]>
cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
439699c6266643bca9053527d0cd00f500d9abf3
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
12 //un_comment to allow debug print calls when used not on device
13 void dummy ( char * fmt
, ...){}
18 # include "cmdparser.h"
20 # define prnt PrintAndLog
22 uint8_t g_debugMode
= 0 ;
26 //test samples are not just noise
27 uint8_t justNoise ( uint8_t * bits
, size_t size
) {
30 for ( size_t idx
= 0 ; idx
< size
&& val
; idx
++)
31 val
= bits
[ idx
] < THRESHOLD
;
36 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
37 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
41 // get high and low thresholds
42 for ( size_t i
= 0 ; i
< size
; i
++){
43 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
44 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
46 if (* high
< 123 ) return - 1 ; // just noise
47 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
48 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
53 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
54 // returns 1 if passed
55 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
58 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
59 ans
^= (( bits
>> i
) & 1 );
61 if ( g_debugMode
) prnt ( "DEBUG: ans: %d, ptype: %d, bits: %08X" , ans
, pType
, bits
);
62 return ( ans
== pType
);
66 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
67 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
68 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
70 uint32_t parityWd
= 0 ;
71 size_t j
= 0 , bitCnt
= 0 ;
72 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
73 for ( int bit
= 0 ; bit
< pLen
; bit
++){
74 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
75 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
77 if ( word
+ pLen
> bLen
) break ;
79 j
--; // overwrite parity with next data
80 // if parity fails then return 0
82 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ; } break ; //should be 0 spacer bit
83 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ; } break ; //should be 1 spacer bit
84 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ; } break ; //test parity
89 // if we got here then all the parities passed
90 //return ID start index and size
95 // takes a array of binary values, length of bits per parity (includes parity bit),
96 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
97 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
98 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
100 uint32_t parityWd
= 0 ;
101 size_t j
= 0 , bitCnt
= 0 ;
102 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
103 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
104 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
105 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
108 // if parity fails then return 0
110 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
111 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
113 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
119 // if we got here then all the parities passed
120 //return ID start index and size
124 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
127 for ( int i
= 0 ; i
< numbits
; i
++) {
128 num
= ( num
<< 1 ) | (* src
);
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
138 for ( int i
= 0 ; i
< numbits
; i
++) {
139 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
145 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
146 bool preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
){
147 return preambleSearchEx ( BitStream
, preamble
, pLen
, size
, startIdx
, false );
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 // param @findone: look for a repeating preamble or only the first.
152 // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
153 bool preambleSearchEx ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
, bool findone
)
155 // Sanity check. If preamble length is bigger than bitstream length.
156 if ( * size
<= pLen
) return false ;
158 uint8_t foundCnt
= 0 ;
159 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
160 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
161 if ( g_debugMode
) prnt ( "DEBUG: preamble found at %i" , idx
);
166 if ( findone
) return true ;
169 * size
= idx
- * startIdx
;
177 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
178 size_t findModStart ( uint8_t dest
[], size_t size
, uint8_t threshold_value
, uint8_t expWaveSize
) {
180 size_t waveSizeCnt
= 0 ;
181 uint8_t thresholdCnt
= 0 ;
182 bool isAboveThreshold
= dest
[ i
++] >= threshold_value
;
183 for (; i
< size
- 20 ; i
++ ) {
184 if ( dest
[ i
] < threshold_value
&& isAboveThreshold
) {
186 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
187 isAboveThreshold
= false ;
189 } else if ( dest
[ i
] >= threshold_value
&& ! isAboveThreshold
) {
191 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
192 isAboveThreshold
= true ;
197 if ( thresholdCnt
> 10 ) break ;
199 if ( g_debugMode
== 2 ) prnt ( "DEBUG: threshold Count reached at %u, count: %u" , i
, thresholdCnt
);
204 //takes 1s and 0s and searches for EM410x format - output EM ID
205 // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
206 int Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
209 if ( BitStream
[ 1 ] > 1 ) return - 1 ;
214 // preamble 0111111111
215 // include 0 in front to help get start pos
216 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
217 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
))
219 if (* size
< 64 ) return - 3 ;
221 fmtlen
= (* size
== 110 ) ? 22 : 10 ;
223 //skip last 4bit parity row for simplicity
224 * size
= removeParity ( BitStream
, * startIdx
+ sizeof ( preamble
), 5 , 0 , fmtlen
* 5 );
230 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
, 8 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 8 , 32 ));
235 * hi
= ( bytebits_to_byte ( BitStream
, 24 ));
236 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
+ 24 , 32 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 24 + 32 , 32 ));
245 //demodulates strong heavily clipped samples
246 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
248 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
249 uint8_t waveHigh
= 0 ;
250 for ( size_t i
= 0 ; i
< * size
; i
++){
251 if ( BinStream
[ i
] >= high
&& waveHigh
){
253 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
255 } else { //transition
256 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
258 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
259 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
261 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
262 BinStream
[ bitCnt
++] = 7 ;
263 } else if ( waveHigh
) {
264 BinStream
[ bitCnt
++] = invert
;
265 BinStream
[ bitCnt
++] = invert
;
266 } else if (! waveHigh
) {
267 BinStream
[ bitCnt
++] = invert
^ 1 ;
268 BinStream
[ bitCnt
++] = invert
^ 1 ;
272 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
274 BinStream
[ bitCnt
++] = invert
;
275 } else if (! waveHigh
) {
276 BinStream
[ bitCnt
++] = invert
^ 1 ;
280 } else if (! bitCnt
) {
282 waveHigh
= ( BinStream
[ i
] >= high
);
286 //transition bit oops
288 } else { //haven't hit new high or new low yet
298 void askAmp ( uint8_t * BitStream
, size_t size
)
301 for ( size_t i
= 1 ; i
< size
; ++ i
){
302 if ( BitStream
[ i
]- BitStream
[ i
- 1 ] >= 30 ) //large jump up
304 else if ( BitStream
[ i
- 1 ] - BitStream
[ i
] >= 20 ) //large jump down
312 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
313 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
315 if (* size
== 0 ) return - 1 ;
316 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
318 if (* clk
== 0 || start
< 0 ) return - 3 ;
319 if (* invert
!= 1 ) * invert
= 0 ;
320 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
321 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
323 uint8_t initLoopMax
= 255 ;
324 if ( initLoopMax
> * size
) initLoopMax
= * size
;
325 // Detect high and lows
326 //25% clip in case highs and lows aren't clipped [marshmellow]
328 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
329 return - 2 ; //just noise
332 // if clean clipped waves detected run alternate demod
333 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
334 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
335 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
336 if ( askType
) //askman
337 return manrawdecode ( BinStream
, size
, 0 );
341 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
343 int lastBit
; //set first clock check - can go negative
344 size_t i
, bitnum
= 0 ; //output counter
346 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
347 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
348 size_t MaxBits
= 3072 ; //max bits to collect
349 lastBit
= start
- * clk
;
351 for ( i
= start
; i
< * size
; ++ i
) {
352 if ( i
- lastBit
>= * clk
- tol
){
353 if ( BinStream
[ i
] >= high
) {
354 BinStream
[ bitnum
++] = * invert
;
355 } else if ( BinStream
[ i
] <= low
) {
356 BinStream
[ bitnum
++] = * invert
^ 1 ;
357 } else if ( i
- lastBit
>= * clk
+ tol
) {
359 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
360 BinStream
[ bitnum
++]= 7 ;
363 } else { //in tolerance - looking for peak
368 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
369 if ( BinStream
[ i
] >= high
) {
370 BinStream
[ bitnum
++] = * invert
;
371 } else if ( BinStream
[ i
] <= low
) {
372 BinStream
[ bitnum
++] = * invert
^ 1 ;
373 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
374 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
376 } else { //in tolerance - looking for peak
381 if ( bitnum
>= MaxBits
) break ;
387 //take 10 and 01 and manchester decode
388 //run through 2 times and take least errCnt
389 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
){
390 int errCnt
= 0 , bestErr
= 1000 ;
391 uint16_t bitnum
= 0 , MaxBits
= 512 , bestRun
= 0 ;
393 if (* size
< 16 ) return - 1 ;
394 //find correct start position [alignment]
395 for ( k
= 0 ; k
< 2 ; ++ k
){
396 for ( i
= k
; i
<* size
- 3 ; i
+= 2 )
397 if ( BitStream
[ i
] == BitStream
[ i
+ 1 ])
400 if ( bestErr
> errCnt
){
407 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
408 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
409 BitStream
[ bitnum
++] = invert
;
410 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
411 BitStream
[ bitnum
++] = invert
^ 1 ;
413 BitStream
[ bitnum
++] = 7 ;
415 if ( bitnum
> MaxBits
) break ;
421 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
424 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
425 curBit
= ( datain
>> ( 15 - i
) & 1 );
426 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
432 //encode binary data into binary manchester
433 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
435 size_t modIdx
= 20000 , i
= 0 ;
436 if ( size
> modIdx
) return - 1 ;
437 for ( size_t idx
= 0 ; idx
< size
; idx
++){
438 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
439 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
441 for (; i
<( size
* 2 ); i
++){
442 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
448 //take 01 or 10 = 1 and 11 or 00 = 0
449 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
450 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
451 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
456 uint16_t MaxBits
= 512 ;
457 //if not enough samples - error
458 if (* size
< 51 ) return - 1 ;
459 //check for phase change faults - skip one sample if faulty
460 uint8_t offsetA
= 1 , offsetB
= 1 ;
462 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
463 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
465 if (! offsetA
&& offsetB
) offset
++;
466 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
467 //check for phase error
468 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
469 BitStream
[ bitnum
++]= 7 ;
472 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
473 BitStream
[ bitnum
++]= 1 ^ invert
;
474 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
475 BitStream
[ bitnum
++]= invert
;
477 BitStream
[ bitnum
++]= 7 ;
480 if ( bitnum
> MaxBits
) break ;
487 // demod gProxIIDemod
488 // error returns as -x
489 // success returns start position in BitStream
490 // BitStream must contain previously askrawdemod and biphasedemoded data
491 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
494 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
496 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
))
497 return - 3 ; //preamble not found
499 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
501 //check first 6 spacer bits to verify format
502 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
503 //confirmed proper separator bits found
504 //return start position
505 return ( int ) startIdx
;
507 return - 5 ; //spacer bits not found - not a valid gproxII
510 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
511 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
513 size_t last_transition
= 0 ;
515 if ( fchigh
== 0 ) fchigh
= 10 ;
516 if ( fclow
== 0 ) fclow
= 8 ;
517 //set the threshold close to 0 (graph) or 128 std to avoid static
518 uint8_t threshold_value
= 123 ;
519 size_t preLastSample
= 0 ;
520 size_t LastSample
= 0 ;
521 size_t currSample
= 0 ;
522 if ( size
< 1024 ) return 0 ; // not enough samples
524 //find start of modulating data in trace
525 idx
= findModStart ( dest
, size
, threshold_value
, fchigh
);
527 // Need to threshold first sample
528 if ( dest
[ idx
] < threshold_value
) dest
[ 0 ] = 0 ;
533 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
534 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
535 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
536 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
537 for (; idx
< size
- 20 ; idx
++) {
538 // threshold current value
540 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
543 // Check for 0->1 transition
544 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
545 preLastSample
= LastSample
;
546 LastSample
= currSample
;
547 currSample
= idx
- last_transition
;
548 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
549 //do nothing with extra garbage
550 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
551 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
552 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ))){
557 } else if ( currSample
> ( fchigh
+ 1 ) && numBits
< 3 ) { //12 + and first two bit = unusable garbage
558 //do nothing with beginning garbage and reset.. should be rare..
560 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
562 } else { //9+ = 10 sample waves (or 6+ = 7)
565 last_transition
= idx
;
568 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
571 //translate 11111100000 to 10
572 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
573 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
574 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
576 uint8_t lastval
= dest
[ 0 ];
580 for ( idx
= 1 ; idx
< size
; idx
++) {
582 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
584 //find out how many bits (n) we collected
585 //if lastval was 1, we have a 1->0 crossing
586 if ( dest
[ idx
- 1 ]== 1 ) {
587 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
588 } else { // 0->1 crossing
589 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
593 //add to our destination the bits we collected
594 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
599 // if valid extra bits at the end were all the same frequency - add them in
600 if ( n
> rfLen
/ fchigh
) {
601 if ( dest
[ idx
- 2 ]== 1 ) {
602 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
604 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
606 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
612 //by marshmellow (from holiman's base)
613 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
614 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
617 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
618 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
622 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
623 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
625 if ( justNoise ( dest
, * size
)) return - 1 ;
627 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
629 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
630 if (* size
< 96 * 2 ) return - 2 ;
631 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
632 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
633 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
634 return - 3 ; //preamble not found
636 numStart
= startIdx
+ sizeof ( preamble
);
637 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
638 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
639 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
640 return - 4 ; //not manchester data
642 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
643 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
644 //Then, shift in a 0 or one into low
646 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
651 return ( int ) startIdx
;
654 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
655 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
657 if ( justNoise ( dest
, * size
)) return - 1 ;
659 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
661 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
662 if (* size
< 96 ) return - 2 ;
664 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
665 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
666 if ( preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
667 return - 3 ; //preamble not found
669 numStart
= startIdx
+ sizeof ( preamble
);
670 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
671 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
672 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
673 return - 4 ; //not manchester data
674 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
675 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
676 //Then, shift in a 0 or one into low
677 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
682 return ( int ) startIdx
;
685 int IOdemodFSK ( uint8_t * dest
, size_t size
)
687 if ( justNoise ( dest
, size
)) return - 1 ;
688 //make sure buffer has data
689 if ( size
< 66 * 64 ) return - 2 ;
691 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
692 if ( size
< 65 ) return - 3 ; //did we get a good demod?
694 //0 10 20 30 40 50 60
696 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
697 //-----------------------------------------------------------------------------
698 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
700 //XSF(version)facility:codeone+codetwo
703 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
704 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
))
705 return - 4 ; //preamble not found
707 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
708 //confirmed proper separator bits found
709 //return start position
710 return ( int ) startIdx
;
716 // find viking preamble 0xF200 in already demoded data
717 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
718 //make sure buffer has data
719 if (* size
< 64 * 2 ) return - 2 ;
721 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
722 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
723 return - 4 ; //preamble not found
725 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^
726 bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^
727 bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 ) ^
728 bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^
729 bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^
730 bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 ) ^
731 bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^
732 bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
733 if ( checkCalc
!= 0xA8 ) return - 5 ;
734 if (* size
!= 64 ) return - 6 ;
735 //return start position
736 return ( int ) startIdx
;
740 // find Visa2000 preamble in already demoded data
741 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
742 if (* size
< 96 ) return - 1 ; //make sure buffer has data
744 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
745 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
746 return - 2 ; //preamble not found
747 if (* size
!= 96 ) return - 3 ; //wrong demoded size
748 //return start position
749 return ( int ) startIdx
;
752 // find Noralsy preamble in already demoded data
753 int NoralsyDemod_AM ( uint8_t * dest
, size_t * size
) {
754 if (* size
< 96 ) return - 1 ; //make sure buffer has data
756 uint8_t preamble
[] = { 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 };
757 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
758 return - 2 ; //preamble not found
759 if (* size
!= 96 ) return - 3 ; //wrong demoded size
760 //return start position
761 return ( int ) startIdx
;
763 // find presco preamble 0x10D in already demoded data
764 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
765 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has data
767 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
768 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
769 return - 2 ; //preamble not found
770 if (* size
!= 128 ) return - 3 ; //wrong demoded size
771 //return start position
772 return ( int ) startIdx
;
775 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
776 // BitStream must contain previously askrawdemod and biphasedemoded data
777 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
778 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has enough data
780 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
781 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
782 return - 2 ; //preamble not found
783 if (* size
!= 128 ) return - 3 ; //wrong demoded size
784 //return start position
785 return ( int ) startIdx
;
788 // ASK/Diphase fc/64 (inverted Biphase)
789 // Note: this i s not a demod, this is only a detection
790 // the parameter *dest needs to be demoded before call
791 // 0xFFFF preamble, 64bits
792 int JablotronDemod ( uint8_t * dest
, size_t * size
){
793 if (* size
< 64 * 2 ) return - 1 ; //make sure buffer has enough data
795 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
796 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
797 return - 2 ; //preamble not found
798 if (* size
!= 64 ) return - 3 ; // wrong demoded size
800 uint8_t checkchksum
= 0 ;
801 for ( int i
= 16 ; i
< 56 ; i
+= 8 ) {
802 checkchksum
+= bytebits_to_byte ( dest
+ startIdx
+ i
, 8 );
805 uint8_t crc
= bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
806 if ( checkchksum
!= crc
) return - 5 ;
807 return ( int ) startIdx
;
811 // FSK Demod then try to locate an AWID ID
812 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
814 //make sure buffer has enough data
815 if (* size
< 96 * 50 ) return - 1 ;
817 if ( justNoise ( dest
, * size
)) return - 2 ;
820 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
821 if (* size
< 96 ) return - 3 ; //did we get a good demod?
823 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
825 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
826 return - 4 ; //preamble not found
827 if (* size
!= 96 ) return - 5 ;
828 return ( int ) startIdx
;
832 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
833 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
835 //make sure buffer has data
836 if (* size
< 128 * 50 ) return - 5 ;
838 //test samples are not just noise
839 if ( justNoise ( dest
, * size
)) return - 1 ;
842 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
843 if (* size
< 128 ) return - 2 ; //did we get a good demod?
845 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
846 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
847 return - 4 ; //preamble not found
848 if (* size
!= 128 ) return - 3 ;
849 return ( int ) startIdx
;
852 // find nedap preamble in already demoded data
853 int NedapDemod ( uint8_t * dest
, size_t * size
) {
854 //make sure buffer has data
855 if (* size
< 128 ) return - 3 ;
858 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
859 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
860 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
861 return - 4 ; //preamble not found
862 return ( int ) startIdx
;
865 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
867 int IdteckDemodPSK ( uint8_t * dest
, size_t * size
) {
868 //make sure buffer has data
869 if (* size
< 64 * 2 ) return - 1 ;
871 uint8_t preamble
[] = { 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 };
872 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
873 return - 2 ; //preamble not found
874 if (* size
!= 64 ) return - 3 ; // wrong demoded size
875 return ( int ) startIdx
;
879 // to detect a wave that has heavily clipped (clean) samples
880 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
882 bool allArePeaks
= true ;
884 size_t loopEnd
= 512 + 160 ;
885 if ( loopEnd
> size
) loopEnd
= size
;
886 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
887 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
893 if ( cntPeaks
> 300 ) return true ;
898 // to help detect clocks on heavily clipped samples
899 // based on count of low to low
900 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
902 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
906 // get to first full low to prime loop and skip incomplete first pulse
907 while (( dest
[ i
] < high
) && ( i
< size
))
909 while (( dest
[ i
] > low
) && ( i
< size
))
912 // loop through all samples
914 // measure from low to low
915 while (( dest
[ i
] > low
) && ( i
< size
))
918 while (( dest
[ i
] < high
) && ( i
< size
))
920 while (( dest
[ i
] > low
) && ( i
< size
))
922 //get minimum measured distance
923 if ( i
- startwave
< minClk
&& i
< size
)
924 minClk
= i
- startwave
;
927 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
928 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
929 if ( minClk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && minClk
<= fndClk
[ clkCnt
]+ 1 )
930 return fndClk
[ clkCnt
];
936 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
937 // maybe somehow adjust peak trimming value based on samples to fix?
938 // return start index of best starting position for that clock and return clock (by reference)
939 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
942 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
944 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
945 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
946 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
947 //if we already have a valid clock
950 if ( clk
[ i
] == * clock
) clockFnd
= i
;
951 //clock found but continue to find best startpos
953 //get high and low peak
955 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
957 //test for large clean peaks
959 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
960 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
);
961 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d" , ans
);
962 for ( i
= clkEnd
- 1 ; i
> 0 ; i
--){
966 return 0 ; // for strong waves i don't use the 'best start position' yet...
967 //break; //clock found but continue to find best startpos [not yet]
973 uint8_t clkCnt
, tol
= 0 ;
974 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
975 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
977 size_t arrLoc
, loopEnd
;
986 //test each valid clock from smallest to greatest to see which lines up
987 for (; clkCnt
< clkEnd
; clkCnt
++) {
988 if ( clk
[ clkCnt
] <= 32 ) {
993 //if no errors allowed - keep start within the first clock
994 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 )
995 loopCnt
= clk
[ clkCnt
] * 2 ;
997 bestErr
[ clkCnt
] = 1000 ;
999 //try lining up the peaks by moving starting point (try first few clocks)
1000 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
1001 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
1004 // now that we have the first one lined up test rest of wave array
1005 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
1006 for ( i
= 0 ; i
< loopEnd
; ++ i
){
1007 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
1008 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
1009 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
1010 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
1011 } else { //error no peak detected
1015 //if we found no errors then we can stop here and a low clock (common clocks)
1016 // this is correct one - return this clock
1017 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
1018 if ( errCnt
== 0 && clkCnt
< 7 ) {
1019 if (! clockFnd
) * clock
= clk
[ clkCnt
];
1022 //if we found errors see if it is lowest so far and save it as best run
1023 if ( errCnt
< bestErr
[ clkCnt
]) {
1024 bestErr
[ clkCnt
] = errCnt
;
1025 bestStart
[ clkCnt
] = ii
;
1031 for ( k
= 1 ; k
< clkEnd
; ++ k
){
1032 if ( bestErr
[ k
] < bestErr
[ best
]){
1033 if ( bestErr
[ k
] == 0 ) bestErr
[ k
]= 1 ;
1034 // current best bit to error ratio vs new bit to error ratio
1035 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ k
])/ bestErr
[ k
] ){
1039 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ k
], bestErr
[ k
], clk
[ best
], bestStart
[ best
]);
1041 if (! clockFnd
) * clock
= clk
[ best
];
1042 return bestStart
[ best
];
1046 //detect psk clock by reading each phase shift
1047 // a phase shift is determined by measuring the sample length of each wave
1048 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
)
1050 uint8_t clk
[]={ 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
1051 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1052 if ( size
== 0 ) return 0 ;
1053 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1055 //if we already have a valid clock quit
1058 if ( clk
[ i
] == clock
) return clock
;
1060 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1061 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1062 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
1063 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
1064 uint16_t peaksdet
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1065 fc
= countFC ( dest
, size
, 0 );
1066 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1067 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
1069 //find first full wave
1070 for ( i
= 160 ; i
< loopCnt
; i
++){
1071 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1072 if ( waveStart
== 0 ) {
1074 //prnt("DEBUG: waveStart: %d",waveStart);
1077 //prnt("DEBUG: waveEnd: %d",waveEnd);
1078 waveLenCnt
= waveEnd
- waveStart
;
1079 if ( waveLenCnt
> fc
){
1080 firstFullWave
= waveStart
;
1081 fullWaveLen
= waveLenCnt
;
1088 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
1090 //test each valid clock from greatest to smallest to see which lines up
1091 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
1092 lastClkBit
= firstFullWave
; //set end of wave as clock align
1096 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
1098 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
1099 //top edge of wave = start of new wave
1100 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1101 if ( waveStart
== 0 ) {
1106 waveLenCnt
= waveEnd
- waveStart
;
1107 if ( waveLenCnt
> fc
){
1108 //if this wave is a phase shift
1109 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
1110 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
1112 lastClkBit
+= clk
[ clkCnt
];
1113 } else if ( i
< lastClkBit
+ 8 ){
1114 //noise after a phase shift - ignore
1115 } else { //phase shift before supposed to based on clock
1118 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1119 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1128 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
]= errCnt
;
1129 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
]= peakcnt
;
1131 //all tested with errors
1132 //return the highest clk with the most peaks found
1134 for ( i
= 7 ; i
>= 1 ; i
--){
1135 if ( peaksdet
[ i
] > peaksdet
[ best
]) {
1138 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1143 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1144 //find shortest transition from high to low
1146 size_t transition1
= 0 ;
1147 int lowestTransition
= 255 ;
1148 bool lastWasHigh
= false ;
1150 //find first valid beginning of a high or low wave
1151 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1153 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1155 lastWasHigh
= ( dest
[ i
] >= peak
);
1157 if ( i
== size
) return 0 ;
1160 for (; i
< size
; i
++) {
1161 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1162 lastWasHigh
= ( dest
[ i
] >= peak
);
1163 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1167 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1168 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1169 return lowestTransition
;
1173 //detect nrz clock by reading #peaks vs no peaks(or errors)
1174 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
)
1177 uint8_t clk
[]={ 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1178 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1179 if ( size
== 0 ) return 0 ;
1180 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1181 //if we already have a valid clock quit
1183 if ( clk
[ i
] == clock
) return clock
;
1185 //get high and low peak
1187 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1189 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1193 uint16_t smplCnt
= 0 ;
1194 int16_t peakcnt
= 0 ;
1195 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1196 uint16_t maxPeak
= 255 ;
1197 bool firstpeak
= false ;
1198 //test for large clipped waves
1199 for ( i
= 0 ; i
< loopCnt
; i
++){
1200 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1201 if (! firstpeak
) continue ;
1206 if ( maxPeak
> smplCnt
){
1208 //prnt("maxPk: %d",maxPeak);
1211 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1216 bool errBitHigh
= 0 ;
1218 uint8_t ignoreCnt
= 0 ;
1219 uint8_t ignoreWindow
= 4 ;
1220 bool lastPeakHigh
= 0 ;
1223 //test each valid clock from smallest to greatest to see which lines up
1224 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1225 //ignore clocks smaller than smallest peak
1226 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1227 //try lining up the peaks by moving starting point (try first 256)
1228 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1229 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1233 lastBit
= ii
- clk
[ clkCnt
];
1234 //loop through to see if this start location works
1235 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1236 //if we are at a clock bit
1237 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1239 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1240 //if same peak don't count it
1241 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1244 lastPeakHigh
= ( dest
[ i
] >= peak
);
1247 ignoreCnt
= ignoreWindow
;
1248 lastBit
+= clk
[ clkCnt
];
1249 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1250 lastBit
+= clk
[ clkCnt
];
1252 //else if not a clock bit and no peaks
1253 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1256 if ( errBitHigh
== true ) peakcnt
--;
1261 // else if not a clock bit but we have a peak
1262 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1263 //error bar found no clock...
1267 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1268 peaksdet
[ clkCnt
]= peakcnt
;
1275 for ( iii
= 7 ; iii
> 0 ; iii
--){
1276 if (( peaksdet
[ iii
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ iii
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1277 if ( clk
[ iii
] > ( lowestTransition
- ( clk
[ iii
]/ 8 )) && clk
[ iii
] < ( lowestTransition
+ ( clk
[ iii
]/ 8 ))) {
1280 } else if ( peaksdet
[ iii
] > peaksdet
[ best
]){
1283 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ iii
], peaksdet
[ iii
], maxPeak
, clk
[ best
], lowestTransition
);
1290 // convert psk1 demod to psk2 demod
1291 // only transition waves are 1s
1292 void psk1TOpsk2 ( uint8_t * bits
, size_t size
) {
1293 uint8_t lastBit
= bits
[ 0 ];
1294 for ( size_t i
= 1 ; i
< size
; i
++){
1296 if ( bits
[ i
] == 7 ) continue ;
1298 if ( lastBit
!= bits
[ i
]){
1308 // convert psk2 demod to psk1 demod
1309 // from only transition waves are 1s to phase shifts change bit
1310 void psk2TOpsk1 ( uint8_t * bits
, size_t size
) {
1312 for ( size_t i
= 0 ; i
< size
; i
++){
1320 // redesigned by marshmellow adjusted from existing decode functions
1321 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1322 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1324 //26 bit 40134 format (don't know other formats)
1325 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1326 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1327 size_t startidx
= 0 ;
1328 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1329 // if didn't find preamble try again inverting
1330 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1333 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1335 for ( size_t i
= startidx
; i
< * size
; i
++)
1338 return ( int ) startidx
;
1341 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1342 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1343 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1344 if ( justNoise ( dest
, * size
)) return - 1 ;
1345 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1346 if (* clk
== 0 ) return - 2 ;
1347 size_t i
, gLen
= 4096 ;
1348 if ( gLen
>* size
) gLen
= * size
- 20 ;
1350 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1353 //convert wave samples to 1's and 0's
1354 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1355 if ( dest
[ i
] >= high
) bit
= 1 ;
1356 if ( dest
[ i
] <= low
) bit
= 0 ;
1359 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1362 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1363 //if transition detected or large number of same bits - store the passed bits
1364 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1365 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1366 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1375 //detects the bit clock for FSK given the high and low Field Clocks
1376 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1378 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1379 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1380 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1381 uint8_t rfLensFnd
= 0 ;
1382 uint8_t lastFCcnt
= 0 ;
1383 uint16_t fcCounter
= 0 ;
1384 uint16_t rfCounter
= 0 ;
1385 uint8_t firstBitFnd
= 0 ;
1387 if ( size
== 0 ) return 0 ;
1389 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1394 //prnt("DEBUG: fcTol: %d",fcTol);
1395 // prime i to first peak / up transition
1396 for ( i
= 160 ; i
< size
- 20 ; i
++)
1397 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1400 for (; i
< size
- 20 ; i
++){
1404 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1407 // if we got less than the small fc + tolerance then set it to the small fc
1408 // if it is inbetween set it to the last counter
1409 if ( fcCounter
< fcHigh
&& fcCounter
> fcLow
)
1410 fcCounter
= lastFCcnt
;
1411 else if ( fcCounter
< fcLow
+ fcTol
)
1413 else //set it to the large fc
1416 //look for bit clock (rf/xx)
1417 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1418 //not the same size as the last wave - start of new bit sequence
1419 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1420 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1421 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1427 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1428 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1429 rfCnts
[ rfLensFnd
]++;
1430 rfLens
[ rfLensFnd
++] = rfCounter
;
1436 lastFCcnt
= fcCounter
;
1440 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1442 for ( i
= 0 ; i
< 15 ; i
++){
1443 //get highest 2 RF values (might need to get more values to compare or compare all?)
1444 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1445 rfHighest3
= rfHighest2
;
1446 rfHighest2
= rfHighest
;
1448 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1449 rfHighest3
= rfHighest2
;
1451 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1454 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1456 // set allowed clock remainder tolerance to be 1 large field clock length+1
1457 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1458 uint8_t tol1
= fcHigh
+ 1 ;
1460 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1462 // loop to find the highest clock that has a remainder less than the tolerance
1463 // compare samples counted divided by
1464 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1466 for (; ii
>= 2 ; ii
--){
1467 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1468 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1469 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1470 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1477 if ( ii
< 2 ) return 0 ; // oops we went too far
1483 //countFC is to detect the field clock lengths.
1484 //counts and returns the 2 most common wave lengths
1485 //mainly used for FSK field clock detection
1486 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1488 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1489 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1490 uint8_t fcLensFnd
= 0 ;
1491 uint8_t lastFCcnt
= 0 ;
1492 uint8_t fcCounter
= 0 ;
1494 if ( size
< 180 ) return 0 ;
1496 // prime i to first up transition
1497 for ( i
= 160 ; i
< size
- 20 ; i
++)
1498 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1501 for (; i
< size
- 20 ; i
++){
1502 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1503 // new up transition
1506 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1507 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1508 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1509 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1510 // save last field clock count (fc/xx)
1511 lastFCcnt
= fcCounter
;
1513 // find which fcLens to save it to:
1514 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1515 if ( fcLens
[ ii
]== fcCounter
){
1521 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1523 fcCnts
[ fcLensFnd
]++;
1524 fcLens
[ fcLensFnd
++]= fcCounter
;
1533 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1535 // go through fclens and find which ones are bigest 2
1536 for ( i
= 0 ; i
< 15 ; i
++){
1537 // get the 3 best FC values
1538 if ( fcCnts
[ i
]> maxCnt1
) {
1543 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1546 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1549 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1551 if ( fcLens
[ best1
]== 0 ) return 0 ;
1552 uint8_t fcH
= 0 , fcL
= 0 ;
1553 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1560 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1561 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1562 return 0 ; //lots of waves not psk or fsk
1564 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1566 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1567 if ( fskAdj
) return fcs
;
1568 return fcLens
[ best1
];
1571 //by marshmellow - demodulate PSK1 wave
1572 //uses wave lengths (# Samples)
1573 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1575 if ( size
== 0 ) return - 1 ;
1576 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1577 if (* size
< loopCnt
) loopCnt
= * size
;
1580 uint8_t curPhase
= * invert
;
1581 size_t i
= 0 , waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1582 uint16_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1583 uint16_t errCnt
= 0 , waveLenCnt
= 0 , errCnt2
= 0 ;
1584 fc
= countFC ( dest
, * size
, 1 );
1585 uint8_t fc2
= fc
>> 8 ;
1586 if ( fc2
== 10 ) return - 1 ; //fsk found - quit
1588 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1589 //prnt("DEBUG: FC: %d",fc);
1590 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1591 if (* clock
== 0 ) return - 1 ;
1593 //find start of modulating data in trace
1594 uint8_t threshold_value
= 123 ; //-5
1595 i
= findModStart ( dest
, * size
, threshold_value
, fc
);
1597 //find first phase shift
1598 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1600 for (; i
< loopCnt
; i
++){
1602 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1604 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: waveEnd: %u, waveStart: %u" , waveEnd
, waveStart
);
1605 waveLenCnt
= waveEnd
- waveStart
;
1606 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 3 )){ //not first peak and is a large wave but not out of whack
1607 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1608 firstFullWave
= waveStart
;
1609 fullWaveLen
= waveLenCnt
;
1610 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1611 if ( lastAvgWaveVal
> threshold_value
) curPhase
^= 1 ;
1617 avgWaveVal
+= dest
[ i
+ 2 ];
1619 if ( firstFullWave
== 0 ) {
1620 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1621 // so skip a little to ensure we are past any Start Signal
1622 firstFullWave
= 160 ;
1623 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1625 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1628 numBits
+= ( firstFullWave
/ * clock
);
1629 //set start of wave as clock align
1630 lastClkBit
= firstFullWave
;
1631 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1632 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1634 dest
[ numBits
++] = curPhase
; //set first read bit
1635 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1636 //top edge of wave = start of new wave
1637 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1638 if ( waveStart
== 0 ) {
1641 avgWaveVal
= dest
[ i
+ 1 ];
1644 waveLenCnt
= waveEnd
- waveStart
;
1645 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1646 if ( waveLenCnt
> fc
){
1647 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1648 //this wave is a phase shift
1649 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1650 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1652 dest
[ numBits
++] = curPhase
;
1653 lastClkBit
+= * clock
;
1654 } else if ( i
< lastClkBit
+ 10 + fc
){
1655 //noise after a phase shift - ignore
1656 } else { //phase shift before supposed to based on clock
1658 dest
[ numBits
++] = 7 ;
1660 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1661 lastClkBit
+= * clock
; //no phase shift but clock bit
1662 dest
[ numBits
++] = curPhase
;
1663 } else if ( waveLenCnt
< fc
- 1 ) { //wave is smaller than field clock (shouldn't happen often)
1665 if ( errCnt2
> 101 ) return errCnt2
;
1671 avgWaveVal
+= dest
[ i
+ 1 ];
1678 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1679 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1680 size_t bufsize
= * size
;
1681 //need to loop through all samples and identify our clock, look for the ST pattern
1682 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1685 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1686 bool complete
= false ;
1687 int tmpbuff
[ bufsize
/ 32 ]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1688 int waveLen
[ bufsize
/ 32 ]; // if clock is larger then we waste memory in array size that is not needed...
1689 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1692 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1693 memset ( waveLen
, 0 , sizeof ( waveLen
));
1696 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1697 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1698 return false ; //just noise
1703 // get to first full low to prime loop and skip incomplete first pulse
1704 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1706 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1710 // populate tmpbuff buffer with pulse lengths
1711 while ( i
< bufsize
) {
1712 // measure from low to low
1713 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1716 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1718 //first high point for this wave
1720 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1722 if ( j
>= ( bufsize
/ 32 )) {
1725 waveLen
[ j
] = i
- waveStart
; //first high to first low
1726 tmpbuff
[ j
++] = i
- start
;
1727 if ( i
- start
< minClk
&& i
< bufsize
) {
1731 // set clock - might be able to get this externally and remove this work...
1733 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1734 tol
= fndClk
[ clkCnt
]/ 8 ;
1735 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1740 // clock not found - ERROR
1742 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1749 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1751 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1753 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1754 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1755 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1756 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1764 // first ST not found - ERROR
1766 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1769 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at: %d, j=%d" , start
, j
);
1771 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1776 // skip over the remainder of ST
1777 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1779 // now do it again to find the end
1781 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1783 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1784 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1785 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1786 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1795 //didn't find second ST - ERROR
1797 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1800 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1801 //now begin to trim out ST so we can use normal demod cmds
1803 size_t datalen
= end
- start
;
1804 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1805 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1806 // padd the amount off - could be problematic... but shouldn't happen often
1807 datalen
+= clk
- ( datalen
% clk
);
1808 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1809 // padd the amount off - could be problematic... but shouldn't happen often
1810 datalen
-= datalen
% clk
;
1812 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1815 // if datalen is less than one t55xx block - ERROR
1816 if ( datalen
/ clk
< 8 * 4 ) {
1817 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1820 size_t dataloc
= start
;
1821 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1822 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1823 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1824 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1833 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1835 // warning - overwriting buffer given with raw wave data with ST removed...
1836 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1837 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1838 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1839 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1840 buffer
[ dataloc
+ i
] = high
+ 5 ;
1843 for ( i
= 0 ; i
< datalen
; ++ i
) {
1844 if ( i
+ newloc
< bufsize
) {
1845 if ( i
+ newloc
< dataloc
)
1846 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1852 //skip next ST - we just assume it will be there from now on...
1853 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));