]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
564678279ed6c7904639969f88c0ebad372a4fae
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "../common/usb_cdc.h"
14 #include "../common/cmd.h"
15
16 #include "../include/proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21 #include <stdarg.h>
22
23
24 #include "legicrf.h"
25 #include "../include/hitag2.h"
26
27
28 #ifdef WITH_LCD
29 #include "LCD.h"
30 #endif
31
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
39
40 uint8_t ToSend[512];
41 int ToSendMax;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void BufferClear(void)
46 {
47 memset(BigBuf,0,sizeof(BigBuf));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
49 }
50
51 void ToSendReset(void)
52 {
53 ToSendMax = -1;
54 ToSendBit = 8;
55 }
56
57 void ToSendStuffBit(int b)
58 {
59 if(ToSendBit >= 8) {
60 ToSendMax++;
61 ToSend[ToSendMax] = 0;
62 ToSendBit = 0;
63 }
64
65 if(b) {
66 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
67 }
68
69 ToSendBit++;
70
71 if(ToSendBit >= sizeof(ToSend)) {
72 ToSendBit = 0;
73 DbpString("ToSendStuffBit overflowed!");
74 }
75 }
76
77 //=============================================================================
78 // Debug print functions, to go out over USB, to the usual PC-side client.
79 //=============================================================================
80
81 void DbpString(char *str)
82 {
83 byte_t len = strlen(str);
84 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
85 }
86
87 #if 0
88 void DbpIntegers(int x1, int x2, int x3)
89 {
90 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
91 }
92 #endif
93
94 void Dbprintf(const char *fmt, ...) {
95 // should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
102
103 DbpString(output_string);
104 }
105
106 // prints HEX & ASCII
107 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
108 int l=0,i;
109 char ascii[9];
110
111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
116 ascii[l]=0;
117
118 // filter safe ascii
119 for (i=0;i<l;i++)
120 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii,l,d," ");
124 } else {
125 Dbprintf("%*D",l,d," ");
126 }
127
128 len-=8;
129 d+=8;
130 }
131 }
132
133 //-----------------------------------------------------------------------------
134 // Read an ADC channel and block till it completes, then return the result
135 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 // return that.
137 //-----------------------------------------------------------------------------
138 static int ReadAdc(int ch)
139 {
140 uint32_t d;
141
142 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
143 AT91C_BASE_ADC->ADC_MR =
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
148
149 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
150 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
151 ;
152 d = AT91C_BASE_ADC->ADC_CDR[ch];
153
154 return d;
155 }
156
157 int AvgAdc(int ch) // was static - merlok
158 {
159 int i;
160 int a = 0;
161
162 for(i = 0; i < 32; i++) {
163 a += ReadAdc(ch);
164 }
165
166 return (a + 15) >> 5;
167 }
168
169 void MeasureAntennaTuning(void)
170 {
171 uint8_t *dest = (uint8_t *)BigBuf + FREE_BUFFER_OFFSET;
172 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
173 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
174
175 LED_B_ON();
176 DbpString("Measuring antenna characteristics, please wait...");
177 memset(dest,0,FREE_BUFFER_SIZE);
178
179 /*
180 * Sweeps the useful LF range of the proxmark from
181 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
182 * read the voltage in the antenna, the result left
183 * in the buffer is a graph which should clearly show
184 * the resonating frequency of your LF antenna
185 * ( hopefully around 95 if it is tuned to 125kHz!)
186 */
187
188 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
190 for (i=255; i>19; i--) {
191 WDT_HIT();
192 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
193 SpinDelay(20);
194 // Vref = 3.3V, and a 10000:240 voltage divider on the input
195 // can measure voltages up to 137500 mV
196 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
197 if (i==95) vLf125 = adcval; // voltage at 125Khz
198 if (i==89) vLf134 = adcval; // voltage at 134Khz
199
200 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
201 if(dest[i] > peak) {
202 peakv = adcval;
203 peak = dest[i];
204 peakf = i;
205 //ptr = i;
206 }
207 }
208
209 LED_A_ON();
210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
213 SpinDelay(20);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
217
218 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
219 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
220 // c.arg[1] = vHf;
221 // c.arg[2] = peakf | (peakv << 16);
222
223 DbpString("Measuring complete, sending report back to host");
224 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
225 // UsbSendPacket((uint8_t *)&c, sizeof(c));
226 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
227 LED_A_OFF();
228 LED_B_OFF();
229 return;
230 }
231
232 void MeasureAntennaTuningHf(void)
233 {
234 int vHf = 0; // in mV
235
236 DbpString("Measuring HF antenna, press button to exit");
237
238 for (;;) {
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
242 SpinDelay(20);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
246
247 Dbprintf("%d mV",vHf);
248 if (BUTTON_PRESS()) break;
249 }
250 DbpString("cancelled");
251 }
252
253
254 void SimulateTagHfListen(void)
255 {
256 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
257 uint8_t v = 0;
258 int i;
259 int p = 0;
260
261 // We're using this mode just so that I can test it out; the simulated
262 // tag mode would work just as well and be simpler.
263 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
264 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
265
266 // We need to listen to the high-frequency, peak-detected path.
267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
268
269 FpgaSetupSsc();
270
271 i = 0;
272 for(;;) {
273 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
274 AT91C_BASE_SSC->SSC_THR = 0xff;
275 }
276 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
277 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
278
279 v <<= 1;
280 if(r & 1) {
281 v |= 1;
282 }
283 p++;
284
285 if(p >= 8) {
286 dest[i] = v;
287 v = 0;
288 p = 0;
289 i++;
290
291 if(i >= FREE_BUFFER_SIZE) {
292 break;
293 }
294 }
295 }
296 }
297 DbpString("simulate tag (now type bitsamples)");
298 }
299
300 void ReadMem(int addr)
301 {
302 const uint8_t *data = ((uint8_t *)addr);
303
304 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
305 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
306 }
307
308 /* osimage version information is linked in */
309 extern struct version_information version_information;
310 /* bootrom version information is pointed to from _bootphase1_version_pointer */
311 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
312 void SendVersion(void)
313 {
314 char temp[512]; /* Limited data payload in USB packets */
315 DbpString("Prox/RFID mark3 RFID instrument");
316
317 /* Try to find the bootrom version information. Expect to find a pointer at
318 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
319 * pointer, then use it.
320 */
321 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
322 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
323 DbpString("bootrom version information appears invalid");
324 } else {
325 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
326 DbpString(temp);
327 }
328
329 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
330 DbpString(temp);
331
332 FpgaGatherVersion(temp, sizeof(temp));
333 DbpString(temp);
334 // Send Chip ID
335 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
336 }
337
338 #ifdef WITH_LF
339 // samy's sniff and repeat routine
340 void SamyRun()
341 {
342 DbpString("Stand-alone mode! No PC necessary.");
343 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
344
345 // 3 possible options? no just 2 for now
346 #define OPTS 2
347
348 int high[OPTS], low[OPTS];
349
350 // Oooh pretty -- notify user we're in elite samy mode now
351 LED(LED_RED, 200);
352 LED(LED_ORANGE, 200);
353 LED(LED_GREEN, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_RED, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_GREEN, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_RED, 200);
360
361 int selected = 0;
362 int playing = 0;
363 int cardRead = 0;
364
365 // Turn on selected LED
366 LED(selected + 1, 0);
367
368 for (;;)
369 {
370 usb_poll();
371 WDT_HIT();
372
373 // Was our button held down or pressed?
374 int button_pressed = BUTTON_HELD(1000);
375 SpinDelay(300);
376
377 // Button was held for a second, begin recording
378 if (button_pressed > 0 && cardRead == 0)
379 {
380 LEDsoff();
381 LED(selected + 1, 0);
382 LED(LED_RED2, 0);
383
384 // record
385 DbpString("Starting recording");
386
387 // wait for button to be released
388 while(BUTTON_PRESS())
389 WDT_HIT();
390
391 /* need this delay to prevent catching some weird data */
392 SpinDelay(500);
393
394 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
395 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
396
397 LEDsoff();
398 LED(selected + 1, 0);
399 // Finished recording
400
401 // If we were previously playing, set playing off
402 // so next button push begins playing what we recorded
403 playing = 0;
404
405 cardRead = 1;
406
407 }
408
409 else if (button_pressed > 0 && cardRead == 1)
410 {
411 LEDsoff();
412 LED(selected + 1, 0);
413 LED(LED_ORANGE, 0);
414
415 // record
416 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
417
418 // wait for button to be released
419 while(BUTTON_PRESS())
420 WDT_HIT();
421
422 /* need this delay to prevent catching some weird data */
423 SpinDelay(500);
424
425 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
426 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
427
428 LEDsoff();
429 LED(selected + 1, 0);
430 // Finished recording
431
432 // If we were previously playing, set playing off
433 // so next button push begins playing what we recorded
434 playing = 0;
435
436 cardRead = 0;
437
438 }
439
440 // Change where to record (or begin playing)
441 else if (button_pressed)
442 {
443 // Next option if we were previously playing
444 if (playing)
445 selected = (selected + 1) % OPTS;
446 playing = !playing;
447
448 LEDsoff();
449 LED(selected + 1, 0);
450
451 // Begin transmitting
452 if (playing)
453 {
454 LED(LED_GREEN, 0);
455 DbpString("Playing");
456 // wait for button to be released
457 while(BUTTON_PRESS())
458 WDT_HIT();
459 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
460 CmdHIDsimTAG(high[selected], low[selected], 0);
461 DbpString("Done playing");
462 if (BUTTON_HELD(1000) > 0)
463 {
464 DbpString("Exiting");
465 LEDsoff();
466 return;
467 }
468
469 /* We pressed a button so ignore it here with a delay */
470 SpinDelay(300);
471
472 // when done, we're done playing, move to next option
473 selected = (selected + 1) % OPTS;
474 playing = !playing;
475 LEDsoff();
476 LED(selected + 1, 0);
477 }
478 else
479 while(BUTTON_PRESS())
480 WDT_HIT();
481 }
482 }
483 }
484 #endif
485
486 /*
487 OBJECTIVE
488 Listen and detect an external reader. Determine the best location
489 for the antenna.
490
491 INSTRUCTIONS:
492 Inside the ListenReaderField() function, there is two mode.
493 By default, when you call the function, you will enter mode 1.
494 If you press the PM3 button one time, you will enter mode 2.
495 If you press the PM3 button a second time, you will exit the function.
496
497 DESCRIPTION OF MODE 1:
498 This mode just listens for an external reader field and lights up green
499 for HF and/or red for LF. This is the original mode of the detectreader
500 function.
501
502 DESCRIPTION OF MODE 2:
503 This mode will visually represent, using the LEDs, the actual strength of the
504 current compared to the maximum current detected. Basically, once you know
505 what kind of external reader is present, it will help you spot the best location to place
506 your antenna. You will probably not get some good results if there is a LF and a HF reader
507 at the same place! :-)
508
509 LIGHT SCHEME USED:
510 */
511 static const char LIGHT_SCHEME[] = {
512 0x0, /* ---- | No field detected */
513 0x1, /* X--- | 14% of maximum current detected */
514 0x2, /* -X-- | 29% of maximum current detected */
515 0x4, /* --X- | 43% of maximum current detected */
516 0x8, /* ---X | 57% of maximum current detected */
517 0xC, /* --XX | 71% of maximum current detected */
518 0xE, /* -XXX | 86% of maximum current detected */
519 0xF, /* XXXX | 100% of maximum current detected */
520 };
521 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
522
523 void ListenReaderField(int limit)
524 {
525 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
526 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
527 int mode=1, display_val, display_max, i;
528
529 #define LF_ONLY 1
530 #define HF_ONLY 2
531
532 LEDsoff();
533
534 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
535
536 if(limit != HF_ONLY) {
537 Dbprintf("LF 125/134 Baseline: %d", lf_av);
538 lf_baseline = lf_av;
539 }
540
541 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
542
543 if (limit != LF_ONLY) {
544 Dbprintf("HF 13.56 Baseline: %d", hf_av);
545 hf_baseline = hf_av;
546 }
547
548 for(;;) {
549 if (BUTTON_PRESS()) {
550 SpinDelay(500);
551 switch (mode) {
552 case 1:
553 mode=2;
554 DbpString("Signal Strength Mode");
555 break;
556 case 2:
557 default:
558 DbpString("Stopped");
559 LEDsoff();
560 return;
561 break;
562 }
563 }
564 WDT_HIT();
565
566 if (limit != HF_ONLY) {
567 if(mode==1) {
568 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
569 else LED_D_OFF();
570 }
571
572 ++lf_count;
573 lf_av_new= ReadAdc(ADC_CHAN_LF);
574 // see if there's a significant change
575 if(abs(lf_av - lf_av_new) > 10) {
576 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
577 lf_av = lf_av_new;
578 if (lf_av > lf_max)
579 lf_max = lf_av;
580 lf_count= 0;
581 }
582 }
583
584 if (limit != LF_ONLY) {
585 if (mode == 1){
586 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
587 else LED_B_OFF();
588 }
589
590 ++hf_count;
591 hf_av_new= ReadAdc(ADC_CHAN_HF);
592 // see if there's a significant change
593 if(abs(hf_av - hf_av_new) > 10) {
594 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
595 hf_av = hf_av_new;
596 if (hf_av > hf_max)
597 hf_max = hf_av;
598 hf_count= 0;
599 }
600 }
601
602 if(mode == 2) {
603 if (limit == LF_ONLY) {
604 display_val = lf_av;
605 display_max = lf_max;
606 } else if (limit == HF_ONLY) {
607 display_val = hf_av;
608 display_max = hf_max;
609 } else { /* Pick one at random */
610 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
611 display_val = hf_av;
612 display_max = hf_max;
613 } else {
614 display_val = lf_av;
615 display_max = lf_max;
616 }
617 }
618 for (i=0; i<LIGHT_LEN; i++) {
619 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
620 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
621 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
622 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
623 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
624 break;
625 }
626 }
627 }
628 }
629 }
630
631 void UsbPacketReceived(uint8_t *packet, int len)
632 {
633 UsbCommand *c = (UsbCommand *)packet;
634
635 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
636
637 switch(c->cmd) {
638 #ifdef WITH_LF
639 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
640 AcquireRawAdcSamples125k(c->arg[0]);
641 cmd_send(CMD_ACK,0,0,0,0,0);
642 break;
643 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
644 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
645 break;
646 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
647 SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
648 cmd_send(CMD_ACK,0,0,0,0,0);
649 break;
650 case CMD_HID_DEMOD_FSK:
651 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
652 break;
653 case CMD_HID_SIM_TAG:
654 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
655 break;
656 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
657 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
658 break;
659 case CMD_IO_DEMOD_FSK:
660 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
661 break;
662 case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
663 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
664 break;
665 case CMD_EM410X_WRITE_TAG:
666 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
667 break;
668 case CMD_READ_TI_TYPE:
669 ReadTItag();
670 break;
671 case CMD_WRITE_TI_TYPE:
672 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
673 break;
674 case CMD_SIMULATE_TAG_125K:
675 LED_A_ON();
676 SimulateTagLowFrequency(c->arg[0], c->arg[1], 0);
677 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
678 LED_A_OFF();
679 break;
680 case CMD_LF_SIMULATE_BIDIR:
681 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
682 break;
683 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
684 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
685 break;
686 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
687 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
688 break;
689 case CMD_T55XX_READ_BLOCK:
690 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
691 break;
692 case CMD_T55XX_WRITE_BLOCK:
693 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
694 break;
695 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
696 T55xxReadTrace();
697 break;
698 case CMD_PCF7931_READ: // Read PCF7931 tag
699 ReadPCF7931();
700 cmd_send(CMD_ACK,0,0,0,0,0);
701 break;
702 case CMD_EM4X_READ_WORD:
703 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
704 break;
705 case CMD_EM4X_WRITE_WORD:
706 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
707 break;
708 #endif
709
710 #ifdef WITH_HITAG
711 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
712 SnoopHitag(c->arg[0]);
713 break;
714 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
715 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
716 break;
717 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
718 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
719 break;
720 #endif
721
722 #ifdef WITH_ISO15693
723 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
724 AcquireRawAdcSamplesIso15693();
725 break;
726 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
727 RecordRawAdcSamplesIso15693();
728 break;
729
730 case CMD_ISO_15693_COMMAND:
731 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
732 break;
733
734 case CMD_ISO_15693_FIND_AFI:
735 BruteforceIso15693Afi(c->arg[0]);
736 break;
737
738 case CMD_ISO_15693_DEBUG:
739 SetDebugIso15693(c->arg[0]);
740 break;
741
742 case CMD_READER_ISO_15693:
743 ReaderIso15693(c->arg[0]);
744 break;
745 case CMD_SIMTAG_ISO_15693:
746 SimTagIso15693(c->arg[0], c->d.asBytes);
747 break;
748 #endif
749
750 #ifdef WITH_LEGICRF
751 case CMD_SIMULATE_TAG_LEGIC_RF:
752 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
753 break;
754
755 case CMD_WRITER_LEGIC_RF:
756 LegicRfWriter(c->arg[1], c->arg[0]);
757 break;
758
759 case CMD_READER_LEGIC_RF:
760 LegicRfReader(c->arg[0], c->arg[1]);
761 break;
762 #endif
763
764 #ifdef WITH_ISO14443b
765 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
766 AcquireRawAdcSamplesIso14443(c->arg[0]);
767 break;
768 case CMD_READ_SRI512_TAG:
769 ReadSTMemoryIso14443(0x0F);
770 break;
771 case CMD_READ_SRIX4K_TAG:
772 ReadSTMemoryIso14443(0x7F);
773 break;
774 case CMD_SNOOP_ISO_14443:
775 SnoopIso14443();
776 break;
777 case CMD_SIMULATE_TAG_ISO_14443:
778 SimulateIso14443Tag();
779 break;
780 case CMD_ISO_14443B_COMMAND:
781 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
782 break;
783 #endif
784
785 #ifdef WITH_ISO14443a
786 case CMD_SNOOP_ISO_14443a:
787 SnoopIso14443a(c->arg[0]);
788 break;
789 case CMD_READER_ISO_14443a:
790 ReaderIso14443a(c);
791 break;
792 case CMD_SIMULATE_TAG_ISO_14443a:
793 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
794 break;
795
796 case CMD_EPA_PACE_COLLECT_NONCE:
797 EPA_PACE_Collect_Nonce(c);
798 break;
799
800 // case CMD_EPA_:
801 // EpaFoo(c);
802 // break;
803
804 case CMD_READER_MIFARE:
805 ReaderMifare(c->arg[0]);
806 break;
807 case CMD_MIFARE_READBL:
808 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
809 break;
810 case CMD_MIFAREU_READBL:
811 MifareUReadBlock(c->arg[0],c->d.asBytes);
812 break;
813 case CMD_MIFAREUC_AUTH1:
814 MifareUC_Auth1(c->arg[0],c->d.asBytes);
815 break;
816 case CMD_MIFAREUC_AUTH2:
817 MifareUC_Auth2(c->arg[0],c->d.asBytes);
818 break;
819 case CMD_MIFAREU_READCARD:
820 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
821 break;
822 case CMD_MIFAREUC_READCARD:
823 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
824 break;
825 case CMD_MIFARE_READSC:
826 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
827 break;
828 case CMD_MIFARE_WRITEBL:
829 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
830 break;
831 case CMD_MIFAREU_WRITEBL_COMPAT:
832 MifareUWriteBlock(c->arg[0], c->d.asBytes);
833 break;
834 case CMD_MIFAREU_WRITEBL:
835 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
836 break;
837 case CMD_MIFARE_NESTED:
838 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
840 case CMD_MIFARE_CHKKEYS:
841 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
842 break;
843 case CMD_SIMULATE_MIFARE_CARD:
844 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846
847 // emulator
848 case CMD_MIFARE_SET_DBGMODE:
849 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
850 break;
851 case CMD_MIFARE_EML_MEMCLR:
852 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
853 break;
854 case CMD_MIFARE_EML_MEMSET:
855 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
856 break;
857 case CMD_MIFARE_EML_MEMGET:
858 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
859 break;
860 case CMD_MIFARE_EML_CARDLOAD:
861 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
862 break;
863
864 // Work with "magic Chinese" card
865 case CMD_MIFARE_EML_CSETBLOCK:
866 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
867 break;
868 case CMD_MIFARE_EML_CGETBLOCK:
869 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
870 break;
871
872 // mifare sniffer
873 case CMD_MIFARE_SNIFFER:
874 SniffMifare(c->arg[0]);
875 break;
876
877 // mifare desfire
878 case CMD_MIFARE_DESFIRE_READBL:
879 break;
880 case CMD_MIFARE_DESFIRE_WRITEBL:
881 break;
882 case CMD_MIFARE_DESFIRE_AUTH1:
883 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
884 break;
885 case CMD_MIFARE_DESFIRE_AUTH2:
886 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
887 break;
888 // case CMD_MIFARE_DES_READER:
889 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
890 //break;
891 case CMD_MIFARE_DESFIRE_INFO:
892 MifareDesfireGetInformation();
893 break;
894 case CMD_MIFARE_DESFIRE:
895 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
896 break;
897
898 #endif
899
900 #ifdef WITH_ICLASS
901 // Makes use of ISO14443a FPGA Firmware
902 case CMD_SNOOP_ICLASS:
903 SnoopIClass();
904 break;
905 case CMD_SIMULATE_TAG_ICLASS:
906 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
907 break;
908 case CMD_READER_ICLASS:
909 ReaderIClass(c->arg[0]);
910 break;
911 case CMD_READER_ICLASS_REPLAY:
912 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
913 break;
914 #endif
915
916 case CMD_SIMULATE_TAG_HF_LISTEN:
917 SimulateTagHfListen();
918 break;
919
920 case CMD_BUFF_CLEAR:
921 BufferClear();
922 break;
923
924 case CMD_MEASURE_ANTENNA_TUNING:
925 MeasureAntennaTuning();
926 break;
927
928 case CMD_MEASURE_ANTENNA_TUNING_HF:
929 MeasureAntennaTuningHf();
930 break;
931
932 case CMD_LISTEN_READER_FIELD:
933 ListenReaderField(c->arg[0]);
934 break;
935
936 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
937 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
938 SpinDelay(200);
939 LED_D_OFF(); // LED D indicates field ON or OFF
940 break;
941
942 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
943
944 LED_B_ON();
945 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
946 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
947 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
948 }
949 // Trigger a finish downloading signal with an ACK frame
950 cmd_send(CMD_ACK,0,0,0,0,0);
951 LED_B_OFF();
952 break;
953
954 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
955 uint8_t *b = (uint8_t *)BigBuf;
956 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
957 cmd_send(CMD_ACK,0,0,0,0,0);
958 break;
959 }
960 case CMD_READ_MEM:
961 ReadMem(c->arg[0]);
962 break;
963
964 case CMD_SET_LF_DIVISOR:
965 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
966 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
967 break;
968
969 case CMD_SET_ADC_MUX:
970 switch(c->arg[0]) {
971 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
972 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
973 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
974 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
975 }
976 break;
977
978 case CMD_VERSION:
979 SendVersion();
980 break;
981
982 #ifdef WITH_LCD
983 case CMD_LCD_RESET:
984 LCDReset();
985 break;
986 case CMD_LCD:
987 LCDSend(c->arg[0]);
988 break;
989 #endif
990 case CMD_SETUP_WRITE:
991 case CMD_FINISH_WRITE:
992 case CMD_HARDWARE_RESET:
993 usb_disable();
994 SpinDelay(1000);
995 SpinDelay(1000);
996 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
997 for(;;) {
998 // We're going to reset, and the bootrom will take control.
999 }
1000 break;
1001
1002 case CMD_START_FLASH:
1003 if(common_area.flags.bootrom_present) {
1004 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1005 }
1006 usb_disable();
1007 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1008 for(;;);
1009 break;
1010
1011 case CMD_DEVICE_INFO: {
1012 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1013 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1014 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1015 break;
1016 }
1017 default:
1018 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1019 break;
1020 }
1021 }
1022
1023 void __attribute__((noreturn)) AppMain(void)
1024 {
1025 SpinDelay(100);
1026
1027 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1028 /* Initialize common area */
1029 memset(&common_area, 0, sizeof(common_area));
1030 common_area.magic = COMMON_AREA_MAGIC;
1031 common_area.version = 1;
1032 }
1033 common_area.flags.osimage_present = 1;
1034
1035 LED_D_OFF();
1036 LED_C_OFF();
1037 LED_B_OFF();
1038 LED_A_OFF();
1039
1040 // Init USB device
1041 usb_enable();
1042
1043 // The FPGA gets its clock from us from PCK0 output, so set that up.
1044 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1045 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1046 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1047 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1048 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1049 AT91C_PMC_PRES_CLK_4;
1050 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1051
1052 // Reset SPI
1053 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1054 // Reset SSC
1055 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1056
1057 // Load the FPGA image, which we have stored in our flash.
1058 // (the HF version by default)
1059 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1060
1061 StartTickCount();
1062
1063 #ifdef WITH_LCD
1064 LCDInit();
1065 #endif
1066
1067 byte_t rx[sizeof(UsbCommand)];
1068 size_t rx_len;
1069
1070 for(;;) {
1071 if (usb_poll()) {
1072 rx_len = usb_read(rx,sizeof(UsbCommand));
1073 if (rx_len) {
1074 UsbPacketReceived(rx,rx_len);
1075 }
1076 }
1077 WDT_HIT();
1078
1079 #ifdef WITH_LF
1080 if (BUTTON_HELD(1000) > 0)
1081 SamyRun();
1082 #endif
1083 }
1084 }
Impressum, Datenschutz