]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/legicrf.c
4aa45b6d6040280b80e105965dc4e37edad0e386
[proxmark3-svn] / armsrc / legicrf.c
1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
10 #include "legicrf.h"
11
12 static struct legic_frame {
13 uint8_t bits;
14 uint32_t data;
15 } current_frame;
16
17 static enum {
18 STATE_DISCON,
19 STATE_IV,
20 STATE_CON,
21 } legic_state;
22
23 static crc_t legic_crc;
24 static int legic_read_count;
25 static uint32_t legic_prng_bc;
26 static uint32_t legic_prng_iv;
27
28 static int legic_phase_drift;
29 static int legic_frame_drift;
30 static int legic_reqresp_drift;
31
32 AT91PS_TC timer;
33 AT91PS_TC prng_timer;
34
35 /*
36 static void setup_timer(void) {
37 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
38 // this it won't be terribly accurate but should be good enough.
39 //
40 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
41 timer = AT91C_BASE_TC1;
42 timer->TC_CCR = AT91C_TC_CLKDIS;
43 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
44 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
45
46 //
47 // Set up Timer 2 to use for measuring time between frames in
48 // tag simulation mode. Runs 4x faster as Timer 1
49 //
50 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
51 prng_timer = AT91C_BASE_TC2;
52 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
53 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
54 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
55 }
56
57 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
58 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
59
60 // fast clock
61 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
62 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
63 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
64 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
65 AT91C_BASE_TC0->TC_RA = 1;
66 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
67
68 */
69
70 // At TIMER_CLOCK3 (MCK/32)
71 // testing calculating in (us) microseconds.
72 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
73 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
74 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
75 #define TAG_BIT_PERIOD 144 // 100us == 100 * 1.5 == 150ticks
76 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
77
78 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
79
80 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
81 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
82
83 #define OFFSET_LOG 1024
84
85 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
86
87 #ifndef SHORT_COIL
88 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
89 #endif
90 #ifndef OPEN_COIL
91 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
92 #endif
93
94 // Pause pulse, off in 20us / 30ticks,
95 // ONE / ZERO bit pulse,
96 // one == 80us / 120ticks
97 // zero == 40us / 60ticks
98 #ifndef COIL_PULSE
99 # define COIL_PULSE(x) \
100 do { \
101 SHORT_COIL; \
102 WaitTicks( (RWD_TIME_PAUSE) ); \
103 OPEN_COIL; \
104 WaitTicks((x)); \
105 } while (0)
106 #endif
107
108 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
109 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
110 #define LEGIC_CARD_MEMSIZE 1024
111 static uint8_t* cardmem;
112
113 static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
114 // Overflow, won't happen
115 if (f->bits >= 31) return;
116
117 f->data |= (bit << f->bits);
118 f->bits++;
119 }
120
121 static void frame_clean(struct legic_frame * const f) {
122 f->data = 0;
123 f->bits = 0;
124 }
125
126 // Prng works when waiting in 99.1us cycles.
127 // and while sending/receiving in bit frames (100, 60)
128 /*static void CalibratePrng( uint32_t time){
129 // Calculate Cycles based on timer 100us
130 uint32_t i = (time - sendFrameStop) / 100 ;
131
132 // substract cycles of finished frames
133 int k = i - legic_prng_count()+1;
134
135 // substract current frame length, rewind to beginning
136 if ( k > 0 )
137 legic_prng_forward(k);
138 }
139 */
140
141 /* Generate Keystream */
142 uint32_t get_key_stream(int skip, int count) {
143 uint32_t key = 0;
144 int i;
145
146 // Use int to enlarge timer tc to 32bit
147 legic_prng_bc += prng_timer->TC_CV;
148
149 // reset the prng timer.
150 ResetTimer(prng_timer);
151
152 /* If skip == -1, forward prng time based */
153 if(skip == -1) {
154 i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
155 i -= legic_prng_count(); /* substract cycles of finished frames */
156 i -= count; /* substract current frame length, rewind to beginning */
157 legic_prng_forward(i);
158 } else {
159 legic_prng_forward(skip);
160 }
161
162 i = (count == 6) ? -1 : legic_read_count;
163
164 /* Write Time Data into LOG */
165 // uint8_t *BigBuf = BigBuf_get_addr();
166 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
167 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
168 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
169 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
170 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
171 // BigBuf[OFFSET_LOG+384+i] = count;
172
173 /* Generate KeyStream */
174 for(i=0; i<count; i++) {
175 key |= legic_prng_get_bit() << i;
176 legic_prng_forward(1);
177 }
178 return key;
179 }
180
181 /* Send a frame in tag mode, the FPGA must have been set up by
182 * LegicRfSimulate
183 */
184 void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
185 /* Bitbang the response */
186 LOW(GPIO_SSC_DOUT);
187 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
188 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
189
190 /* Use time to crypt frame */
191 if(crypt) {
192 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
193 response ^= legic_prng_get_bits(bits);
194 }
195
196 /* Wait for the frame start */
197 WaitUS( TAG_FRAME_WAIT );
198
199 uint8_t bit = 0;
200 for(int i = 0; i < bits; i++) {
201
202 bit = response & 1;
203 response >>= 1;
204
205 if (bit)
206 HIGH(GPIO_SSC_DOUT);
207 else
208 LOW(GPIO_SSC_DOUT);
209
210 WaitUS(100);
211 }
212 LOW(GPIO_SSC_DOUT);
213 }
214
215 /* Send a frame in reader mode, the FPGA must have been set up by
216 * LegicRfReader
217 */
218 void frame_sendAsReader(uint32_t data, uint8_t bits){
219
220 uint32_t starttime = GET_TICKS, send = 0;
221 uint16_t mask = 1;
222
223 // xor lsfr onto data.
224 send = data ^ legic_prng_get_bits(bits);
225
226 for (; mask < BITMASK(bits); mask <<= 1) {
227 if (send & mask)
228 COIL_PULSE(RWD_TIME_1);
229 else
230 COIL_PULSE(RWD_TIME_0);
231 }
232
233 // Final pause to mark the end of the frame
234 COIL_PULSE(0);
235
236 // log
237 uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1), BYTEx(send, 0), BYTEx(send, 1)};
238 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
239 }
240
241 /* Receive a frame from the card in reader emulation mode, the FPGA and
242 * timer must have been set up by LegicRfReader and frame_sendAsReader.
243 *
244 * The LEGIC RF protocol from card to reader does not include explicit
245 * frame start/stop information or length information. The reader must
246 * know beforehand how many bits it wants to receive. (Notably: a card
247 * sending a stream of 0-bits is indistinguishable from no card present.)
248 *
249 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
250 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
251 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
252 * for edges. Count the edges in each bit interval. If they are approximately
253 * 0 this was a 0-bit, if they are approximately equal to the number of edges
254 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
255 * timer that's still running from frame_sendAsReader in order to get a synchronization
256 * with the frame that we just sent.
257 *
258 * FIXME: Because we're relying on the hysteresis to just do the right thing
259 * the range is severely reduced (and you'll probably also need a good antenna).
260 * So this should be fixed some time in the future for a proper receiver.
261 */
262 static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
263
264 if ( bits > 32 ) return;
265
266 uint8_t i = bits, edges = 0;
267 uint32_t the_bit = 1, next_bit_at = 0, data = 0;
268 uint32_t old_level = 0;
269 volatile uint32_t level = 0;
270
271 frame_clean(f);
272
273 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
274 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
275
276 // calibrate the prng.
277 legic_prng_forward(2);
278 data = legic_prng_get_bits(bits);
279
280 //FIXED time between sending frame and now listening frame. 330us
281 uint32_t starttime = GET_TICKS;
282 // its about 9+9 ticks delay from end-send to here.
283 //WaitTicks( 495 - 9 - 9 );
284 WaitTicks( 477 );
285
286 next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
287
288 while ( i-- ){
289 edges = 0;
290 while ( GET_TICKS < next_bit_at) {
291
292 level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
293
294 if (level != old_level)
295 ++edges;
296
297 old_level = level;
298 }
299
300 next_bit_at += TAG_BIT_PERIOD;
301
302 // We expect 42 edges (ONE)
303 if ( edges > 20 )
304 data ^= the_bit;
305
306 the_bit <<= 1;
307 }
308
309 // output
310 f->data = data;
311 f->bits = bits;
312
313 // log
314 uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
315 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
316 }
317
318 // Setup pm3 as a Legic Reader
319 static uint32_t setup_phase_reader(uint8_t iv) {
320
321 // Switch on carrier and let the tag charge for 1ms
322 HIGH(GPIO_SSC_DOUT);
323 WaitUS(5000);
324
325 ResetTicks();
326
327 // no keystream yet
328 legic_prng_init(0);
329
330 // send IV handshake
331 frame_sendAsReader(iv, 7);
332
333 // Now both tag and reader has same IV. Prng can start.
334 legic_prng_init(iv);
335
336 frame_receiveAsReader(&current_frame, 6);
337
338 // 292us (438t) - fixed delay before sending ack.
339 // minus log and stuff 100tick?
340 WaitTicks(338);
341 legic_prng_forward(3);
342
343 // Send obsfuscated acknowledgment frame.
344 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
345 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
346 switch ( current_frame.data ) {
347 case 0x0D: frame_sendAsReader(0x19, 6); break;
348 case 0x1D:
349 case 0x3D: frame_sendAsReader(0x39, 6); break;
350 default: break;
351 }
352
353 legic_prng_forward(2);
354 return current_frame.data;
355 }
356
357 static void LegicCommonInit(void) {
358
359 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
360 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
361 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
362
363 /* Bitbang the transmitter */
364 LOW(GPIO_SSC_DOUT);
365 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
366 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
367
368 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
369 cardmem = BigBuf_get_EM_addr();
370 memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
371
372 clear_trace();
373 set_tracing(TRUE);
374 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
375
376 StartTicks();
377 }
378
379 // Switch off carrier, make sure tag is reset
380 static void switch_off_tag_rwd(void) {
381 LOW(GPIO_SSC_DOUT);
382 WaitUS(20);
383 WDT_HIT();
384 }
385
386 // calculate crc4 for a legic READ command
387 static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
388 crc_clear(&legic_crc);
389 uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
390 crc_update(&legic_crc, temp, cmd_sz + 8 );
391 return crc_finish(&legic_crc);
392 }
393
394 int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
395
396 uint8_t byte, crc, calcCrc = 0;
397 uint32_t cmd = (index << 1) | LEGIC_READ;
398
399 //WaitTicks(366);
400 WaitTicks(330);
401
402 frame_sendAsReader(cmd, cmd_sz);
403 frame_receiveAsReader(&current_frame, 12);
404
405 // CRC check.
406 byte = BYTEx(current_frame.data, 0);
407 crc = BYTEx(current_frame.data, 1);
408 calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
409
410 if( calcCrc != crc ) {
411 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc);
412 return -1;
413 }
414
415 legic_prng_forward(4);
416 return byte;
417 }
418
419 /*
420 * - assemble a write_cmd_frame with crc and send it
421 * - wait until the tag sends back an ACK ('1' bit unencrypted)
422 * - forward the prng based on the timing
423 */
424 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
425 int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
426
427 //do not write UID, CRC at offset 0-4.
428 if (addr <= 4) return 0;
429
430 // crc
431 crc_clear(&legic_crc);
432 crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
433 crc_update(&legic_crc, addr, addr_sz);
434 crc_update(&legic_crc, byte, 8);
435 uint32_t crc = crc_finish(&legic_crc);
436
437 uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1);
438 if ( crc != crc2 )
439 Dbprintf("crc is missmatch");
440
441 // send write command
442 uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC
443 |(byte <<(addr_sz+1)) //Data
444 |(addr <<1) //Address
445 | LEGIC_WRITE); //CMD = Write
446
447 uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd
448
449 legic_prng_forward(2); /* we wait anyways */
450
451 WaitUS(TAG_FRAME_WAIT);
452
453 frame_sendAsReader(cmd, cmd_sz);
454
455
456 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
457 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
458
459 // wait for ack
460 int t, old_level = 0, edges = 0;
461 int next_bit_at = 0;
462
463 WaitUS(TAG_FRAME_WAIT);
464
465 for( t = 0; t < 80; ++t) {
466 edges = 0;
467 next_bit_at += TAG_BIT_PERIOD;
468 while(timer->TC_CV < next_bit_at) {
469 volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
470 if(level != old_level)
471 edges++;
472
473 old_level = level;
474 }
475 if(edges > 20 ) { /* expected are 42 edges */
476 int t = timer->TC_CV;
477 int c = t / TAG_BIT_PERIOD;
478
479 ResetTimer(timer);
480 legic_prng_forward(c);
481 return 0;
482 }
483 }
484
485 ResetTimer(timer);
486 return -1;
487 }
488
489 int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
490
491 len &= 0x3FF;
492
493 uint16_t i = 0;
494 uint8_t isOK = 1;
495 legic_card_select_t card;
496
497 LegicCommonInit();
498
499 if ( legic_select_card_iv(&card, iv) ) {
500 isOK = 0;
501 goto OUT;
502 }
503
504 switch_off_tag_rwd();
505
506 if (len + offset >= card.cardsize)
507 len = card.cardsize - offset;
508
509 setup_phase_reader(iv);
510
511 LED_B_ON();
512 while (i < len) {
513 int r = legic_read_byte(offset + i, card.cmdsize);
514
515 if (r == -1 || BUTTON_PRESS()) {
516 if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
517 isOK = 0;
518 goto OUT;
519 }
520 cardmem[i++] = r;
521 WDT_HIT();
522 }
523
524 OUT:
525 WDT_HIT();
526 switch_off_tag_rwd();
527 LEDsoff();
528 cmd_send(CMD_ACK,isOK,len,0,cardmem,len);
529 return 0;
530 }
531
532 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
533 int byte_index=0;
534
535 LED_B_ON();
536 setup_phase_reader(iv);
537 //legic_prng_forward(2);
538 while(byte_index < bytes) {
539 int r;
540
541 //check if the DCF should be changed
542 if ( (offset == 0x05) && (bytes == 0x02) ) {
543 //write DCF in reverse order (addr 0x06 before 0x05)
544 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
545 //legic_prng_forward(1);
546 if(r == 0) {
547 byte_index++;
548 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
549 }
550 //legic_prng_forward(1);
551 }
552 else {
553 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
554 }
555 if((r != 0) || BUTTON_PRESS()) {
556 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
557 switch_off_tag_rwd();
558 LED_B_OFF();
559 LED_C_OFF();
560 return -1;
561 }
562
563 WDT_HIT();
564 byte_index++;
565 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
566 }
567 LED_B_OFF();
568 LED_C_OFF();
569 DbpString("write successful");
570 return 0;
571 }*/
572
573 void LegicRfWriter(uint16_t offset, uint16_t bytes, uint8_t iv) {
574
575 int byte_index = 0;
576 uint8_t isOK = 1;
577 legic_card_select_t card;
578
579 LegicCommonInit();
580
581 if ( legic_select_card_iv(&card, iv) ) {
582 isOK = 0;
583 goto OUT;
584 }
585
586 switch_off_tag_rwd();
587
588 switch(card.tagtype) {
589 case 0x0d:
590 if(offset+bytes > 22) {
591 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes);
592 return;
593 }
594 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
595 break;
596 case 0x1d:
597 if(offset+bytes > 0x100) {
598 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes);
599 return;
600 }
601 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
602 break;
603 case 0x3d:
604 if(offset+bytes > 0x400) {
605 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes);
606 return;
607 }
608 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes);
609 break;
610 default:
611 return;
612 }
613
614 LED_B_ON();
615 setup_phase_reader(iv);
616
617 int r = 0;
618 while(byte_index < bytes) {
619
620 //check if the DCF should be changed
621 if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
622 //write DCF in reverse order (addr 0x06 before 0x05)
623 r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize);
624
625 // write second byte on success
626 if(r == 0) {
627 byte_index++;
628 r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize);
629 }
630 }
631 else {
632 r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, card.addrsize);
633 }
634
635 if ((r != 0) || BUTTON_PRESS()) {
636 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
637 isOK = 0;
638 goto OUT;
639 }
640
641 WDT_HIT();
642 byte_index++;
643 }
644
645 OUT:
646 cmd_send(CMD_ACK, isOK, 0,0,0,0);
647 switch_off_tag_rwd();
648 LEDsoff();
649 }
650
651 void LegicRfRawWriter(int address, int byte, uint8_t iv) {
652
653 int byte_index = 0, addr_sz = 0;
654
655 LegicCommonInit();
656
657 if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
658
659 uint32_t tag_type = setup_phase_reader(iv);
660
661 switch_off_tag_rwd();
662
663 switch(tag_type) {
664 case 0x0d:
665 if(address > 22) {
666 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
667 return;
668 }
669 addr_sz = 5;
670 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
671 break;
672 case 0x1d:
673 if(address > 0x100) {
674 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
675 return;
676 }
677 addr_sz = 8;
678 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
679 break;
680 case 0x3d:
681 if(address > 0x400) {
682 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
683 return;
684 }
685 addr_sz = 10;
686 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
687 break;
688 default:
689 Dbprintf("No or unknown card found, aborting");
690 return;
691 }
692
693 Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz);
694 LED_B_ON();
695
696 setup_phase_reader(iv);
697
698 int r = legic_write_byte(byte, address, addr_sz);
699
700 if((r != 0) || BUTTON_PRESS()) {
701 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
702 switch_off_tag_rwd();
703 LEDsoff();
704 return;
705 }
706
707 LEDsoff();
708 if ( MF_DBGLEVEL >= 1) DbpString("write successful");
709 }
710
711 int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
712
713 if ( p_card == NULL ) return 1;
714
715 p_card->tagtype = setup_phase_reader(iv);
716
717 switch(p_card->tagtype) {
718 case 0x0d:
719 p_card->cmdsize = 6;
720 p_card->addrsize = 5;
721 p_card->cardsize = 22;
722 break;
723 case 0x1d:
724 p_card->cmdsize = 9;
725 p_card->addrsize = 8;
726 p_card->cardsize = 256;
727 break;
728 case 0x3d:
729 p_card->cmdsize = 11;
730 p_card->addrsize = 10;
731 p_card->cardsize = 1024;
732 break;
733 default:
734 p_card->cmdsize = 0;
735 p_card->addrsize = 0;
736 p_card->cardsize = 0;
737 return 2;
738 }
739 return 0;
740 }
741 int legic_select_card(legic_card_select_t *p_card){
742 return legic_select_card_iv(p_card, 0x01);
743 }
744
745 void LegicRfInfo(void){
746
747 uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
748 legic_card_select_t *card = (legic_card_select_t*) buf;
749
750 LegicCommonInit();
751
752 if ( legic_select_card(card) ) {
753 cmd_send(CMD_ACK,0,0,0,0,0);
754 goto OUT;
755 }
756
757 // read UID bytes
758 for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
759 int r = legic_read_byte(i, card->cmdsize);
760 if ( r == -1 ) {
761 cmd_send(CMD_ACK,0,0,0,0,0);
762 goto OUT;
763 }
764 card->uid[i] = r & 0xFF;
765 }
766
767 cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
768
769 OUT:
770 switch_off_tag_rwd();
771 LEDsoff();
772 }
773
774 /* Handle (whether to respond) a frame in tag mode
775 * Only called when simulating a tag.
776 */
777 static void frame_handle_tag(struct legic_frame const * const f)
778 {
779 uint8_t *BigBuf = BigBuf_get_addr();
780
781 /* First Part of Handshake (IV) */
782 if(f->bits == 7) {
783
784 LED_C_ON();
785
786 // Reset prng timer
787 ResetTimer(prng_timer);
788
789 legic_prng_init(f->data);
790 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
791 legic_state = STATE_IV;
792 legic_read_count = 0;
793 legic_prng_bc = 0;
794 legic_prng_iv = f->data;
795
796
797 ResetTimer(timer);
798 WaitUS(280);
799 return;
800 }
801
802 /* 0x19==??? */
803 if(legic_state == STATE_IV) {
804 int local_key = get_key_stream(3, 6);
805 int xored = 0x39 ^ local_key;
806 if((f->bits == 6) && (f->data == xored)) {
807 legic_state = STATE_CON;
808
809 ResetTimer(timer);
810 WaitUS(200);
811 return;
812
813 } else {
814 legic_state = STATE_DISCON;
815 LED_C_OFF();
816 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
817 return;
818 }
819 }
820
821 /* Read */
822 if(f->bits == 11) {
823 if(legic_state == STATE_CON) {
824 int key = get_key_stream(2, 11); //legic_phase_drift, 11);
825 int addr = f->data ^ key; addr = addr >> 1;
826 int data = BigBuf[addr];
827 int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
828 BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr;
829 legic_read_count++;
830
831 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
832 legic_prng_forward(legic_reqresp_drift);
833
834 frame_send_tag(hash | data, 12, 1);
835
836 ResetTimer(timer);
837 legic_prng_forward(2);
838 WaitUS(180);
839 return;
840 }
841 }
842
843 /* Write */
844 if(f->bits == 23) {
845 int key = get_key_stream(-1, 23); //legic_frame_drift, 23);
846 int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff;
847 int data = f->data ^ key; data = data >> 11; data = data & 0xff;
848
849 /* write command */
850 legic_state = STATE_DISCON;
851 LED_C_OFF();
852 Dbprintf("write - addr: %x, data: %x", addr, data);
853 return;
854 }
855
856 if(legic_state != STATE_DISCON) {
857 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
858 int i;
859 Dbprintf("IV: %03.3x", legic_prng_iv);
860 for(i = 0; i<legic_read_count; i++) {
861 Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]);
862 }
863
864 for(i = -1; i<legic_read_count; i++) {
865 uint32_t t;
866 t = BigBuf[OFFSET_LOG+256+i*4];
867 t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8;
868 t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16;
869 t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24;
870
871 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
872 BigBuf[OFFSET_LOG+128+i],
873 BigBuf[OFFSET_LOG+384+i],
874 t);
875 }
876 }
877 legic_state = STATE_DISCON;
878 legic_read_count = 0;
879 SpinDelay(10);
880 LED_C_OFF();
881 return;
882 }
883
884 /* Read bit by bit untill full frame is received
885 * Call to process frame end answer
886 */
887 static void emit(int bit) {
888
889 switch (bit) {
890 case 1:
891 frame_append_bit(&current_frame, 1);
892 break;
893 case 0:
894 frame_append_bit(&current_frame, 0);
895 break;
896 default:
897 if(current_frame.bits <= 4) {
898 frame_clean(&current_frame);
899 } else {
900 frame_handle_tag(&current_frame);
901 frame_clean(&current_frame);
902 }
903 WDT_HIT();
904 break;
905 }
906 }
907
908 void LegicRfSimulate(int phase, int frame, int reqresp)
909 {
910 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
911 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
912 * envelope waveform on DIN and should send our response on DOUT.
913 *
914 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
915 * measure the time between two rising edges on DIN, and no encoding on the
916 * subcarrier from card to reader, so we'll just shift out our verbatim data
917 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
918 * seems to be 300us-ish.
919 */
920
921 legic_phase_drift = phase;
922 legic_frame_drift = frame;
923 legic_reqresp_drift = reqresp;
924
925 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
926 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
927 FpgaSetupSsc();
928 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
929
930 /* Bitbang the receiver */
931 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
932 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
933
934 //setup_timer();
935 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
936
937 int old_level = 0;
938 int active = 0;
939 legic_state = STATE_DISCON;
940
941 LED_B_ON();
942 DbpString("Starting Legic emulator, press button to end");
943
944 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
945 int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
946 int time = timer->TC_CV;
947
948 if(level != old_level) {
949 if(level == 1) {
950 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
951
952 if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
953 /* 1 bit */
954 emit(1);
955 active = 1;
956 LED_A_ON();
957 } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
958 /* 0 bit */
959 emit(0);
960 active = 1;
961 LED_A_ON();
962 } else if (active) {
963 /* invalid */
964 emit(-1);
965 active = 0;
966 LED_A_OFF();
967 }
968 }
969 }
970
971 /* Frame end */
972 if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
973 emit(-1);
974 active = 0;
975 LED_A_OFF();
976 }
977
978 if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
979 timer->TC_CCR = AT91C_TC_CLKDIS;
980 }
981
982 old_level = level;
983 WDT_HIT();
984 }
985 if ( MF_DBGLEVEL >= 1) DbpString("Stopped");
986 LEDsoff();
987 }
988
989 //-----------------------------------------------------------------------------
990 // Code up a string of octets at layer 2 (including CRC, we don't generate
991 // that here) so that they can be transmitted to the reader. Doesn't transmit
992 // them yet, just leaves them ready to send in ToSend[].
993 //-----------------------------------------------------------------------------
994 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
995 // {
996 // int i;
997
998 // ToSendReset();
999
1000 // // Transmit a burst of ones, as the initial thing that lets the
1001 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1002 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1003 // // so I will too.
1004 // for(i = 0; i < 20; i++) {
1005 // ToSendStuffBit(1);
1006 // ToSendStuffBit(1);
1007 // ToSendStuffBit(1);
1008 // ToSendStuffBit(1);
1009 // }
1010
1011 // // Send SOF.
1012 // for(i = 0; i < 10; i++) {
1013 // ToSendStuffBit(0);
1014 // ToSendStuffBit(0);
1015 // ToSendStuffBit(0);
1016 // ToSendStuffBit(0);
1017 // }
1018 // for(i = 0; i < 2; i++) {
1019 // ToSendStuffBit(1);
1020 // ToSendStuffBit(1);
1021 // ToSendStuffBit(1);
1022 // ToSendStuffBit(1);
1023 // }
1024
1025 // for(i = 0; i < len; i++) {
1026 // int j;
1027 // uint8_t b = cmd[i];
1028
1029 // // Start bit
1030 // ToSendStuffBit(0);
1031 // ToSendStuffBit(0);
1032 // ToSendStuffBit(0);
1033 // ToSendStuffBit(0);
1034
1035 // // Data bits
1036 // for(j = 0; j < 8; j++) {
1037 // if(b & 1) {
1038 // ToSendStuffBit(1);
1039 // ToSendStuffBit(1);
1040 // ToSendStuffBit(1);
1041 // ToSendStuffBit(1);
1042 // } else {
1043 // ToSendStuffBit(0);
1044 // ToSendStuffBit(0);
1045 // ToSendStuffBit(0);
1046 // ToSendStuffBit(0);
1047 // }
1048 // b >>= 1;
1049 // }
1050
1051 // // Stop bit
1052 // ToSendStuffBit(1);
1053 // ToSendStuffBit(1);
1054 // ToSendStuffBit(1);
1055 // ToSendStuffBit(1);
1056 // }
1057
1058 // // Send EOF.
1059 // for(i = 0; i < 10; i++) {
1060 // ToSendStuffBit(0);
1061 // ToSendStuffBit(0);
1062 // ToSendStuffBit(0);
1063 // ToSendStuffBit(0);
1064 // }
1065 // for(i = 0; i < 2; i++) {
1066 // ToSendStuffBit(1);
1067 // ToSendStuffBit(1);
1068 // ToSendStuffBit(1);
1069 // ToSendStuffBit(1);
1070 // }
1071
1072 // // Convert from last byte pos to length
1073 // ToSendMax++;
1074 // }
1075
1076 //-----------------------------------------------------------------------------
1077 // The software UART that receives commands from the reader, and its state
1078 // variables.
1079 //-----------------------------------------------------------------------------
1080 /*
1081 static struct {
1082 enum {
1083 STATE_UNSYNCD,
1084 STATE_GOT_FALLING_EDGE_OF_SOF,
1085 STATE_AWAITING_START_BIT,
1086 STATE_RECEIVING_DATA
1087 } state;
1088 uint16_t shiftReg;
1089 int bitCnt;
1090 int byteCnt;
1091 int byteCntMax;
1092 int posCnt;
1093 uint8_t *output;
1094 } Uart;
1095 */
1096 /* Receive & handle a bit coming from the reader.
1097 *
1098 * This function is called 4 times per bit (every 2 subcarrier cycles).
1099 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1100 *
1101 * LED handling:
1102 * LED A -> ON once we have received the SOF and are expecting the rest.
1103 * LED A -> OFF once we have received EOF or are in error state or unsynced
1104 *
1105 * Returns: true if we received a EOF
1106 * false if we are still waiting for some more
1107 */
1108 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1109 // {
1110 // switch(Uart.state) {
1111 // case STATE_UNSYNCD:
1112 // if(!bit) {
1113 // // we went low, so this could be the beginning of an SOF
1114 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1115 // Uart.posCnt = 0;
1116 // Uart.bitCnt = 0;
1117 // }
1118 // break;
1119
1120 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1121 // Uart.posCnt++;
1122 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1123 // if(bit) {
1124 // if(Uart.bitCnt > 9) {
1125 // // we've seen enough consecutive
1126 // // zeros that it's a valid SOF
1127 // Uart.posCnt = 0;
1128 // Uart.byteCnt = 0;
1129 // Uart.state = STATE_AWAITING_START_BIT;
1130 // LED_A_ON(); // Indicate we got a valid SOF
1131 // } else {
1132 // // didn't stay down long enough
1133 // // before going high, error
1134 // Uart.state = STATE_UNSYNCD;
1135 // }
1136 // } else {
1137 // // do nothing, keep waiting
1138 // }
1139 // Uart.bitCnt++;
1140 // }
1141 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1142 // if(Uart.bitCnt > 12) {
1143 // // Give up if we see too many zeros without
1144 // // a one, too.
1145 // LED_A_OFF();
1146 // Uart.state = STATE_UNSYNCD;
1147 // }
1148 // break;
1149
1150 // case STATE_AWAITING_START_BIT:
1151 // Uart.posCnt++;
1152 // if(bit) {
1153 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1154 // // stayed high for too long between
1155 // // characters, error
1156 // Uart.state = STATE_UNSYNCD;
1157 // }
1158 // } else {
1159 // // falling edge, this starts the data byte
1160 // Uart.posCnt = 0;
1161 // Uart.bitCnt = 0;
1162 // Uart.shiftReg = 0;
1163 // Uart.state = STATE_RECEIVING_DATA;
1164 // }
1165 // break;
1166
1167 // case STATE_RECEIVING_DATA:
1168 // Uart.posCnt++;
1169 // if(Uart.posCnt == 2) {
1170 // // time to sample a bit
1171 // Uart.shiftReg >>= 1;
1172 // if(bit) {
1173 // Uart.shiftReg |= 0x200;
1174 // }
1175 // Uart.bitCnt++;
1176 // }
1177 // if(Uart.posCnt >= 4) {
1178 // Uart.posCnt = 0;
1179 // }
1180 // if(Uart.bitCnt == 10) {
1181 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1182 // {
1183 // // this is a data byte, with correct
1184 // // start and stop bits
1185 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1186 // Uart.byteCnt++;
1187
1188 // if(Uart.byteCnt >= Uart.byteCntMax) {
1189 // // Buffer overflowed, give up
1190 // LED_A_OFF();
1191 // Uart.state = STATE_UNSYNCD;
1192 // } else {
1193 // // so get the next byte now
1194 // Uart.posCnt = 0;
1195 // Uart.state = STATE_AWAITING_START_BIT;
1196 // }
1197 // } else if (Uart.shiftReg == 0x000) {
1198 // // this is an EOF byte
1199 // LED_A_OFF(); // Finished receiving
1200 // Uart.state = STATE_UNSYNCD;
1201 // if (Uart.byteCnt != 0) {
1202 // return TRUE;
1203 // }
1204 // } else {
1205 // // this is an error
1206 // LED_A_OFF();
1207 // Uart.state = STATE_UNSYNCD;
1208 // }
1209 // }
1210 // break;
1211
1212 // default:
1213 // LED_A_OFF();
1214 // Uart.state = STATE_UNSYNCD;
1215 // break;
1216 // }
1217
1218 // return FALSE;
1219 // }
1220 /*
1221
1222 static void UartReset() {
1223 Uart.byteCntMax = 3;
1224 Uart.state = STATE_UNSYNCD;
1225 Uart.byteCnt = 0;
1226 Uart.bitCnt = 0;
1227 Uart.posCnt = 0;
1228 memset(Uart.output, 0x00, 3);
1229 }
1230 */
1231 // static void UartInit(uint8_t *data) {
1232 // Uart.output = data;
1233 // UartReset();
1234 // }
1235
1236 //=============================================================================
1237 // An LEGIC reader. We take layer two commands, code them
1238 // appropriately, and then send them to the tag. We then listen for the
1239 // tag's response, which we leave in the buffer to be demodulated on the
1240 // PC side.
1241 //=============================================================================
1242 /*
1243 static struct {
1244 enum {
1245 DEMOD_UNSYNCD,
1246 DEMOD_PHASE_REF_TRAINING,
1247 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1248 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1249 DEMOD_AWAITING_START_BIT,
1250 DEMOD_RECEIVING_DATA
1251 } state;
1252 int bitCount;
1253 int posCount;
1254 int thisBit;
1255 uint16_t shiftReg;
1256 uint8_t *output;
1257 int len;
1258 int sumI;
1259 int sumQ;
1260 } Demod;
1261 */
1262 /*
1263 * Handles reception of a bit from the tag
1264 *
1265 * This function is called 2 times per bit (every 4 subcarrier cycles).
1266 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1267 *
1268 * LED handling:
1269 * LED C -> ON once we have received the SOF and are expecting the rest.
1270 * LED C -> OFF once we have received EOF or are unsynced
1271 *
1272 * Returns: true if we received a EOF
1273 * false if we are still waiting for some more
1274 *
1275 */
1276
1277 /*
1278 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1279 {
1280 int v = 0;
1281 int ai = ABS(ci);
1282 int aq = ABS(cq);
1283 int halfci = (ai >> 1);
1284 int halfcq = (aq >> 1);
1285
1286 switch(Demod.state) {
1287 case DEMOD_UNSYNCD:
1288
1289 CHECK_FOR_SUBCARRIER()
1290
1291 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1292 Demod.state = DEMOD_PHASE_REF_TRAINING;
1293 Demod.sumI = ci;
1294 Demod.sumQ = cq;
1295 Demod.posCount = 1;
1296 }
1297 break;
1298
1299 case DEMOD_PHASE_REF_TRAINING:
1300 if(Demod.posCount < 8) {
1301
1302 CHECK_FOR_SUBCARRIER()
1303
1304 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1305 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1306 // note: synchronization time > 80 1/fs
1307 Demod.sumI += ci;
1308 Demod.sumQ += cq;
1309 ++Demod.posCount;
1310 } else {
1311 // subcarrier lost
1312 Demod.state = DEMOD_UNSYNCD;
1313 }
1314 } else {
1315 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1316 }
1317 break;
1318
1319 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1320
1321 MAKE_SOFT_DECISION()
1322
1323 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1324 // logic '0' detected
1325 if (v <= 0) {
1326
1327 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1328
1329 // start of SOF sequence
1330 Demod.posCount = 0;
1331 } else {
1332 // maximum length of TR1 = 200 1/fs
1333 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1334 }
1335 ++Demod.posCount;
1336 break;
1337
1338 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1339 ++Demod.posCount;
1340
1341 MAKE_SOFT_DECISION()
1342
1343 if(v > 0) {
1344 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1345 if(Demod.posCount < 10*2) {
1346 Demod.state = DEMOD_UNSYNCD;
1347 } else {
1348 LED_C_ON(); // Got SOF
1349 Demod.state = DEMOD_AWAITING_START_BIT;
1350 Demod.posCount = 0;
1351 Demod.len = 0;
1352 }
1353 } else {
1354 // low phase of SOF too long (> 12 etu)
1355 if(Demod.posCount > 13*2) {
1356 Demod.state = DEMOD_UNSYNCD;
1357 LED_C_OFF();
1358 }
1359 }
1360 break;
1361
1362 case DEMOD_AWAITING_START_BIT:
1363 ++Demod.posCount;
1364
1365 MAKE_SOFT_DECISION()
1366
1367 if(v > 0) {
1368 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1369 if(Demod.posCount > 3*2) {
1370 Demod.state = DEMOD_UNSYNCD;
1371 LED_C_OFF();
1372 }
1373 } else {
1374 // start bit detected
1375 Demod.bitCount = 0;
1376 Demod.posCount = 1; // this was the first half
1377 Demod.thisBit = v;
1378 Demod.shiftReg = 0;
1379 Demod.state = DEMOD_RECEIVING_DATA;
1380 }
1381 break;
1382
1383 case DEMOD_RECEIVING_DATA:
1384
1385 MAKE_SOFT_DECISION()
1386
1387 if(Demod.posCount == 0) {
1388 // first half of bit
1389 Demod.thisBit = v;
1390 Demod.posCount = 1;
1391 } else {
1392 // second half of bit
1393 Demod.thisBit += v;
1394 Demod.shiftReg >>= 1;
1395 // logic '1'
1396 if(Demod.thisBit > 0)
1397 Demod.shiftReg |= 0x200;
1398
1399 ++Demod.bitCount;
1400
1401 if(Demod.bitCount == 10) {
1402
1403 uint16_t s = Demod.shiftReg;
1404
1405 if((s & 0x200) && !(s & 0x001)) {
1406 // stop bit == '1', start bit == '0'
1407 uint8_t b = (s >> 1);
1408 Demod.output[Demod.len] = b;
1409 ++Demod.len;
1410 Demod.state = DEMOD_AWAITING_START_BIT;
1411 } else {
1412 Demod.state = DEMOD_UNSYNCD;
1413 LED_C_OFF();
1414
1415 if(s == 0x000) {
1416 // This is EOF (start, stop and all data bits == '0'
1417 return TRUE;
1418 }
1419 }
1420 }
1421 Demod.posCount = 0;
1422 }
1423 break;
1424
1425 default:
1426 Demod.state = DEMOD_UNSYNCD;
1427 LED_C_OFF();
1428 break;
1429 }
1430 return FALSE;
1431 }
1432 */
1433 /*
1434 // Clear out the state of the "UART" that receives from the tag.
1435 static void DemodReset() {
1436 Demod.len = 0;
1437 Demod.state = DEMOD_UNSYNCD;
1438 Demod.posCount = 0;
1439 Demod.sumI = 0;
1440 Demod.sumQ = 0;
1441 Demod.bitCount = 0;
1442 Demod.thisBit = 0;
1443 Demod.shiftReg = 0;
1444 memset(Demod.output, 0x00, 3);
1445 }
1446
1447 static void DemodInit(uint8_t *data) {
1448 Demod.output = data;
1449 DemodReset();
1450 }
1451 */
1452
1453 /*
1454 * Demodulate the samples we received from the tag, also log to tracebuffer
1455 * quiet: set to 'TRUE' to disable debug output
1456 */
1457
1458 /*
1459 #define LEGIC_DMA_BUFFER_SIZE 256
1460
1461 static void GetSamplesForLegicDemod(int n, bool quiet)
1462 {
1463 int max = 0;
1464 bool gotFrame = FALSE;
1465 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1466 int ci, cq, samples = 0;
1467
1468 BigBuf_free();
1469
1470 // And put the FPGA in the appropriate mode
1471 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1472
1473 // The response (tag -> reader) that we're receiving.
1474 // Set up the demodulator for tag -> reader responses.
1475 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1476
1477 // The DMA buffer, used to stream samples from the FPGA
1478 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1479 int8_t *upTo = dmaBuf;
1480
1481 // Setup and start DMA.
1482 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1483 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1484 return;
1485 }
1486
1487 // Signal field is ON with the appropriate LED:
1488 LED_D_ON();
1489 for(;;) {
1490 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1491 if(behindBy > max) max = behindBy;
1492
1493 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1494 ci = upTo[0];
1495 cq = upTo[1];
1496 upTo += 2;
1497 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1498 upTo = dmaBuf;
1499 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1500 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1501 }
1502 lastRxCounter -= 2;
1503 if(lastRxCounter <= 0)
1504 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1505
1506 samples += 2;
1507
1508 gotFrame = HandleLegicSamplesDemod(ci , cq );
1509 if ( gotFrame )
1510 break;
1511 }
1512
1513 if(samples > n || gotFrame)
1514 break;
1515 }
1516
1517 FpgaDisableSscDma();
1518
1519 if (!quiet && Demod.len == 0) {
1520 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1521 max,
1522 samples,
1523 gotFrame,
1524 Demod.len,
1525 Demod.sumI,
1526 Demod.sumQ
1527 );
1528 }
1529
1530 //Tracing
1531 if (Demod.len > 0) {
1532 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1533 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1534 }
1535 }
1536
1537 */
1538
1539 //-----------------------------------------------------------------------------
1540 // Transmit the command (to the tag) that was placed in ToSend[].
1541 //-----------------------------------------------------------------------------
1542 /*
1543 static void TransmitForLegic(void)
1544 {
1545 int c;
1546
1547 FpgaSetupSsc();
1548
1549 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1550 AT91C_BASE_SSC->SSC_THR = 0xff;
1551
1552 // Signal field is ON with the appropriate Red LED
1553 LED_D_ON();
1554
1555 // Signal we are transmitting with the Green LED
1556 LED_B_ON();
1557 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1558
1559 for(c = 0; c < 10;) {
1560 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1561 AT91C_BASE_SSC->SSC_THR = 0xff;
1562 c++;
1563 }
1564 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1565 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1566 (void)r;
1567 }
1568 WDT_HIT();
1569 }
1570
1571 c = 0;
1572 for(;;) {
1573 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1574 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1575 legic_prng_forward(1); // forward the lfsr
1576 c++;
1577 if(c >= ToSendMax) {
1578 break;
1579 }
1580 }
1581 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1582 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1583 (void)r;
1584 }
1585 WDT_HIT();
1586 }
1587 LED_B_OFF();
1588 }
1589 */
1590
1591 //-----------------------------------------------------------------------------
1592 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1593 // so that it is ready to transmit to the tag using TransmitForLegic().
1594 //-----------------------------------------------------------------------------
1595 /*
1596 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1597 {
1598 int i, j;
1599 uint8_t b;
1600
1601 ToSendReset();
1602
1603 // Send SOF
1604 for(i = 0; i < 7; i++)
1605 ToSendStuffBit(1);
1606
1607
1608 for(i = 0; i < cmdlen; i++) {
1609 // Start bit
1610 ToSendStuffBit(0);
1611
1612 // Data bits
1613 b = cmd[i];
1614 for(j = 0; j < bits; j++) {
1615 if(b & 1) {
1616 ToSendStuffBit(1);
1617 } else {
1618 ToSendStuffBit(0);
1619 }
1620 b >>= 1;
1621 }
1622 }
1623
1624 // Convert from last character reference to length
1625 ++ToSendMax;
1626 }
1627 */
1628 /**
1629 Convenience function to encode, transmit and trace Legic comms
1630 **/
1631 /*
1632 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1633 {
1634 CodeLegicBitsAsReader(cmd, cmdlen, bits);
1635 TransmitForLegic();
1636 if (tracing) {
1637 uint8_t parity[1] = {0x00};
1638 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
1639 }
1640 }
1641
1642 */
1643 // Set up LEGIC communication
1644 /*
1645 void ice_legic_setup() {
1646
1647 // standard things.
1648 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1649 BigBuf_free(); BigBuf_Clear_ext(false);
1650 clear_trace();
1651 set_tracing(TRUE);
1652 DemodReset();
1653 UartReset();
1654
1655 // Set up the synchronous serial port
1656 FpgaSetupSsc();
1657
1658 // connect Demodulated Signal to ADC:
1659 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1660
1661 // Signal field is on with the appropriate LED
1662 LED_D_ON();
1663 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1664 SpinDelay(20);
1665 // Start the timer
1666 //StartCountSspClk();
1667
1668 // initalize CRC
1669 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
1670
1671 // initalize prng
1672 legic_prng_init(0);
1673 }
1674 */
Impressum, Datenschutz