1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
28 #include "iso14443b.h"
30 #include "lfsampling.h"
32 #include "mifarecmd.h"
33 #include "mifareutil.h"
34 #include "mifaresim.h"
38 #include "fpgaloader.h"
43 static uint32_t hw_capabilities
;
45 // Craig Young - 14a stand-alone code
47 #include "iso14443a.h"
50 //=============================================================================
51 // A buffer where we can queue things up to be sent through the FPGA, for
52 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
53 // is the order in which they go out on the wire.
54 //=============================================================================
56 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
57 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
60 struct common_area common_area
__attribute__((section(".commonarea")));
62 void ToSendReset(void)
68 void ToSendStuffBit(int b
)
72 ToSend
[ToSendMax
] = 0;
77 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
82 if(ToSendMax
>= sizeof(ToSend
)) {
84 DbpString("ToSendStuffBit overflowed!");
88 //=============================================================================
89 // Debug print functions, to go out over USB, to the usual PC-side client.
90 //=============================================================================
92 void DbpString(char *str
)
94 byte_t len
= strlen(str
);
95 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
99 void DbpIntegers(int x1
, int x2
, int x3
)
101 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
105 void Dbprintf(const char *fmt
, ...) {
106 // should probably limit size here; oh well, let's just use a big buffer
107 char output_string
[128];
111 kvsprintf(fmt
, output_string
, 10, ap
);
114 DbpString(output_string
);
117 // prints HEX & ASCII
118 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
131 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
134 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
136 Dbprintf("%*D",l
,d
," ");
144 //-----------------------------------------------------------------------------
145 // Read an ADC channel and block till it completes, then return the result
146 // in ADC units (0 to 1023). Also a routine to average 32 samples and
148 //-----------------------------------------------------------------------------
149 static int ReadAdc(int ch
)
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
158 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
160 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
161 AT91C_BASE_ADC
->ADC_MR
=
162 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
163 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
164 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
166 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
167 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
169 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
171 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
174 int AvgAdc(int ch
) // was static - merlok
179 for(i
= 0; i
< 32; i
++) {
183 return (a
+ 15) >> 5;
186 static int AvgAdc_Voltage_HF(void)
188 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
190 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
191 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
192 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
193 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
194 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
195 return AvgAdc_Voltage_High
;
198 return AvgAdc_Voltage_Low
;
201 static int AvgAdc_Voltage_LF(void)
203 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
206 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
208 int i
, adcval
= 0, peak
= 0;
211 * Sweeps the useful LF range of the proxmark from
212 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
213 * read the voltage in the antenna, the result left
214 * in the buffer is a graph which should clearly show
215 * the resonating frequency of your LF antenna
216 * ( hopefully around 95 if it is tuned to 125kHz!)
219 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
220 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
223 for (i
=255; i
>=19; i
--) {
225 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
227 adcval
= AvgAdc_Voltage_LF();
228 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
229 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
231 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
232 if(LF_Results
[i
] > peak
) {
234 peak
= LF_Results
[i
];
240 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
245 void MeasureAntennaTuningHfOnly(int *vHf
)
247 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
252 *vHf
= AvgAdc_Voltage_HF();
257 void MeasureAntennaTuning(int mode
)
259 uint8_t LF_Results
[256] = {0};
260 int peakv
= 0, peakf
= 0;
261 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
265 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
266 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
267 MeasureAntennaTuningHfOnly(&vHf
);
268 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
270 if (mode
& FLAG_TUNE_LF
) {
271 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
273 if (mode
& FLAG_TUNE_HF
) {
274 MeasureAntennaTuningHfOnly(&vHf
);
278 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
279 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
284 void MeasureAntennaTuningHf(void)
286 int vHf
= 0; // in mV
288 DbpString("Measuring HF antenna, press button to exit");
290 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
291 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
292 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
296 vHf
= AvgAdc_Voltage_HF();
298 Dbprintf("%d mV",vHf
);
299 if (BUTTON_PRESS()) break;
301 DbpString("cancelled");
303 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
308 void ReadMem(int addr
)
310 const uint8_t *data
= ((uint8_t *)addr
);
312 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
313 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
316 /* osimage version information is linked in */
317 extern struct version_information version_information
;
318 /* bootrom version information is pointed to from _bootphase1_version_pointer */
319 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
322 void set_hw_capabilities(void)
324 if (I2C_is_available()) {
325 hw_capabilities
|= HAS_SMARTCARD_SLOT
;
328 if (false) { // TODO: implement a test
329 hw_capabilities
|= HAS_EXTRA_FLASH_MEM
;
334 void SendVersion(void)
336 set_hw_capabilities();
338 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
339 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
341 /* Try to find the bootrom version information. Expect to find a pointer at
342 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
343 * pointer, then use it.
345 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
346 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
347 strcat(VersionString
, "bootrom version information appears invalid\n");
349 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
350 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
353 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
354 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
356 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
357 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
358 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
361 // test availability of SmartCard slot
362 if (I2C_is_available()) {
363 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
365 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
368 // Send Chip ID and used flash memory
369 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
370 uint32_t compressed_data_section_size
= common_area
.arg1
;
371 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, hw_capabilities
, VersionString
, strlen(VersionString
));
374 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
375 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
376 void printUSBSpeed(void)
378 Dbprintf("USB Speed:");
379 Dbprintf(" Sending USB packets to client...");
381 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
382 uint8_t *test_data
= BigBuf_get_addr();
385 uint32_t start_time
= end_time
= GetTickCount();
386 uint32_t bytes_transferred
= 0;
389 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
390 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
391 end_time
= GetTickCount();
392 bytes_transferred
+= USB_CMD_DATA_SIZE
;
396 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
397 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
398 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
399 1000 * bytes_transferred
/ (end_time
- start_time
));
404 * Prints runtime information about the PM3.
406 void SendStatus(void)
408 BigBuf_print_status();
410 #ifdef WITH_SMARTCARD
413 printConfig(); //LF Sampling config
416 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
417 Dbprintf(" ToSendMax..........%d", ToSendMax
);
418 Dbprintf(" ToSendBit..........%d", ToSendBit
);
420 cmd_send(CMD_ACK
,1,0,0,0,0);
423 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
427 void StandAloneMode()
429 DbpString("Stand-alone mode! No PC necessary.");
430 // Oooh pretty -- notify user we're in elite samy mode now
432 LED(LED_ORANGE
, 200);
434 LED(LED_ORANGE
, 200);
436 LED(LED_ORANGE
, 200);
438 LED(LED_ORANGE
, 200);
447 #ifdef WITH_ISO14443a_StandAlone
448 void StandAloneMode14a()
451 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
454 bool playing
= false, GotoRecord
= false, GotoClone
= false;
455 bool cardRead
[OPTS
] = {false};
456 uint8_t readUID
[10] = {0};
457 uint32_t uid_1st
[OPTS
]={0};
458 uint32_t uid_2nd
[OPTS
]={0};
459 uint32_t uid_tmp1
= 0;
460 uint32_t uid_tmp2
= 0;
461 iso14a_card_select_t hi14a_card
[OPTS
];
463 LED(selected
+ 1, 0);
471 if (GotoRecord
|| !cardRead
[selected
])
475 LED(selected
+ 1, 0);
479 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
480 /* need this delay to prevent catching some weird data */
482 /* Code for reading from 14a tag */
483 uint8_t uid
[10] ={0};
485 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
490 if (BUTTON_PRESS()) {
491 if (cardRead
[selected
]) {
492 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
495 else if (cardRead
[(selected
+1)%OPTS
]) {
496 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
497 selected
= (selected
+1)%OPTS
;
501 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
505 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
509 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
510 memcpy(readUID
,uid
,10*sizeof(uint8_t));
511 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
512 // Set UID byte order
513 for (int i
=0; i
<4; i
++)
515 dst
= (uint8_t *)&uid_tmp2
;
516 for (int i
=0; i
<4; i
++)
518 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
519 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
523 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
524 uid_1st
[selected
] = (uid_tmp1
)>>8;
525 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
528 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
529 uid_1st
[selected
] = uid_tmp1
;
530 uid_2nd
[selected
] = uid_tmp2
;
536 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
537 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
540 LED(LED_ORANGE
, 200);
542 LED(LED_ORANGE
, 200);
545 LED(selected
+ 1, 0);
547 // Next state is replay:
550 cardRead
[selected
] = true;
552 /* MF Classic UID clone */
557 LED(selected
+ 1, 0);
558 LED(LED_ORANGE
, 250);
562 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
564 // wait for button to be released
565 while(BUTTON_PRESS())
567 // Delay cloning until card is in place
570 Dbprintf("Starting clone. [Bank: %u]", selected
);
571 // need this delay to prevent catching some weird data
573 // Begin clone function here:
574 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
575 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
576 memcpy(c.d.asBytes, data, 16);
579 Block read is similar:
580 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
581 We need to imitate that call with blockNo 0 to set a uid.
583 The get and set commands are handled in this file:
584 // Work with "magic Chinese" card
585 case CMD_MIFARE_CSETBLOCK:
586 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
588 case CMD_MIFARE_CGETBLOCK:
589 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
592 mfCSetUID provides example logic for UID set workflow:
593 -Read block0 from card in field with MifareCGetBlock()
594 -Configure new values without replacing reserved bytes
595 memcpy(block0, uid, 4); // Copy UID bytes from byte array
597 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
598 Bytes 5-7 are reserved SAK and ATQA for mifare classic
599 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
601 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
602 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
603 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
604 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
605 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
609 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
610 memcpy(newBlock0
,oldBlock0
,16);
611 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
613 newBlock0
[0] = uid_1st
[selected
]>>24;
614 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
615 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
616 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
617 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
618 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
619 MifareCSetBlock(0, 0xFF,0, newBlock0
);
620 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
621 if (memcmp(testBlock0
,newBlock0
,16)==0)
623 DbpString("Cloned successfull!");
624 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
627 selected
= (selected
+1) % OPTS
;
630 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
635 LED(selected
+ 1, 0);
638 // Change where to record (or begin playing)
639 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
642 LED(selected
+ 1, 0);
644 // Begin transmitting
646 DbpString("Playing");
649 int button_action
= BUTTON_HELD(1000);
650 if (button_action
== 0) { // No button action, proceed with sim
651 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
652 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
653 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
654 DbpString("Mifare Classic");
655 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
657 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
658 DbpString("Mifare Ultralight");
659 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
661 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
662 DbpString("Mifare DESFire");
663 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
666 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
667 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
670 else if (button_action
== BUTTON_SINGLE_CLICK
) {
671 selected
= (selected
+ 1) % OPTS
;
672 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
676 else if (button_action
== BUTTON_HOLD
) {
677 Dbprintf("Playtime over. Begin cloning...");
684 /* We pressed a button so ignore it here with a delay */
687 LED(selected
+ 1, 0);
691 #elif WITH_LF_StandAlone
692 // samy's sniff and repeat routine
696 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
698 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
703 // Turn on selected LED
704 LED(selected
+ 1, 0);
711 // Was our button held down or pressed?
712 int button_pressed
= BUTTON_HELD(1000);
715 // Button was held for a second, begin recording
716 if (button_pressed
> 0 && cardRead
== 0)
719 LED(selected
+ 1, 0);
723 DbpString("Starting recording");
725 // wait for button to be released
726 while(BUTTON_PRESS())
729 /* need this delay to prevent catching some weird data */
732 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
733 if (tops
[selected
] > 0)
734 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
736 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
739 LED(selected
+ 1, 0);
740 // Finished recording
742 // If we were previously playing, set playing off
743 // so next button push begins playing what we recorded
750 else if (button_pressed
> 0 && cardRead
== 1)
753 LED(selected
+ 1, 0);
757 if (tops
[selected
] > 0)
758 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
760 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
762 // wait for button to be released
763 while(BUTTON_PRESS())
766 /* need this delay to prevent catching some weird data */
769 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
770 if (tops
[selected
] > 0)
771 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
773 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
776 LED(selected
+ 1, 0);
777 // Finished recording
779 // If we were previously playing, set playing off
780 // so next button push begins playing what we recorded
787 // Change where to record (or begin playing)
788 else if (button_pressed
)
790 // Next option if we were previously playing
792 selected
= (selected
+ 1) % OPTS
;
796 LED(selected
+ 1, 0);
798 // Begin transmitting
802 DbpString("Playing");
803 // wait for button to be released
804 while(BUTTON_PRESS())
806 if (tops
[selected
] > 0)
807 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
809 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
811 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
812 DbpString("Done playing");
813 if (BUTTON_HELD(1000) > 0)
815 DbpString("Exiting");
820 /* We pressed a button so ignore it here with a delay */
823 // when done, we're done playing, move to next option
824 selected
= (selected
+ 1) % OPTS
;
827 LED(selected
+ 1, 0);
830 while(BUTTON_PRESS())
839 Listen and detect an external reader. Determine the best location
843 Inside the ListenReaderField() function, there is two mode.
844 By default, when you call the function, you will enter mode 1.
845 If you press the PM3 button one time, you will enter mode 2.
846 If you press the PM3 button a second time, you will exit the function.
848 DESCRIPTION OF MODE 1:
849 This mode just listens for an external reader field and lights up green
850 for HF and/or red for LF. This is the original mode of the detectreader
853 DESCRIPTION OF MODE 2:
854 This mode will visually represent, using the LEDs, the actual strength of the
855 current compared to the maximum current detected. Basically, once you know
856 what kind of external reader is present, it will help you spot the best location to place
857 your antenna. You will probably not get some good results if there is a LF and a HF reader
858 at the same place! :-)
862 static const char LIGHT_SCHEME
[] = {
863 0x0, /* ---- | No field detected */
864 0x1, /* X--- | 14% of maximum current detected */
865 0x2, /* -X-- | 29% of maximum current detected */
866 0x4, /* --X- | 43% of maximum current detected */
867 0x8, /* ---X | 57% of maximum current detected */
868 0xC, /* --XX | 71% of maximum current detected */
869 0xE, /* -XXX | 86% of maximum current detected */
870 0xF, /* XXXX | 100% of maximum current detected */
872 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
874 void ListenReaderField(int limit
)
876 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
877 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
878 int mode
=1, display_val
, display_max
, i
;
882 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
883 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
884 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
887 // switch off FPGA - we don't want to measure our own signal
888 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
889 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
893 lf_av
= lf_max
= AvgAdc_Voltage_LF();
895 if(limit
!= HF_ONLY
) {
896 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
900 hf_av
= hf_max
= AvgAdc_Voltage_HF();
902 if (limit
!= LF_ONLY
) {
903 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
909 if (BUTTON_PRESS()) {
913 DbpString("Signal Strength Mode");
917 DbpString("Stopped");
922 while (BUTTON_PRESS());
926 if (limit
!= HF_ONLY
) {
928 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
934 lf_av_new
= AvgAdc_Voltage_LF();
935 // see if there's a significant change
936 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
937 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
944 if (limit
!= LF_ONLY
) {
946 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
952 hf_av_new
= AvgAdc_Voltage_HF();
954 // see if there's a significant change
955 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
956 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
964 if (limit
== LF_ONLY
) {
966 display_max
= lf_max
;
967 } else if (limit
== HF_ONLY
) {
969 display_max
= hf_max
;
970 } else { /* Pick one at random */
971 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
973 display_max
= hf_max
;
976 display_max
= lf_max
;
979 for (i
=0; i
<LIGHT_LEN
; i
++) {
980 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
981 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
982 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
983 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
984 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
992 void UsbPacketReceived(uint8_t *packet
, int len
)
994 UsbCommand
*c
= (UsbCommand
*)packet
;
996 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
1000 case CMD_SET_LF_SAMPLING_CONFIG
:
1001 setSamplingConfig(c
->d
.asBytes
);
1003 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1004 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
1006 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1007 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1009 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
1010 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
1012 case CMD_HID_DEMOD_FSK
:
1013 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
1015 case CMD_HID_SIM_TAG
:
1016 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
1018 case CMD_FSK_SIM_TAG
:
1019 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1021 case CMD_ASK_SIM_TAG
:
1022 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1024 case CMD_PSK_SIM_TAG
:
1025 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1027 case CMD_HID_CLONE_TAG
:
1028 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1030 case CMD_PARADOX_CLONE_TAG
:
1031 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1032 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1034 case CMD_IO_DEMOD_FSK
:
1035 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1037 case CMD_IO_CLONE_TAG
:
1038 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1040 case CMD_EM410X_DEMOD
:
1041 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1043 case CMD_EM410X_WRITE_TAG
:
1044 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1046 case CMD_READ_TI_TYPE
:
1049 case CMD_WRITE_TI_TYPE
:
1050 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1052 case CMD_SIMULATE_TAG_125K
:
1054 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1057 case CMD_LF_SIMULATE_BIDIR
:
1058 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1060 case CMD_INDALA_CLONE_TAG
:
1061 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1063 case CMD_INDALA_CLONE_TAG_L
:
1064 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1066 case CMD_T55XX_READ_BLOCK
:
1067 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1069 case CMD_T55XX_WRITE_BLOCK
:
1070 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1072 case CMD_T55XX_WAKEUP
:
1073 T55xxWakeUp(c
->arg
[0]);
1075 case CMD_T55XX_RESET_READ
:
1078 case CMD_PCF7931_READ
:
1081 case CMD_PCF7931_WRITE
:
1082 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1084 case CMD_PCF7931_BRUTEFORCE
:
1085 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1087 case CMD_EM4X_READ_WORD
:
1088 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1090 case CMD_EM4X_WRITE_WORD
:
1091 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1093 case CMD_EM4X_PROTECT
:
1094 EM4xProtect(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1096 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1097 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1099 case CMD_VIKING_CLONE_TAG
:
1100 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1108 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1109 SnoopHitag(c
->arg
[0]);
1111 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1112 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1114 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1115 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1117 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1118 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1120 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1121 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1123 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1124 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1126 case CMD_READ_HITAG_S_BLK
:
1127 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1129 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1130 if ((hitag_function
)c
->arg
[0] < 10) {
1131 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1133 else if ((hitag_function
)c
->arg
[0] >= 10) {
1134 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1139 #ifdef WITH_ISO15693
1140 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1141 AcquireRawAdcSamplesIso15693();
1144 case CMD_SNOOP_ISO_15693
:
1145 SnoopIso15693(0, NULL
);
1148 case CMD_ISO_15693_COMMAND
:
1149 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1152 case CMD_ISO_15693_FIND_AFI
:
1153 BruteforceIso15693Afi(c
->arg
[0]);
1156 case CMD_ISO_15693_DEBUG
:
1157 SetDebugIso15693(c
->arg
[0]);
1160 case CMD_READER_ISO_15693
:
1161 ReaderIso15693(c
->arg
[0]);
1164 case CMD_SIMTAG_ISO_15693
:
1165 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1168 case CMD_CSETUID_ISO_15693
:
1169 SetTag15693Uid(c
->d
.asBytes
);
1174 case CMD_SIMULATE_TAG_LEGIC_RF
:
1175 LegicRfSimulate(c
->arg
[0]);
1178 case CMD_WRITER_LEGIC_RF
:
1179 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1182 case CMD_READER_LEGIC_RF
:
1183 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1187 #ifdef WITH_ISO14443b
1188 case CMD_READ_SRI512_TAG
:
1189 ReadSTMemoryIso14443b(0x0F);
1191 case CMD_READ_SRIX4K_TAG
:
1192 ReadSTMemoryIso14443b(0x7F);
1194 case CMD_SNOOP_ISO_14443B
:
1197 case CMD_SIMULATE_TAG_ISO_14443B
:
1198 SimulateIso14443bTag();
1200 case CMD_ISO_14443B_COMMAND
:
1201 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1205 #ifdef WITH_ISO14443a
1206 case CMD_SNOOP_ISO_14443a
:
1207 SnoopIso14443a(c
->arg
[0]);
1209 case CMD_READER_ISO_14443a
:
1212 case CMD_SIMULATE_TAG_ISO_14443a
:
1213 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1216 case CMD_EPA_PACE_COLLECT_NONCE
:
1217 EPA_PACE_Collect_Nonce(c
);
1219 case CMD_EPA_PACE_REPLAY
:
1223 case CMD_READER_MIFARE
:
1224 ReaderMifare(c
->arg
[0]);
1226 case CMD_MIFARE_READBL
:
1227 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1229 case CMD_MIFAREU_READBL
:
1230 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1232 case CMD_MIFAREUC_AUTH
:
1233 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1235 case CMD_MIFAREU_READCARD
:
1236 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1238 case CMD_MIFAREUC_SETPWD
:
1239 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1241 case CMD_MIFARE_READSC
:
1242 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1244 case CMD_MIFARE_WRITEBL
:
1245 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1247 case CMD_MIFARE_PERSONALIZE_UID
:
1248 MifarePersonalizeUID(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1250 //case CMD_MIFAREU_WRITEBL_COMPAT:
1251 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1253 case CMD_MIFAREU_WRITEBL
:
1254 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1256 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1257 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1259 case CMD_MIFARE_NESTED
:
1260 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1262 case CMD_MIFARE_CHKKEYS
:
1263 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1265 case CMD_SIMULATE_MIFARE_CARD
:
1266 MifareSim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1270 case CMD_MIFARE_SET_DBGMODE
:
1271 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1273 case CMD_MIFARE_EML_MEMCLR
:
1274 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1276 case CMD_MIFARE_EML_MEMSET
:
1277 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1279 case CMD_MIFARE_EML_MEMGET
:
1280 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1282 case CMD_MIFARE_EML_CARDLOAD
:
1283 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1286 // Work with "magic Chinese" card
1287 case CMD_MIFARE_CWIPE
:
1288 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1290 case CMD_MIFARE_CSETBLOCK
:
1291 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1293 case CMD_MIFARE_CGETBLOCK
:
1294 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1296 case CMD_MIFARE_CIDENT
:
1301 case CMD_MIFARE_SNIFFER
:
1302 SniffMifare(c
->arg
[0]);
1308 // Makes use of ISO14443a FPGA Firmware
1309 case CMD_SNOOP_ICLASS
:
1310 SnoopIClass(c
->arg
[0], c
->d
.asBytes
);
1312 case CMD_SIMULATE_TAG_ICLASS
:
1313 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1315 case CMD_READER_ICLASS
:
1316 ReaderIClass(c
->arg
[0]);
1318 case CMD_READER_ICLASS_REPLAY
:
1319 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1321 case CMD_ICLASS_EML_MEMSET
:
1322 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1324 case CMD_ICLASS_WRITEBLOCK
:
1325 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1327 case CMD_ICLASS_READBLOCK
:
1328 iClass_ReadBlk(c
->arg
[0]);
1330 case CMD_ICLASS_CHECK
:
1331 iClass_Check(c
->d
.asBytes
);
1333 case CMD_ICLASS_READCHECK
:
1334 iClass_Readcheck(c
->arg
[0], c
->arg
[1]);
1336 case CMD_ICLASS_DUMP
:
1337 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1339 case CMD_ICLASS_CLONE
:
1340 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1345 case CMD_HF_SNIFFER
:
1346 HfSnoop(c
->arg
[0], c
->arg
[1]);
1353 #ifdef WITH_SMARTCARD
1354 case CMD_SMART_ATR
: {
1358 case CMD_SMART_SETCLOCK
:{
1359 SmartCardSetClock(c
->arg
[0]);
1362 case CMD_SMART_RAW
: {
1363 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1366 case CMD_SMART_UPLOAD
: {
1367 // upload file from client
1368 uint8_t *mem
= BigBuf_get_addr();
1369 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1370 cmd_send(CMD_ACK
,1,0,0,0,0);
1373 case CMD_SMART_UPGRADE
: {
1374 SmartCardUpgrade(c
->arg
[0]);
1379 case CMD_BUFF_CLEAR
:
1383 case CMD_MEASURE_ANTENNA_TUNING
:
1384 MeasureAntennaTuning(c
->arg
[0]);
1387 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1388 MeasureAntennaTuningHf();
1391 case CMD_LISTEN_READER_FIELD
:
1392 ListenReaderField(c
->arg
[0]);
1395 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1396 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1398 LED_D_OFF(); // LED D indicates field ON or OFF
1401 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1403 uint8_t *BigBuf
= BigBuf_get_addr();
1404 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1405 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1406 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1408 // Trigger a finish downloading signal with an ACK frame
1409 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1413 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1414 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1415 // to be able to use this one for uploading data to device
1416 // arg1 = 0 upload for LF usage
1417 // 1 upload for HF usage
1419 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1421 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1423 uint8_t *b
= BigBuf_get_addr();
1424 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1425 cmd_send(CMD_ACK
,0,0,0,0,0);
1432 case CMD_SET_LF_DIVISOR
:
1433 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1434 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1437 case CMD_SET_ADC_MUX
:
1439 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1440 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1441 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1442 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1453 cmd_send(CMD_ACK
,0,0,0,0,0);
1463 case CMD_SETUP_WRITE
:
1464 case CMD_FINISH_WRITE
:
1465 case CMD_HARDWARE_RESET
:
1469 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1471 // We're going to reset, and the bootrom will take control.
1475 case CMD_START_FLASH
:
1476 if(common_area
.flags
.bootrom_present
) {
1477 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1480 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1484 case CMD_DEVICE_INFO
: {
1485 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1486 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1487 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1491 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1496 void __attribute__((noreturn
)) AppMain(void)
1500 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1501 /* Initialize common area */
1502 memset(&common_area
, 0, sizeof(common_area
));
1503 common_area
.magic
= COMMON_AREA_MAGIC
;
1504 common_area
.version
= 1;
1506 common_area
.flags
.osimage_present
= 1;
1513 // The FPGA gets its clock from us from PCK0 output, so set that up.
1514 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1515 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1516 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1517 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1518 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1519 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1520 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1523 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1525 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1527 // Load the FPGA image, which we have stored in our flash.
1528 // (the HF version by default)
1529 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1537 byte_t rx
[sizeof(UsbCommand
)];
1542 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1544 UsbPacketReceived(rx
,rx_len
);
1549 #ifdef WITH_LF_StandAlone
1550 #ifndef WITH_ISO14443a_StandAlone
1551 if (BUTTON_HELD(1000) > 0)
1555 #ifdef WITH_ISO14443a
1556 #ifdef WITH_ISO14443a_StandAlone
1557 if (BUTTON_HELD(1000) > 0)
1558 StandAloneMode14a();