]=1;
608 }
609 }
610 }
611 }
612 //Dbprintf("mod: %d, modAdj %d, modc %d",mod, modAdj, c % mod);
613 if (mod>0 && !modAdjOk){ //fsk1
614 for (idx=0; idx < mod; idx++){
615 if (idx < mod/2) {
616 dest[((*n)++)]=0;
617 } else {
618 dest[((*n)++)]=1;
619 }
620 }
621 }
622 }
623
624 // prepare a waveform pattern in the buffer based on the ID given then
625 // simulate a HID tag until the button is pressed
626 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
627 {
628 int n=0, i=0;
629 /*
630 HID tag bitstream format
631 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
632 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
633 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
634 A fc8 is inserted before every 4 bits
635 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
636 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
637 */
638
639 if (hi>0xFFF) {
640 DbpString("Tags can only have 44 bits.");
641 return;
642 }
643 fc(0,&n);
644 // special start of frame marker containing invalid bit sequences
645 fc(8, &n); fc(8, &n); // invalid
646 fc(8, &n); fc(10, &n); // logical 0
647 fc(10, &n); fc(10, &n); // invalid
648 fc(8, &n); fc(10, &n); // logical 0
649
650 WDT_HIT();
651 // manchester encode bits 43 to 32
652 for (i=11; i>=0; i--) {
653 if ((i%4)==3) fc(0,&n);
654 if ((hi>>i)&1) {
655 fc(10, &n); fc(8, &n); // low-high transition
656 } else {
657 fc(8, &n); fc(10, &n); // high-low transition
658 }
659 }
660
661 WDT_HIT();
662 // manchester encode bits 31 to 0
663 for (i=31; i>=0; i--) {
664 if ((i%4)==3) fc(0,&n);
665 if ((lo>>i)&1) {
666 fc(10, &n); fc(8, &n); // low-high transition
667 } else {
668 fc(8, &n); fc(10, &n); // high-low transition
669 }
670 }
671
672 if (ledcontrol)
673 LED_A_ON();
674 SimulateTagLowFrequency(n, 0, ledcontrol);
675
676 if (ledcontrol)
677 LED_A_OFF();
678 }
679
680 // prepare a waveform pattern in the buffer based on the ID given then
681 // simulate a FSK tag until the button is pressed
682 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
683 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
684 {
685 int ledcontrol=1;
686 int n=0, i=0;
687 uint8_t fcHigh = arg1 >> 8;
688 uint8_t fcLow = arg1 & 0xFF;
689 uint16_t modCnt = 0;
690 //spacer bit
691 uint8_t clk = arg2 & 0xFF;
692 uint8_t invert = (arg2 >> 8) & 1;
693 //fcAll(0, &n, clk);
694
695 WDT_HIT();
696 for (i=0; i<size; i++){
697 if (BitStream[i] == invert){
698 fcAll(fcLow, &n, clk, &modCnt);
699 } else {
700 fcAll(fcHigh, &n, clk, &modCnt);
701 }
702 }
703 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
704 Dbprintf("First 64:");
705 uint8_t *dest = BigBuf_get_addr();
706 i=0;
707 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
708 i+=16;
709 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
710 i+=16;
711 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
712 i+=16;
713 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
714 i+=16;
715 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
716 i+=16;
717 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
718 i+=16;
719 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
720 i+=16;
721 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
722 i+=16;
723 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
724 i+=16;
725 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
726 i+=16;
727 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
728 i+=16;
729 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
730 i+=16;
731 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
732 i+=16;
733 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
734 i+=16;
735 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
736
737 if (ledcontrol)
738 LED_A_ON();
739 SimulateTagLowFrequencyMM(n, 0, ledcontrol);
740
741 if (ledcontrol)
742 LED_A_OFF();
743 }
744
745 // compose ask waveform for one bit(ASK)
746 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
747 {
748 uint8_t *dest = BigBuf_get_addr();
749 uint8_t idx;
750 // c = current bit 1 or 0
751 int i = 0;
752 // for when we want a separator
753 if (c==2) { //separator
754 for (i=0; i<clock/2; i++){
755 dest[((*n)++)]=0;
756 }
757 } else {
758 if (manchester){
759 for (idx=0; idx < (uint8_t) clock/2; idx++){
760 dest[((*n)++)]=c;
761 }
762 for (idx=0; idx < (uint8_t) clock/2; idx++){
763 dest[((*n)++)]=c^1;
764 }
765 } else {
766 for (idx=0; idx < (uint8_t) clock; idx++){
767 dest[((*n)++)]=c;
768 }
769 }
770 }
771 }
772
773 // args clock, ask/man or askraw, invert, transmission separator
774 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
775 {
776 int ledcontrol = 1;
777 int n=0, i=0;
778 uint8_t clk = (arg1 >> 8) & 0xFF;
779 uint8_t manchester = arg1 & 1;
780 uint8_t separator = arg2 & 1;
781 uint8_t invert = (arg2 >> 8) & 1;
782 WDT_HIT();
783 for (i=0; i<size; i++){
784 askSimBit(BitStream[i]^invert, &n, clk, manchester);
785 }
786 if (separator==1) Dbprintf("sorry but separator option not yet available"); //askSimBit(2, &n, clk, manchester);
787
788 Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk, invert, manchester, separator, n);
789 //DEBUG
790 //Dbprintf("First 64:");
791 //uint8_t *dest = BigBuf_get_addr();
792 //i=0;
793 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
794 //i+=16;
795 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
796 //i+=16;
797 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
798 //i+=16;
799 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
800
801
802 if (ledcontrol)
803 LED_A_ON();
804 SimulateTagLowFrequencyMM(n, 0, ledcontrol);
805
806 if (ledcontrol)
807 LED_A_OFF();
808 }
809
810 //carrier can be 2,4 or 8
811 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
812 {
813 uint8_t *dest = BigBuf_get_addr();
814 uint8_t idx;
815 int i = 0;
816 if (phaseChg){
817 // write phase change
818 for (i=0; i < waveLen/2; i++){
819 dest[((*n)++)] = *curPhase^1;
820 }
821 for (i=0; i < waveLen/2; i++){
822 dest[((*n)++)] = *curPhase;
823 }
824 *curPhase ^= 1;
825 }
826 //write each normal clock wave for the clock duration
827 for (; i < clk; i+=waveLen){
828 for (idx=0; idx<waveLen/2; idx++){
829 dest[((*n)++)] = *curPhase;
830 }
831 for (idx=0; idx<waveLen/2; idx++){
832 dest[((*n)++)] = *curPhase^1;
833 }
834 }
835 }
836
837 // args clock, carrier, invert,
838 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
839 {
840 int ledcontrol=1;
841 int n=0, i=0;
842 uint8_t clk = arg1 >> 8;
843 uint8_t carrier = arg1 & 0xFF;
844 uint8_t invert = arg2 & 0xFF;
845 //uint8_t phase = carrier/2; //extra phase changing bits = 1/2 a carrier wave to change the phase
846 //uint8_t invert = (arg2 >> 8) & 1;
847 uint8_t curPhase = 0;
848 WDT_HIT();
849 for (i=0; i<size; i++){
850 if (BitStream[i] == curPhase){
851 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
852 } else {
853 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
854 }
855 }
856 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
857 Dbprintf("First 128:");
858 uint8_t *dest = BigBuf_get_addr();
859 i=0;
860 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
861 i+=16;
862 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
863 i+=16;
864 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
865 i+=16;
866 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
867 i+=16;
868 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
869 i+=16;
870 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
871 i+=16;
872 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
873 i+=16;
874 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
875
876 if (ledcontrol)
877 LED_A_ON();
878 SimulateTagLowFrequencyMM(n, 0, ledcontrol);
879
880 if (ledcontrol)
881 LED_A_OFF();
882 }
883
884 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
885 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
886 {
887 uint8_t *dest = BigBuf_get_addr();
888 const size_t sizeOfBigBuff = BigBuf_max_traceLen();
889 size_t size = 0;
890 uint32_t hi2=0, hi=0, lo=0;
891 int idx=0;
892 // Configure to go in 125Khz listen mode
893 LFSetupFPGAForADC(95, true);
894
895 while(!BUTTON_PRESS()) {
896
897 WDT_HIT();
898 if (ledcontrol) LED_A_ON();
899
900 DoAcquisition_default(-1,true);
901 // FSK demodulator
902 size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
903 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
904
905 if (idx>0 && lo>0){
906 // final loop, go over previously decoded manchester data and decode into usable tag ID
907 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
908 if (hi2 != 0){ //extra large HID tags
909 Dbprintf("TAG ID: %x%08x%08x (%d)",
910 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
911 }else { //standard HID tags <38 bits
912 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
913 uint8_t bitlen = 0;
914 uint32_t fc = 0;
915 uint32_t cardnum = 0;
916 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
917 uint32_t lo2=0;
918 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
919 uint8_t idx3 = 1;
920 while(lo2 > 1){ //find last bit set to 1 (format len bit)
921 lo2=lo2 >> 1;
922 idx3++;
923 }
924 bitlen = idx3+19;
925 fc =0;
926 cardnum=0;
927 if(bitlen == 26){
928 cardnum = (lo>>1)&0xFFFF;
929 fc = (lo>>17)&0xFF;
930 }
931 if(bitlen == 37){
932 cardnum = (lo>>1)&0x7FFFF;
933 fc = ((hi&0xF)<<12)|(lo>>20);
934 }
935 if(bitlen == 34){
936 cardnum = (lo>>1)&0xFFFF;
937 fc= ((hi&1)<<15)|(lo>>17);
938 }
939 if(bitlen == 35){
940 cardnum = (lo>>1)&0xFFFFF;
941 fc = ((hi&1)<<11)|(lo>>21);
942 }
943 }
944 else { //if bit 38 is not set then 37 bit format is used
945 bitlen= 37;
946 fc =0;
947 cardnum=0;
948 if(bitlen==37){
949 cardnum = (lo>>1)&0x7FFFF;
950 fc = ((hi&0xF)<<12)|(lo>>20);
951 }
952 }
953 //Dbprintf("TAG ID: %x%08x (%d)",
954 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
955 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
956 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
957 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
958 }
959 if (findone){
960 if (ledcontrol) LED_A_OFF();
961 *high = hi;
962 *low = lo;
963 return;
964 }
965 // reset
966 hi2 = hi = lo = 0;
967 }
968 WDT_HIT();
969 }
970 DbpString("Stopped");
971 if (ledcontrol) LED_A_OFF();
972 }
973
974 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
975 {
976 uint8_t *dest = BigBuf_get_addr();
977
978 size_t size=0, idx=0;
979 int clk=0, invert=0, errCnt=0, maxErr=20;
980 uint64_t lo=0;
981 // Configure to go in 125Khz listen mode
982 LFSetupFPGAForADC(95, true);
983
984 while(!BUTTON_PRESS()) {
985
986 WDT_HIT();
987 if (ledcontrol) LED_A_ON();
988
989 DoAcquisition_default(-1,true);
990 size = BigBuf_max_traceLen();
991 //Dbprintf("DEBUG: Buffer got");
992 //askdemod and manchester decode
993 errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
994 //Dbprintf("DEBUG: ASK Got");
995 WDT_HIT();
996
997 if (errCnt>=0){
998 lo = Em410xDecode(dest, &size, &idx);
999 //Dbprintf("DEBUG: EM GOT");
1000 if (lo>0){
1001 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
1002 (uint32_t)(lo>>32),
1003 (uint32_t)lo,
1004 (uint32_t)(lo&0xFFFF),
1005 (uint32_t)((lo>>16LL) & 0xFF),
1006 (uint32_t)(lo & 0xFFFFFF));
1007 }
1008 if (findone){
1009 if (ledcontrol) LED_A_OFF();
1010 *high=lo>>32;
1011 *low=lo & 0xFFFFFFFF;
1012 return;
1013 }
1014 } else{
1015 //Dbprintf("DEBUG: No Tag");
1016 }
1017 WDT_HIT();
1018 lo = 0;
1019 clk=0;
1020 invert=0;
1021 errCnt=0;
1022 size=0;
1023 }
1024 DbpString("Stopped");
1025 if (ledcontrol) LED_A_OFF();
1026 }
1027
1028 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1029 {
1030 uint8_t *dest = BigBuf_get_addr();
1031 int idx=0;
1032 uint32_t code=0, code2=0;
1033 uint8_t version=0;
1034 uint8_t facilitycode=0;
1035 uint16_t number=0;
1036 // Configure to go in 125Khz listen mode
1037 LFSetupFPGAForADC(95, true);
1038
1039 while(!BUTTON_PRESS()) {
1040 WDT_HIT();
1041 if (ledcontrol) LED_A_ON();
1042 DoAcquisition_default(-1,true);
1043 //fskdemod and get start index
1044 WDT_HIT();
1045 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1046 if (idx>0){
1047 //valid tag found
1048
1049 //Index map
1050 //0 10 20 30 40 50 60
1051 //| | | | | | |
1052 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1053 //-----------------------------------------------------------------------------
1054 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1055 //
1056 //XSF(version)facility:codeone+codetwo
1057 //Handle the data
1058 if(findone){ //only print binary if we are doing one
1059 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1060 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1061 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1062 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1063 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1064 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1065 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1066 }
1067 code = bytebits_to_byte(dest+idx,32);
1068 code2 = bytebits_to_byte(dest+idx+32,32);
1069 version = bytebits_to_byte(dest+idx+27,8); //14,4
1070 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
1071 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1072
1073 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1074 // if we're only looking for one tag
1075 if (findone){
1076 if (ledcontrol) LED_A_OFF();
1077 //LED_A_OFF();
1078 *high=code;
1079 *low=code2;
1080 return;
1081 }
1082 code=code2=0;
1083 version=facilitycode=0;
1084 number=0;
1085 idx=0;
1086 }
1087 WDT_HIT();
1088 }
1089 DbpString("Stopped");
1090 if (ledcontrol) LED_A_OFF();
1091 }
1092
1093 /*------------------------------
1094 * T5555/T5557/T5567 routines
1095 *------------------------------
1096 */
1097
1098 /* T55x7 configuration register definitions */
1099 #define T55x7_POR_DELAY 0x00000001
1100 #define T55x7_ST_TERMINATOR 0x00000008
1101 #define T55x7_PWD 0x00000010
1102 #define T55x7_MAXBLOCK_SHIFT 5
1103 #define T55x7_AOR 0x00000200
1104 #define T55x7_PSKCF_RF_2 0
1105 #define T55x7_PSKCF_RF_4 0x00000400
1106 #define T55x7_PSKCF_RF_8 0x00000800
1107 #define T55x7_MODULATION_DIRECT 0
1108 #define T55x7_MODULATION_PSK1 0x00001000
1109 #define T55x7_MODULATION_PSK2 0x00002000
1110 #define T55x7_MODULATION_PSK3 0x00003000
1111 #define T55x7_MODULATION_FSK1 0x00004000
1112 #define T55x7_MODULATION_FSK2 0x00005000
1113 #define T55x7_MODULATION_FSK1a 0x00006000
1114 #define T55x7_MODULATION_FSK2a 0x00007000
1115 #define T55x7_MODULATION_MANCHESTER 0x00008000
1116 #define T55x7_MODULATION_BIPHASE 0x00010000
1117 #define T55x7_BITRATE_RF_8 0
1118 #define T55x7_BITRATE_RF_16 0x00040000
1119 #define T55x7_BITRATE_RF_32 0x00080000
1120 #define T55x7_BITRATE_RF_40 0x000C0000
1121 #define T55x7_BITRATE_RF_50 0x00100000
1122 #define T55x7_BITRATE_RF_64 0x00140000
1123 #define T55x7_BITRATE_RF_100 0x00180000
1124 #define T55x7_BITRATE_RF_128 0x001C0000
1125
1126 /* T5555 (Q5) configuration register definitions */
1127 #define T5555_ST_TERMINATOR 0x00000001
1128 #define T5555_MAXBLOCK_SHIFT 0x00000001
1129 #define T5555_MODULATION_MANCHESTER 0
1130 #define T5555_MODULATION_PSK1 0x00000010
1131 #define T5555_MODULATION_PSK2 0x00000020
1132 #define T5555_MODULATION_PSK3 0x00000030
1133 #define T5555_MODULATION_FSK1 0x00000040
1134 #define T5555_MODULATION_FSK2 0x00000050
1135 #define T5555_MODULATION_BIPHASE 0x00000060
1136 #define T5555_MODULATION_DIRECT 0x00000070
1137 #define T5555_INVERT_OUTPUT 0x00000080
1138 #define T5555_PSK_RF_2 0
1139 #define T5555_PSK_RF_4 0x00000100
1140 #define T5555_PSK_RF_8 0x00000200
1141 #define T5555_USE_PWD 0x00000400
1142 #define T5555_USE_AOR 0x00000800
1143 #define T5555_BITRATE_SHIFT 12
1144 #define T5555_FAST_WRITE 0x00004000
1145 #define T5555_PAGE_SELECT 0x00008000
1146
1147 /*
1148 * Relevant times in microsecond
1149 * To compensate antenna falling times shorten the write times
1150 * and enlarge the gap ones.
1151 */
1152 #define START_GAP 250
1153 #define WRITE_GAP 160
1154 #define WRITE_0 144 // 192
1155 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1156
1157 // Write one bit to card
1158 void T55xxWriteBit(int bit)
1159 {
1160 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1161 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1162 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1163 if (bit == 0)
1164 SpinDelayUs(WRITE_0);
1165 else
1166 SpinDelayUs(WRITE_1);
1167 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1168 SpinDelayUs(WRITE_GAP);
1169 }
1170
1171 // Write one card block in page 0, no lock
1172 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1173 {
1174 //unsigned int i; //enio adjustment 12/10/14
1175 uint32_t i;
1176
1177 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1178 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1179 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1180
1181 // Give it a bit of time for the resonant antenna to settle.
1182 // And for the tag to fully power up
1183 SpinDelay(150);
1184
1185 // Now start writting
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1187 SpinDelayUs(START_GAP);
1188
1189 // Opcode
1190 T55xxWriteBit(1);
1191 T55xxWriteBit(0); //Page 0
1192 if (PwdMode == 1){
1193 // Pwd
1194 for (i = 0x80000000; i != 0; i >>= 1)
1195 T55xxWriteBit(Pwd & i);
1196 }
1197 // Lock bit
1198 T55xxWriteBit(0);
1199
1200 // Data
1201 for (i = 0x80000000; i != 0; i >>= 1)
1202 T55xxWriteBit(Data & i);
1203
1204 // Block
1205 for (i = 0x04; i != 0; i >>= 1)
1206 T55xxWriteBit(Block & i);
1207
1208 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1209 // so wait a little more)
1210 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1211 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1212 SpinDelay(20);
1213 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1214 }
1215
1216 // Read one card block in page 0
1217 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1218 {
1219 uint8_t *dest = BigBuf_get_addr();
1220 //int m=0, i=0; //enio adjustment 12/10/14
1221 uint32_t m=0, i=0;
1222 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1223 m = BigBuf_max_traceLen();
1224 // Clear destination buffer before sending the command
1225 memset(dest, 128, m);
1226 // Connect the A/D to the peak-detected low-frequency path.
1227 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1228 // Now set up the SSC to get the ADC samples that are now streaming at us.
1229 FpgaSetupSsc();
1230
1231 LED_D_ON();
1232 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1233 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1234
1235 // Give it a bit of time for the resonant antenna to settle.
1236 // And for the tag to fully power up
1237 SpinDelay(150);
1238
1239 // Now start writting
1240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1241 SpinDelayUs(START_GAP);
1242
1243 // Opcode
1244 T55xxWriteBit(1);
1245 T55xxWriteBit(0); //Page 0
1246 if (PwdMode == 1){
1247 // Pwd
1248 for (i = 0x80000000; i != 0; i >>= 1)
1249 T55xxWriteBit(Pwd & i);
1250 }
1251 // Lock bit
1252 T55xxWriteBit(0);
1253 // Block
1254 for (i = 0x04; i != 0; i >>= 1)
1255 T55xxWriteBit(Block & i);
1256
1257 // Turn field on to read the response
1258 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1260
1261 // Now do the acquisition
1262 i = 0;
1263 for(;;) {
1264 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1265 AT91C_BASE_SSC->SSC_THR = 0x43;
1266 }
1267 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1268 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1269 // we don't care about actual value, only if it's more or less than a
1270 // threshold essentially we capture zero crossings for later analysis
1271 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1272 i++;
1273 if (i >= m) break;
1274 }
1275 }
1276
1277 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1278 LED_D_OFF();
1279 DbpString("DONE!");
1280 }
1281
1282 // Read card traceability data (page 1)
1283 void T55xxReadTrace(void){
1284 uint8_t *dest = BigBuf_get_addr();
1285 int m=0, i=0;
1286
1287 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1288 m = BigBuf_max_traceLen();
1289 // Clear destination buffer before sending the command
1290 memset(dest, 128, m);
1291 // Connect the A/D to the peak-detected low-frequency path.
1292 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1293 // Now set up the SSC to get the ADC samples that are now streaming at us.
1294 FpgaSetupSsc();
1295
1296 LED_D_ON();
1297 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1298 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1299
1300 // Give it a bit of time for the resonant antenna to settle.
1301 // And for the tag to fully power up
1302 SpinDelay(150);
1303
1304 // Now start writting
1305 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1306 SpinDelayUs(START_GAP);
1307
1308 // Opcode
1309 T55xxWriteBit(1);
1310 T55xxWriteBit(1); //Page 1
1311
1312 // Turn field on to read the response
1313 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1314 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1315
1316 // Now do the acquisition
1317 i = 0;
1318 for(;;) {
1319 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1320 AT91C_BASE_SSC->SSC_THR = 0x43;
1321 }
1322 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1323 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1324 i++;
1325 if (i >= m) break;
1326 }
1327 }
1328
1329 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1330 LED_D_OFF();
1331 DbpString("DONE!");
1332 }
1333
1334 /*-------------- Cloning routines -----------*/
1335 // Copy HID id to card and setup block 0 config
1336 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1337 {
1338 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1339 int last_block = 0;
1340
1341 if (longFMT){
1342 // Ensure no more than 84 bits supplied
1343 if (hi2>0xFFFFF) {
1344 DbpString("Tags can only have 84 bits.");
1345 return;
1346 }
1347 // Build the 6 data blocks for supplied 84bit ID
1348 last_block = 6;
1349 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1350 for (int i=0;i<4;i++) {
1351 if (hi2 & (1<<(19-i)))
1352 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1353 else
1354 data1 |= (1<<((3-i)*2)); // 0 -> 01
1355 }
1356
1357 data2 = 0;
1358 for (int i=0;i<16;i++) {
1359 if (hi2 & (1<<(15-i)))
1360 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1361 else
1362 data2 |= (1<<((15-i)*2)); // 0 -> 01
1363 }
1364
1365 data3 = 0;
1366 for (int i=0;i<16;i++) {
1367 if (hi & (1<<(31-i)))
1368 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1369 else
1370 data3 |= (1<<((15-i)*2)); // 0 -> 01
1371 }
1372
1373 data4 = 0;
1374 for (int i=0;i<16;i++) {
1375 if (hi & (1<<(15-i)))
1376 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1377 else
1378 data4 |= (1<<((15-i)*2)); // 0 -> 01
1379 }
1380
1381 data5 = 0;
1382 for (int i=0;i<16;i++) {
1383 if (lo & (1<<(31-i)))
1384 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1385 else
1386 data5 |= (1<<((15-i)*2)); // 0 -> 01
1387 }
1388
1389 data6 = 0;
1390 for (int i=0;i<16;i++) {
1391 if (lo & (1<<(15-i)))
1392 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1393 else
1394 data6 |= (1<<((15-i)*2)); // 0 -> 01
1395 }
1396 }
1397 else {
1398 // Ensure no more than 44 bits supplied
1399 if (hi>0xFFF) {
1400 DbpString("Tags can only have 44 bits.");
1401 return;
1402 }
1403
1404 // Build the 3 data blocks for supplied 44bit ID
1405 last_block = 3;
1406
1407 data1 = 0x1D000000; // load preamble
1408
1409 for (int i=0;i<12;i++) {
1410 if (hi & (1<<(11-i)))
1411 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1412 else
1413 data1 |= (1<<((11-i)*2)); // 0 -> 01
1414 }
1415
1416 data2 = 0;
1417 for (int i=0;i<16;i++) {
1418 if (lo & (1<<(31-i)))
1419 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1420 else
1421 data2 |= (1<<((15-i)*2)); // 0 -> 01
1422 }
1423
1424 data3 = 0;
1425 for (int i=0;i<16;i++) {
1426 if (lo & (1<<(15-i)))
1427 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1428 else
1429 data3 |= (1<<((15-i)*2)); // 0 -> 01
1430 }
1431 }
1432
1433 LED_D_ON();
1434 // Program the data blocks for supplied ID
1435 // and the block 0 for HID format
1436 T55xxWriteBlock(data1,1,0,0);
1437 T55xxWriteBlock(data2,2,0,0);
1438 T55xxWriteBlock(data3,3,0,0);
1439
1440 if (longFMT) { // if long format there are 6 blocks
1441 T55xxWriteBlock(data4,4,0,0);
1442 T55xxWriteBlock(data5,5,0,0);
1443 T55xxWriteBlock(data6,6,0,0);
1444 }
1445
1446 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1447 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1448 T55x7_MODULATION_FSK2a |
1449 last_block << T55x7_MAXBLOCK_SHIFT,
1450 0,0,0);
1451
1452 LED_D_OFF();
1453
1454 DbpString("DONE!");
1455 }
1456
1457 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1458 {
1459 int data1=0, data2=0; //up to six blocks for long format
1460
1461 data1 = hi; // load preamble
1462 data2 = lo;
1463
1464 LED_D_ON();
1465 // Program the data blocks for supplied ID
1466 // and the block 0 for HID format
1467 T55xxWriteBlock(data1,1,0,0);
1468 T55xxWriteBlock(data2,2,0,0);
1469
1470 //Config Block
1471 T55xxWriteBlock(0x00147040,0,0,0);
1472 LED_D_OFF();
1473
1474 DbpString("DONE!");
1475 }
1476
1477 // Define 9bit header for EM410x tags
1478 #define EM410X_HEADER 0x1FF
1479 #define EM410X_ID_LENGTH 40
1480
1481 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1482 {
1483 int i, id_bit;
1484 uint64_t id = EM410X_HEADER;
1485 uint64_t rev_id = 0; // reversed ID
1486 int c_parity[4]; // column parity
1487 int r_parity = 0; // row parity
1488 uint32_t clock = 0;
1489
1490 // Reverse ID bits given as parameter (for simpler operations)
1491 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1492 if (i < 32) {
1493 rev_id = (rev_id << 1) | (id_lo & 1);
1494 id_lo >>= 1;
1495 } else {
1496 rev_id = (rev_id << 1) | (id_hi & 1);
1497 id_hi >>= 1;
1498 }
1499 }
1500
1501 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1502 id_bit = rev_id & 1;
1503
1504 if (i % 4 == 0) {
1505 // Don't write row parity bit at start of parsing
1506 if (i)
1507 id = (id << 1) | r_parity;
1508 // Start counting parity for new row
1509 r_parity = id_bit;
1510 } else {
1511 // Count row parity
1512 r_parity ^= id_bit;
1513 }
1514
1515 // First elements in column?
1516 if (i < 4)
1517 // Fill out first elements
1518 c_parity[i] = id_bit;
1519 else
1520 // Count column parity
1521 c_parity[i % 4] ^= id_bit;
1522
1523 // Insert ID bit
1524 id = (id << 1) | id_bit;
1525 rev_id >>= 1;
1526 }
1527
1528 // Insert parity bit of last row
1529 id = (id << 1) | r_parity;
1530
1531 // Fill out column parity at the end of tag
1532 for (i = 0; i < 4; ++i)
1533 id = (id << 1) | c_parity[i];
1534
1535 // Add stop bit
1536 id <<= 1;
1537
1538 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1539 LED_D_ON();
1540
1541 // Write EM410x ID
1542 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1543 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1544
1545 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1546 if (card) {
1547 // Clock rate is stored in bits 8-15 of the card value
1548 clock = (card & 0xFF00) >> 8;
1549 Dbprintf("Clock rate: %d", clock);
1550 switch (clock)
1551 {
1552 case 32:
1553 clock = T55x7_BITRATE_RF_32;
1554 break;
1555 case 16:
1556 clock = T55x7_BITRATE_RF_16;
1557 break;
1558 case 0:
1559 // A value of 0 is assumed to be 64 for backwards-compatibility
1560 // Fall through...
1561 case 64:
1562 clock = T55x7_BITRATE_RF_64;
1563 break;
1564 default:
1565 Dbprintf("Invalid clock rate: %d", clock);
1566 return;
1567 }
1568
1569 // Writing configuration for T55x7 tag
1570 T55xxWriteBlock(clock |
1571 T55x7_MODULATION_MANCHESTER |
1572 2 << T55x7_MAXBLOCK_SHIFT,
1573 0, 0, 0);
1574 }
1575 else
1576 // Writing configuration for T5555(Q5) tag
1577 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1578 T5555_MODULATION_MANCHESTER |
1579 2 << T5555_MAXBLOCK_SHIFT,
1580 0, 0, 0);
1581
1582 LED_D_OFF();
1583 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1584 (uint32_t)(id >> 32), (uint32_t)id);
1585 }
1586
1587 // Clone Indala 64-bit tag by UID to T55x7
1588 void CopyIndala64toT55x7(int hi, int lo)
1589 {
1590
1591 //Program the 2 data blocks for supplied 64bit UID
1592 // and the block 0 for Indala64 format
1593 T55xxWriteBlock(hi,1,0,0);
1594 T55xxWriteBlock(lo,2,0,0);
1595 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1596 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1597 T55x7_MODULATION_PSK1 |
1598 2 << T55x7_MAXBLOCK_SHIFT,
1599 0, 0, 0);
1600 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1601 // T5567WriteBlock(0x603E1042,0);
1602
1603 DbpString("DONE!");
1604
1605 }
1606
1607 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1608 {
1609
1610 //Program the 7 data blocks for supplied 224bit UID
1611 // and the block 0 for Indala224 format
1612 T55xxWriteBlock(uid1,1,0,0);
1613 T55xxWriteBlock(uid2,2,0,0);
1614 T55xxWriteBlock(uid3,3,0,0);
1615 T55xxWriteBlock(uid4,4,0,0);
1616 T55xxWriteBlock(uid5,5,0,0);
1617 T55xxWriteBlock(uid6,6,0,0);
1618 T55xxWriteBlock(uid7,7,0,0);
1619 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1620 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1621 T55x7_MODULATION_PSK1 |
1622 7 << T55x7_MAXBLOCK_SHIFT,
1623 0,0,0);
1624 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1625 // T5567WriteBlock(0x603E10E2,0);
1626
1627 DbpString("DONE!");
1628
1629 }
1630
1631
1632 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1633 #define max(x,y) ( x<y ? y:x)
1634
1635 int DemodPCF7931(uint8_t **outBlocks) {
1636 uint8_t BitStream[256];
1637 uint8_t Blocks[8][16];
1638 uint8_t *GraphBuffer = BigBuf_get_addr();
1639 int GraphTraceLen = BigBuf_max_traceLen();
1640 int i, j, lastval, bitidx, half_switch;
1641 int clock = 64;
1642 int tolerance = clock / 8;
1643 int pmc, block_done;
1644 int lc, warnings = 0;
1645 int num_blocks = 0;
1646 int lmin=128, lmax=128;
1647 uint8_t dir;
1648
1649 LFSetupFPGAForADC(95, true);
1650 DoAcquisition_default(0, 0);
1651
1652
1653 lmin = 64;
1654 lmax = 192;
1655
1656 i = 2;
1657
1658 /* Find first local max/min */
1659 if(GraphBuffer[1] > GraphBuffer[0]) {
1660 while(i < GraphTraceLen) {
1661 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1662 break;
1663 i++;
1664 }
1665 dir = 0;
1666 }
1667 else {
1668 while(i < GraphTraceLen) {
1669 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1670 break;
1671 i++;
1672 }
1673 dir = 1;
1674 }
1675
1676 lastval = i++;
1677 half_switch = 0;
1678 pmc = 0;
1679 block_done = 0;
1680
1681 for (bitidx = 0; i < GraphTraceLen; i++)
1682 {
1683 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1684 {
1685 lc = i - lastval;
1686 lastval = i;
1687
1688 // Switch depending on lc length:
1689 // Tolerance is 1/8 of clock rate (arbitrary)
1690 if (abs(lc-clock/4) < tolerance) {
1691 // 16T0
1692 if((i - pmc) == lc) { /* 16T0 was previous one */
1693 /* It's a PMC ! */
1694 i += (128+127+16+32+33+16)-1;
1695 lastval = i;
1696 pmc = 0;
1697 block_done = 1;
1698 }
1699 else {
1700 pmc = i;
1701 }
1702 } else if (abs(lc-clock/2) < tolerance) {
1703 // 32TO
1704 if((i - pmc) == lc) { /* 16T0 was previous one */
1705 /* It's a PMC ! */
1706 i += (128+127+16+32+33)-1;
1707 lastval = i;
1708 pmc = 0;
1709 block_done = 1;
1710 }
1711 else if(half_switch == 1) {
1712 BitStream[bitidx++] = 0;
1713 half_switch = 0;
1714 }
1715 else
1716 half_switch++;
1717 } else if (abs(lc-clock) < tolerance) {
1718 // 64TO
1719 BitStream[bitidx++] = 1;
1720 } else {
1721 // Error
1722 warnings++;
1723 if (warnings > 10)
1724 {
1725 Dbprintf("Error: too many detection errors, aborting.");
1726 return 0;
1727 }
1728 }
1729
1730 if(block_done == 1) {
1731 if(bitidx == 128) {
1732 for(j=0; j<16; j++) {
1733 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1734 64*BitStream[j*8+6]+
1735 32*BitStream[j*8+5]+
1736 16*BitStream[j*8+4]+
1737 8*BitStream[j*8+3]+
1738 4*BitStream[j*8+2]+
1739 2*BitStream[j*8+1]+
1740 BitStream[j*8];
1741 }
1742 num_blocks++;
1743 }
1744 bitidx = 0;
1745 block_done = 0;
1746 half_switch = 0;
1747 }
1748 if(i < GraphTraceLen)
1749 {
1750 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1751 else dir = 1;
1752 }
1753 }
1754 if(bitidx==255)
1755 bitidx=0;
1756 warnings = 0;
1757 if(num_blocks == 4) break;
1758 }
1759 memcpy(outBlocks, Blocks, 16*num_blocks);
1760 return num_blocks;
1761 }
1762
1763 int IsBlock0PCF7931(uint8_t *Block) {
1764 // Assume RFU means 0 :)
1765 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1766 return 1;
1767 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1768 return 1;
1769 return 0;
1770 }
1771
1772 int IsBlock1PCF7931(uint8_t *Block) {
1773 // Assume RFU means 0 :)
1774 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1775 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1776 return 1;
1777
1778 return 0;
1779 }
1780
1781 #define ALLOC 16
1782
1783 void ReadPCF7931() {
1784 uint8_t Blocks[8][17];
1785 uint8_t tmpBlocks[4][16];
1786 int i, j, ind, ind2, n;
1787 int num_blocks = 0;
1788 int max_blocks = 8;
1789 int ident = 0;
1790 int error = 0;
1791 int tries = 0;
1792
1793 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1794
1795 do {
1796 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1797 n = DemodPCF7931((uint8_t**)tmpBlocks);
1798 if(!n)
1799 error++;
1800 if(error==10 && num_blocks == 0) {
1801 Dbprintf("Error, no tag or bad tag");
1802 return;
1803 }
1804 else if (tries==20 || error==10) {
1805 Dbprintf("Error reading the tag");
1806 Dbprintf("Here is the partial content");
1807 goto end;
1808 }
1809
1810 for(i=0; i<n; i++)
1811 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1812 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1813 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1814 if(!ident) {
1815 for(i=0; i<n; i++) {
1816 if(IsBlock0PCF7931(tmpBlocks[i])) {
1817 // Found block 0 ?
1818 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1819 // Found block 1!
1820 // \o/
1821 ident = 1;
1822 memcpy(Blocks[0], tmpBlocks[i], 16);
1823 Blocks[0][ALLOC] = 1;
1824 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1825 Blocks[1][ALLOC] = 1;
1826 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1827 // Debug print
1828 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1829 num_blocks = 2;
1830 // Handle following blocks
1831 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1832 if(j==n) j=0;
1833 if(j==i) break;
1834 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1835 Blocks[ind2][ALLOC] = 1;
1836 }
1837 break;
1838 }
1839 }
1840 }
1841 }
1842 else {
1843 for(i=0; i<n; i++) { // Look for identical block in known blocks
1844 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1845 for(j=0; j<max_blocks; j++) {
1846 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1847 // Found an identical block
1848 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1849 if(ind2 < 0)
1850 ind2 = max_blocks;
1851 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1852 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1853 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1854 Blocks[ind2][ALLOC] = 1;
1855 num_blocks++;
1856 if(num_blocks == max_blocks) goto end;
1857 }
1858 }
1859 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1860 if(ind2 > max_blocks)
1861 ind2 = 0;
1862 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1863 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1864 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1865 Blocks[ind2][ALLOC] = 1;
1866 num_blocks++;
1867 if(num_blocks == max_blocks) goto end;
1868 }
1869 }
1870 }
1871 }
1872 }
1873 }
1874 }
1875 tries++;
1876 if (BUTTON_PRESS()) return;
1877 } while (num_blocks != max_blocks);
1878 end:
1879 Dbprintf("-----------------------------------------");
1880 Dbprintf("Memory content:");
1881 Dbprintf("-----------------------------------------");
1882 for(i=0; i<max_blocks; i++) {
1883 if(Blocks[i][ALLOC]==1)
1884 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1885 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1886 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1887 else
1888 Dbprintf("<missing block %d>", i);
1889 }
1890 Dbprintf("-----------------------------------------");
1891
1892 return ;
1893 }
1894
1895
1896 //-----------------------------------
1897 // EM4469 / EM4305 routines
1898 //-----------------------------------
1899 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1900 #define FWD_CMD_WRITE 0xA
1901 #define FWD_CMD_READ 0x9
1902 #define FWD_CMD_DISABLE 0x5
1903
1904
1905 uint8_t forwardLink_data[64]; //array of forwarded bits
1906 uint8_t * forward_ptr; //ptr for forward message preparation
1907 uint8_t fwd_bit_sz; //forwardlink bit counter
1908 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1909
1910 //====================================================================
1911 // prepares command bits
1912 // see EM4469 spec
1913 //====================================================================
1914 //--------------------------------------------------------------------
1915 uint8_t Prepare_Cmd( uint8_t cmd ) {
1916 //--------------------------------------------------------------------
1917
1918 *forward_ptr++ = 0; //start bit
1919 *forward_ptr++ = 0; //second pause for 4050 code
1920
1921 *forward_ptr++ = cmd;
1922 cmd >>= 1;
1923 *forward_ptr++ = cmd;
1924 cmd >>= 1;
1925 *forward_ptr++ = cmd;
1926 cmd >>= 1;
1927 *forward_ptr++ = cmd;
1928
1929 return 6; //return number of emited bits
1930 }
1931
1932 //====================================================================
1933 // prepares address bits
1934 // see EM4469 spec
1935 //====================================================================
1936
1937 //--------------------------------------------------------------------
1938 uint8_t Prepare_Addr( uint8_t addr ) {
1939 //--------------------------------------------------------------------
1940
1941 register uint8_t line_parity;
1942
1943 uint8_t i;
1944 line_parity = 0;
1945 for(i=0;i<6;i++) {
1946 *forward_ptr++ = addr;
1947 line_parity ^= addr;
1948 addr >>= 1;
1949 }
1950
1951 *forward_ptr++ = (line_parity & 1);
1952
1953 return 7; //return number of emited bits
1954 }
1955
1956 //====================================================================
1957 // prepares data bits intreleaved with parity bits
1958 // see EM4469 spec
1959 //====================================================================
1960
1961 //--------------------------------------------------------------------
1962 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1963 //--------------------------------------------------------------------
1964
1965 register uint8_t line_parity;
1966 register uint8_t column_parity;
1967 register uint8_t i, j;
1968 register uint16_t data;
1969
1970 data = data_low;
1971 column_parity = 0;
1972
1973 for(i=0; i<4; i++) {
1974 line_parity = 0;
1975 for(j=0; j<8; j++) {
1976 line_parity ^= data;
1977 column_parity ^= (data & 1) << j;
1978 *forward_ptr++ = data;
1979 data >>= 1;
1980 }
1981 *forward_ptr++ = line_parity;
1982 if(i == 1)
1983 data = data_hi;
1984 }
1985
1986 for(j=0; j<8; j++) {
1987 *forward_ptr++ = column_parity;
1988 column_parity >>= 1;
1989 }
1990 *forward_ptr = 0;
1991
1992 return 45; //return number of emited bits
1993 }
1994
1995 //====================================================================
1996 // Forward Link send function
1997 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1998 // fwd_bit_count set with number of bits to be sent
1999 //====================================================================
2000 void SendForward(uint8_t fwd_bit_count) {
2001
2002 fwd_write_ptr = forwardLink_data;
2003 fwd_bit_sz = fwd_bit_count;
2004
2005 LED_D_ON();
2006
2007 //Field on
2008 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
2009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2011
2012 // Give it a bit of time for the resonant antenna to settle.
2013 // And for the tag to fully power up
2014 SpinDelay(150);
2015
2016 // force 1st mod pulse (start gap must be longer for 4305)
2017 fwd_bit_sz--; //prepare next bit modulation
2018 fwd_write_ptr++;
2019 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2020 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2021 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2022 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2023 SpinDelayUs(16*8); //16 cycles on (8us each)
2024
2025 // now start writting
2026 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
2027 if(((*fwd_write_ptr++) & 1) == 1)
2028 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2029 else {
2030 //These timings work for 4469/4269/4305 (with the 55*8 above)
2031 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2032 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2033 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2034 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2035 SpinDelayUs(9*8); //16 cycles on (8us each)
2036 }
2037 }
2038 }
2039
2040 void EM4xLogin(uint32_t Password) {
2041
2042 uint8_t fwd_bit_count;
2043
2044 forward_ptr = forwardLink_data;
2045 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2046 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2047
2048 SendForward(fwd_bit_count);
2049
2050 //Wait for command to complete
2051 SpinDelay(20);
2052
2053 }
2054
2055 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2056
2057 uint8_t fwd_bit_count;
2058 uint8_t *dest = BigBuf_get_addr();
2059 int m=0, i=0;
2060
2061 //If password mode do login
2062 if (PwdMode == 1) EM4xLogin(Pwd);
2063
2064 forward_ptr = forwardLink_data;
2065 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2066 fwd_bit_count += Prepare_Addr( Address );
2067
2068 m = BigBuf_max_traceLen();
2069 // Clear destination buffer before sending the command
2070 memset(dest, 128, m);
2071 // Connect the A/D to the peak-detected low-frequency path.
2072 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2073 // Now set up the SSC to get the ADC samples that are now streaming at us.
2074 FpgaSetupSsc();
2075
2076 SendForward(fwd_bit_count);
2077
2078 // Now do the acquisition
2079 i = 0;
2080 for(;;) {
2081 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
2082 AT91C_BASE_SSC->SSC_THR = 0x43;
2083 }
2084 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
2085 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2086 i++;
2087 if (i >= m) break;
2088 }
2089 }
2090 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2091 LED_D_OFF();
2092 }
2093
2094 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2095
2096 uint8_t fwd_bit_count;
2097
2098 //If password mode do login
2099 if (PwdMode == 1) EM4xLogin(Pwd);
2100
2101 forward_ptr = forwardLink_data;
2102 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2103 fwd_bit_count += Prepare_Addr( Address );
2104 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2105
2106 SendForward(fwd_bit_count);
2107
2108 //Wait for write to complete
2109 SpinDelay(20);
2110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2111 LED_D_OFF();
2112 }
Impressum, Datenschutz