]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/ui.c
5d05da96c5cb13037ec4d31bbe9a0bfe2131d7c9
[proxmark3-svn] / client / ui.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2009 Michael Gernoth <michael at gernoth.net>
3 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // UI utilities
10 //-----------------------------------------------------------------------------
11
12 #include <stdarg.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <stdbool.h>
16 #include <time.h>
17 #include <readline/readline.h>
18 #include <pthread.h>
19 #include "loclass/cipherutils.h"
20 #include "ui.h"
21 #include "cmdmain.h"
22 #include "cmddata.h"
23 //#include <liquid/liquid.h>
24 #define M_PI 3.14159265358979323846264338327
25
26 double CursorScaleFactor;
27 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
28 int offline;
29 int flushAfterWrite = 0; //buzzy
30 extern pthread_mutex_t print_lock;
31
32 static char *logfilename = "proxmark3.log";
33
34 void PrintAndLog(char *fmt, ...)
35 {
36 char *saved_line;
37 int saved_point;
38 va_list argptr, argptr2;
39 static FILE *logfile = NULL;
40 static int logging=1;
41
42 // lock this section to avoid interlacing prints from different threats
43 pthread_mutex_lock(&print_lock);
44
45 if (logging && !logfile) {
46 logfile=fopen(logfilename, "a");
47 if (!logfile) {
48 fprintf(stderr, "Can't open logfile, logging disabled!\n");
49 logging=0;
50 }
51 }
52
53 int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
54
55 if (need_hack) {
56 saved_point = rl_point;
57 saved_line = rl_copy_text(0, rl_end);
58 rl_save_prompt();
59 rl_replace_line("", 0);
60 rl_redisplay();
61 }
62
63 va_start(argptr, fmt);
64 va_copy(argptr2, argptr);
65 vprintf(fmt, argptr);
66 printf(" "); // cleaning prompt
67 va_end(argptr);
68 printf("\n");
69
70 if (need_hack) {
71 rl_restore_prompt();
72 rl_replace_line(saved_line, 0);
73 rl_point = saved_point;
74 rl_redisplay();
75 free(saved_line);
76 }
77
78 if (logging && logfile) {
79 vfprintf(logfile, fmt, argptr2);
80 fprintf(logfile,"\n");
81 fflush(logfile);
82 }
83 va_end(argptr2);
84
85 if (flushAfterWrite == 1) //buzzy
86 {
87 fflush(NULL);
88 }
89 //release lock
90 pthread_mutex_unlock(&print_lock);
91 }
92
93 void SetLogFilename(char *fn)
94 {
95 logfilename = fn;
96 }
97
98 int manchester_decode( int * data, const size_t len, uint8_t * dataout){
99
100 int bitlength = 0;
101 int i, clock, high, low, startindex;
102 low = startindex = 0;
103 high = 1;
104 uint8_t bitStream[len];
105
106 memset(bitStream, 0x00, len);
107
108 /* Detect high and lows */
109 for (i = 0; i < len; i++) {
110 if (data[i] > high)
111 high = data[i];
112 else if (data[i] < low)
113 low = data[i];
114 }
115
116 /* get clock */
117 clock = GetT55x7Clock( data, len, high );
118 startindex = DetectFirstTransition(data, len, high);
119
120 PrintAndLog(" Clock : %d", clock);
121 //PrintAndLog(" startindex : %d", startindex);
122
123 if (high != 1)
124 bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
125 else
126 bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
127
128 memcpy(dataout, bitStream, bitlength);
129 return bitlength;
130 }
131
132 int GetT55x7Clock( const int * data, const size_t len, int peak ){
133
134 int i,lastpeak,clock;
135 clock = 0xFFFF;
136 lastpeak = 0;
137
138 /* Detect peak if we don't have one */
139 if (!peak) {
140 for (i = 0; i < len; ++i) {
141 if (data[i] > peak) {
142 peak = data[i];
143 }
144 }
145 }
146
147 for (i = 1; i < len; ++i) {
148 /* if this is the beginning of a peak */
149 if ( data[i-1] != data[i] && data[i] == peak) {
150 /* find lowest difference between peaks */
151 if (lastpeak && i - lastpeak < clock)
152 clock = i - lastpeak;
153 lastpeak = i;
154 }
155 }
156 //return clock;
157 //defaults clock to precise values.
158 switch(clock){
159 case 8:
160 case 16:
161 case 32:
162 case 40:
163 case 50:
164 case 64:
165 case 100:
166 case 128:
167 return clock;
168 break;
169 default: break;
170 }
171
172 //PrintAndLog(" Found Clock : %d - trying to adjust", clock);
173
174 // When detected clock is 31 or 33 then then return
175 int clockmod = clock%8;
176 if ( clockmod == 7 )
177 clock += 1;
178 else if ( clockmod == 1 )
179 clock -= 1;
180
181 return clock;
182 }
183
184 int DetectFirstTransition(const int * data, const size_t len, int threshold){
185
186 int i =0;
187 /* now look for the first threshold */
188 for (; i < len; ++i) {
189 if (data[i] == threshold) {
190 break;
191 }
192 }
193 return i;
194 }
195
196 int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
197
198 int i, j, z, hithigh, hitlow, bitIndex, startType;
199 i = 0;
200 bitIndex = 0;
201
202 int isDamp = 0;
203 int damplimit = (int)((high / 2) * 0.3);
204 int dampHi = (high/2)+damplimit;
205 int dampLow = (high/2)-damplimit;
206 int firstST = 0;
207
208 // i = clock frame of data
209 for (; i < (int)(len / clock); i++)
210 {
211 hithigh = 0;
212 hitlow = 0;
213 startType = -1;
214 z = startIndex + (i*clock);
215 isDamp = 0;
216
217 /* Find out if we hit both high and low peaks */
218 for (j = 0; j < clock; j++)
219 {
220 if (data[z+j] == high){
221 hithigh = 1;
222 if ( startType == -1)
223 startType = 1;
224 }
225
226 if (data[z+j] == low ){
227 hitlow = 1;
228 if ( startType == -1)
229 startType = 0;
230 }
231
232 if (hithigh && hitlow)
233 break;
234 }
235
236 // No high value found, are we in a dampening field?
237 if ( !hithigh ) {
238 //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
239 for (j = 0; j < clock; j++) {
240 if (
241 (data[z+j] <= dampHi && data[z+j] >= dampLow)
242 ){
243 isDamp++;
244 }
245 }
246 }
247
248 /* Manchester Switching..
249 0: High -> Low
250 1: Low -> High
251 */
252 if (startType == 0)
253 dataout[bitIndex++] = 1;
254 else if (startType == 1)
255 dataout[bitIndex++] = 0;
256 else
257 dataout[bitIndex++] = 2;
258
259 if ( isDamp > clock/2 ) {
260 firstST++;
261 }
262
263 if ( firstST == 4)
264 break;
265 }
266 return bitIndex;
267 }
268
269 int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
270
271 PrintAndLog(" Path B");
272
273 int i,j, bitindex, lc, tolerance, warnings;
274 warnings = 0;
275 int upperlimit = len*2/clock+8;
276 i = startIndex;
277 j = 0;
278 tolerance = clock/4;
279 uint8_t decodedArr[len];
280
281 /* Detect duration between 2 successive transitions */
282 for (bitindex = 1; i < len; i++) {
283
284 if (data[i-1] != data[i]) {
285 lc = i - startIndex;
286 startIndex = i;
287
288 // Error check: if bitindex becomes too large, we do not
289 // have a Manchester encoded bitstream or the clock is really wrong!
290 if (bitindex > upperlimit ) {
291 PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
292 return 0;
293 }
294 // Then switch depending on lc length:
295 // Tolerance is 1/4 of clock rate (arbitrary)
296 if (abs((lc-clock)/2) < tolerance) {
297 // Short pulse : either "1" or "0"
298 decodedArr[bitindex++] = data[i-1];
299 } else if (abs(lc-clock) < tolerance) {
300 // Long pulse: either "11" or "00"
301 decodedArr[bitindex++] = data[i-1];
302 decodedArr[bitindex++] = data[i-1];
303 } else {
304 ++warnings;
305 PrintAndLog("Warning: Manchester decode error for pulse width detection.");
306 if (warnings > 10) {
307 PrintAndLog("Error: too many detection errors, aborting.");
308 return 0;
309 }
310 }
311 }
312 }
313
314 /*
315 * We have a decodedArr of "01" ("1") or "10" ("0")
316 * parse it into final decoded dataout
317 */
318 for (i = 0; i < bitindex; i += 2) {
319
320 if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
321 dataout[j++] = 1;
322 } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
323 dataout[j++] = 0;
324 } else {
325 i++;
326 warnings++;
327 PrintAndLog("Unsynchronized, resync...");
328 PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
329
330 if (warnings > 10) {
331 PrintAndLog("Error: too many decode errors, aborting.");
332 return 0;
333 }
334 }
335 }
336
337 PrintAndLog("%s", sprint_hex(dataout, j));
338 return j;
339 }
340
341 void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
342 /*
343 * We have a bitstream of "01" ("1") or "10" ("0")
344 * parse it into final decoded bitstream
345 */
346 int i, j, warnings;
347 uint8_t decodedArr[(len/2)+1];
348
349 j = warnings = 0;
350
351 uint8_t lastbit = 0;
352
353 for (i = 0; i < len; i += 2) {
354
355 uint8_t first = bitstream[i];
356 uint8_t second = bitstream[i+1];
357
358 if ( first == second ) {
359 ++i;
360 ++warnings;
361 if (warnings > 10) {
362 PrintAndLog("Error: too many decode errors, aborting.");
363 return;
364 }
365 }
366 else if ( lastbit != first ) {
367 decodedArr[j++] = 0 ^ invert;
368 }
369 else {
370 decodedArr[j++] = 1 ^ invert;
371 }
372 lastbit = second;
373 }
374
375 PrintAndLog("%s", sprint_hex(decodedArr, j));
376 }
377
378 void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
379
380 PrintAndLog(" Manchester decoded : %d bits", len);
381
382 uint8_t mod = len % blocksize;
383 uint8_t div = len / blocksize;
384 int i;
385
386 // Now output the bitstream to the scrollback by line of 16 bits
387 for (i = 0; i < div*blocksize; i+=blocksize) {
388 PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
389 }
390
391 if ( mod > 0 )
392 PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
393 }
394
395 /* Sliding DFT
396 Smooths out
397 */
398 void iceFsk2(int * data, const size_t len){
399
400 int i, j;
401 int output[len];
402
403 // for (i=0; i<len-5; ++i){
404 // for ( j=1; j <=5; ++j) {
405 // output[i] += data[i*j];
406 // }
407 // output[i] /= 5;
408 // }
409 int rest = 127;
410 int tmp =0;
411 for (i=0; i<len; ++i){
412 if ( data[i] < 127)
413 output[i] = 0;
414 else {
415 tmp = (100 * (data[i]-rest)) / rest;
416 output[i] = (tmp > 60)? 100:0;
417 }
418 }
419
420 for (j=0; j<len; ++j)
421 data[j] = output[j];
422 }
423
424 void iceFsk3(int * data, const size_t len){
425
426 int i,j;
427 int output[len];
428 float fc = 0.1125f; // center frequency
429 size_t adjustedLen = len;
430
431 // create very simple low-pass filter to remove images (2nd-order Butterworth)
432 float complex iir_buf[3] = {0,0,0};
433 float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
434 float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
435
436 float sample = 0; // input sample read from file
437 float complex x_prime = 1.0f; // save sample for estimating frequency
438 float complex x;
439
440 for (i=0; i<adjustedLen; ++i) {
441
442 sample = data[i]+128;
443
444 // remove DC offset and mix to complex baseband
445 x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
446
447 // apply low-pass filter, removing spectral image (IIR using direct-form II)
448 iir_buf[2] = iir_buf[1];
449 iir_buf[1] = iir_buf[0];
450 iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
451 x = b[0]*iir_buf[0] +
452 b[1]*iir_buf[1] +
453 b[2]*iir_buf[2];
454
455 // compute instantaneous frequency by looking at phase difference
456 // between adjacent samples
457 float freq = cargf(x*conjf(x_prime));
458 x_prime = x; // retain this sample for next iteration
459
460 output[i] =(freq > 0)? 10 : -10;
461 }
462
463 // show data
464 for (j=0; j<adjustedLen; ++j)
465 data[j] = output[j];
466
467 CmdLtrim("30");
468 adjustedLen -= 30;
469
470 // zero crossings.
471 for (j=0; j<adjustedLen; ++j){
472 if ( data[j] == 10) break;
473 }
474 int startOne =j;
475
476 for (;j<adjustedLen; ++j){
477 if ( data[j] == -10 ) break;
478 }
479 int stopOne = j-1;
480
481 int fieldlen = stopOne-startOne;
482
483 fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
484 fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
485 if ( fieldlen != 40 && fieldlen != 50){
486 printf("Detected field Length: %d \n", fieldlen);
487 printf("Can only handle 40 or 50. Aborting...\n");
488 return;
489 }
490
491 // FSK sequence start == 000111
492 int startPos = 0;
493 for (i =0; i<adjustedLen; ++i){
494 int dec = 0;
495 for ( j = 0; j < 6*fieldlen; ++j){
496 dec += data[i + j];
497 }
498 if (dec == 0) {
499 startPos = i;
500 break;
501 }
502 }
503
504 printf("000111 position: %d \n", startPos);
505
506 startPos += 6*fieldlen+5;
507
508 int bit =0;
509 printf("BINARY\n");
510 printf("R/40 : ");
511 for (i =startPos ; i < adjustedLen; i += 40){
512 bit = data[i]>0 ? 1:0;
513 printf("%d", bit );
514 }
515 printf("\n");
516
517 printf("R/50 : ");
518 for (i =startPos ; i < adjustedLen; i += 50){
519 bit = data[i]>0 ? 1:0;
520 printf("%d", bit ); }
521 printf("\n");
522
523 }
524
525 float complex cexpf (float complex Z)
526 {
527 float complex Res;
528 double rho = exp (__real__ Z);
529 __real__ Res = rho * cosf(__imag__ Z);
530 __imag__ Res = rho * sinf(__imag__ Z);
531 return Res;
532 }
Impressum, Datenschutz