1 //----------------------------------------------------------------------------- 
   2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> 
   4 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   5 // at your option, any later version. See the LICENSE.txt file for the text of 
   7 //----------------------------------------------------------------------------- 
   8 // LEGIC RF simulation code 
   9 //----------------------------------------------------------------------------- 
  13 static struct legic_frame 
{ 
  24 static crc_t    legic_crc
; 
  25 static int      legic_read_count
; 
  26 static uint32_t legic_prng_bc
; 
  27 static uint32_t legic_prng_iv
; 
  29 static int      legic_phase_drift
; 
  30 static int      legic_frame_drift
; 
  31 static int      legic_reqresp_drift
; 
  38 static void setup_timer(void) { 
  39         /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging 
  40          * this it won't be terribly accurate but should be good enough. 
  42         AT91C_BASE_PMC
->PMC_PCER 
= (1 << AT91C_ID_TC1
); 
  43         timer 
= AT91C_BASE_TC1
; 
  44         timer
->TC_CCR 
= AT91C_TC_CLKDIS
; 
  45         timer
->TC_CMR 
= AT91C_TC_CLKS_TIMER_DIV3_CLOCK
; 
  46         timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
  49      * Set up Timer 2 to use for measuring time between frames in  
  50      * tag simulation mode. Runs 4x faster as Timer 1 
  52     AT91C_BASE_PMC
->PMC_PCER 
= (1 << AT91C_ID_TC2
); 
  53     prng_timer 
= AT91C_BASE_TC2
; 
  54     prng_timer
->TC_CCR 
= AT91C_TC_CLKDIS
; 
  55         prng_timer
->TC_CMR 
= AT91C_TC_CLKS_TIMER_DIV2_CLOCK
; 
  56     prng_timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
  59 /* At TIMER_CLOCK3 (MCK/32) */ 
  60 #define RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */ 
  61 #define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */ 
  62 #define RWD_TIME_PAUSE 30  /* 20us */ 
  63 #define RWD_TIME_FUZZ 20   /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ 
  64 #define TAG_TIME_BIT 150   /* 100us for every bit */ 
  65 #define TAG_TIME_WAIT 490  /* time from RWD frame end to tag frame start, experimentally determined */ 
  67 #define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */ 
  68 #define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */ 
  70 #define SESSION_IV 0x55 
  71 #define OFFSET_LOG 1024 
  73 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) 
  75 // ~ 258us + 100us*delay 
  76 #define WAIT_387        WAIT(387) 
  77 #define WAIT(delay)     while(timer->TC_CV < (delay) ); 
  80 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.  
  81 // Historically it used to be FREE_BUFFER_SIZE, which was 2744. 
  82 #define LEGIC_CARD_MEMSIZE 1024 
  83 static uint8_t* cardmem
; 
  88         // 32 bits timestamp (little endian) 
  89         // 16 bits duration (little endian) 
  90         // 16 bits data length (little endian, Highest Bit used as readerToTag flag) 
  92         // x Bytes parity (one byte per 8 bytes data) 
  95 /* Generate Keystream */ 
  96 static uint32_t get_key_stream(int skip
, int count
) 
 101         // Use int to enlarge timer tc to 32bit 
 102         legic_prng_bc 
+= prng_timer
->TC_CV
; 
 104         // reset the prng timer. 
 105         prng_timer
->TC_CCR 
= AT91C_TC_SWTRG
; 
 106         while(prng_timer
->TC_CV 
> 1) ; 
 108         /* If skip == -1, forward prng time based */ 
 110                 i  
= (legic_prng_bc 
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */ 
 111                 i 
-= legic_prng_count(); /* substract cycles of finished frames */ 
 112                 i 
-= count
; /* substract current frame length, rewind to beginning */ 
 113                 legic_prng_forward(i
); 
 115                 legic_prng_forward(skip
); 
 118         i 
= (count 
== 6) ? -1 : legic_read_count
; 
 120         /* Write Time Data into LOG */ 
 121         // uint8_t *BigBuf = BigBuf_get_addr(); 
 122         // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); 
 123         // BigBuf[OFFSET_LOG+256+i*4]   = (legic_prng_bc >> 0) & 0xff; 
 124         // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; 
 125         // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; 
 126         // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; 
 127         // BigBuf[OFFSET_LOG+384+i] = count; 
 129         /* Generate KeyStream */ 
 130         for(i
=0; i
<count
; i
++) { 
 131                 key 
|= legic_prng_get_bit() << i
; 
 132                 legic_prng_forward(1); 
 137 /* Send a frame in tag mode, the FPGA must have been set up by 
 140 static void frame_send_tag(uint16_t response
, int bits
, int crypt
) 
 142    /* Bitbang the response */ 
 143    AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 144    AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 145    AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 147    /* Use time to crypt frame */ 
 149       legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ 
 151       for(int i 
= 0; i 
< bits
; i
++) { 
 152          key 
|= legic_prng_get_bit() << i
; 
 153          legic_prng_forward(1); 
 155       response 
= response 
^ key
; 
 158    /* Wait for the frame start */ 
 159    //while(timer->TC_CV < (TAG_TIME_WAIT - 30)) ; 
 160    WAIT( TAG_TIME_WAIT 
- 30) 
 163    for(int i 
= 0; i 
< bits
; i
++) { 
 164       int nextbit 
= timer
->TC_CV 
+ TAG_TIME_BIT
; 
 169          AT91C_BASE_PIOA
->PIO_SODR 
= GPIO_SSC_DOUT
; 
 171          AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 173       //while(timer->TC_CV < nextbit) ; 
 176    AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 179 // Starts Clock and waits until its reset 
 180 static void ResetClock(void){ 
 181         timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 182         while(timer
->TC_CV 
> 1) ; 
 185 /* Send a frame in reader mode, the FPGA must have been set up by 
 188 static void frame_send_rwd(uint32_t data
, int bits
){ 
 191         int starttime 
= 0, pause_end 
= 0, bit 
= 0, bit_end 
= 0; 
 193         for(int i 
= 0; i
<bits
; i
++) { 
 195                 starttime 
= timer
->TC_CV
;                
 196                 pause_end 
= starttime 
+ RWD_TIME_PAUSE
; 
 200                 if(bit 
^ legic_prng_get_bit()) 
 201                         bit_end 
= starttime 
+ RWD_TIME_1
; 
 203                         bit_end 
= starttime 
+ RWD_TIME_0
; 
 206                 /* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is 
 207                  * RWD_TIME_x, where x is the bit to be transmitted */ 
 208                 AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 212                 AT91C_BASE_PIOA
->PIO_SODR 
= GPIO_SSC_DOUT
; 
 214                 legic_prng_forward(1); /* bit duration is longest. use this time to forward the lfsr */ 
 219         /* One final pause to mark the end of the frame */ 
 220         pause_end 
= timer
->TC_CV 
+ RWD_TIME_PAUSE
; 
 222         AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 226         AT91C_BASE_PIOA
->PIO_SODR 
= GPIO_SSC_DOUT
; 
 228         /* Reset the timer, to measure time until the start of the tag frame */ 
 232 /* Receive a frame from the card in reader emulation mode, the FPGA and 
 233  * timer must have been set up by LegicRfReader and frame_send_rwd. 
 235  * The LEGIC RF protocol from card to reader does not include explicit 
 236  * frame start/stop information or length information. The reader must 
 237  * know beforehand how many bits it wants to receive. (Notably: a card 
 238  * sending a stream of 0-bits is indistinguishable from no card present.) 
 240  * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but 
 241  * I'm not smart enough to use it. Instead I have patched hi_read_tx to output 
 242  * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look 
 243  * for edges. Count the edges in each bit interval. If they are approximately 
 244  * 0 this was a 0-bit, if they are approximately equal to the number of edges 
 245  * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the 
 246  * timer that's still running from frame_send_rwd in order to get a synchronization 
 247  * with the frame that we just sent. 
 249  * FIXME: Because we're relying on the hysteresis to just do the right thing 
 250  * the range is severely reduced (and you'll probably also need a good antenna). 
 251  * So this should be fixed some time in the future for a proper receiver. 
 253 static void frame_receive_rwd(struct legic_frame 
* const f
, int bits
, int crypt
) 
 255         uint32_t the_bit 
= 1;  /* Use a bitmask to save on shifts */ 
 257         int i
, old_level 
= 0, edges 
= 0; 
 258         int next_bit_at 
= TAG_TIME_WAIT
; 
 260         if(bits 
> 32) bits 
= 32; 
 262         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 263         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 265         /* we have some time now, precompute the cipher 
 266      * since we cannot compute it on the fly while reading */ 
 267         legic_prng_forward(2); 
 270                 for(i
=0; i
<bits
; i
++) { 
 271                         data 
|= legic_prng_get_bit() << i
; 
 272                         legic_prng_forward(1); 
 278         next_bit_at 
+= TAG_TIME_BIT
; 
 280         for(i
=0; i
<bits
; i
++) { 
 282                 while(timer
->TC_CV 
< next_bit_at
) { 
 283                         int level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 284                         if(level 
!= old_level
) 
 288                 next_bit_at 
+= TAG_TIME_BIT
; 
 290                 // We expect 42 edges  
 291                 if(edges 
> 20 && edges 
< 60) {  
 300         // Reset the timer, to synchronize the next frame 
 304 static void frame_append_bit(struct legic_frame 
* const f
, int bit
) { 
 305         // Overflow, won't happen 
 306    if (f
->bits 
>= 31) return; 
 308    f
->data 
|= (bit 
<< f
->bits
); 
 312 static void frame_clean(struct legic_frame 
* const f
) { 
 317 // Setup pm3 as a Legic Reader 
 318 static uint32_t perform_setup_phase_rwd(int iv
) { 
 319         /* Switch on carrier and let the tag charge for 1ms */ 
 320         AT91C_BASE_PIOA
->PIO_SODR 
= GPIO_SSC_DOUT
; 
 321         SpinDelay(20);  // was 1ms before.  
 323         /* no keystream yet */ 
 327         frame_send_rwd(iv
, 7); 
 330         frame_clean(¤t_frame
); 
 331         frame_receive_rwd(¤t_frame
, 6, 1); 
 334         legic_prng_forward(3); 
 338         frame_send_rwd(0x39, 6); 
 340         return current_frame
.data
; 
 343 static void LegicCommonInit(void) { 
 345         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 346         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 348         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
); 
 350         /* Bitbang the transmitter */ 
 351         AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 352         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 353         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 355         // reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier. 
 356         cardmem 
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
); 
 357         memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
); 
 364         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 367 /* Switch off carrier, make sure tag is reset */ 
 368 static void switch_off_tag_rwd(void) { 
 369         AT91C_BASE_PIOA
->PIO_CODR 
= GPIO_SSC_DOUT
; 
 374 /* calculate crc for a legic command */ 
 375 static int LegicCRC(int byte_index
, int value
, int cmd_sz
) { 
 376         crc_clear(&legic_crc
); 
 377         crc_update(&legic_crc
, 1, 1); /* CMD_READ */ 
 378         crc_update(&legic_crc
, byte_index
, cmd_sz
-1); 
 379         crc_update(&legic_crc
, value
, 8); 
 380         return crc_finish(&legic_crc
); 
 383 int legic_read_byte(int byte_index
, int cmd_sz
) { 
 385         int byte 
= 0, calcCrc 
= 0, crc 
= 0; 
 386         int cmd 
= 1 | (byte_index 
<< 1); 
 388         uint8_t cmdbytes
[2] = {cmd 
&& 0xff, (cmd 
>> 8 ) & 0xFF}; 
 389         uint32_t starttime 
= timer
->TC_CV
, endtime 
= 0; 
 394         frame_send_rwd(cmd
, cmd_sz
); 
 397         endtime 
= timer
->TC_CV
; 
 398         LogTrace(cmdbytes
, 2, starttime
, endtime
, NULL
, TRUE
); 
 401         frame_clean(¤t_frame
); 
 403         starttime 
= timer
->TC_CV
; 
 406         frame_receive_rwd(¤t_frame
, 12, 1); 
 409         endtime 
= timer
->TC_CV
;   
 410         cmdbytes
[0] = current_frame
.data 
& 0xff;  
 411         cmdbytes
[1] = (current_frame
.data 
>> 8) & 0xFF; 
 412         LogTrace(cmdbytes
, 2, starttime
, endtime
, NULL
, FALSE
); 
 414         byte 
= current_frame
.data 
& 0xff; 
 415         calcCrc 
= LegicCRC(byte_index
, byte
, cmd_sz
); 
 416         crc 
= (current_frame
.data 
>> 8); 
 418         if( calcCrc 
!= crc 
) { 
 419                 Dbprintf("!!! crc mismatch: expected %x but got %x !!!",  calcCrc
, crc
); 
 424         legic_prng_forward(4);  
 429  * - assemble a write_cmd_frame with crc and send it 
 430  * - wait until the tag sends back an ACK ('1' bit unencrypted) 
 431  * - forward the prng based on the timing 
 433 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { 
 434 int legic_write_byte(int byte
, int addr
, int addr_sz
) { 
 436     //do not write UID, CRC at offset 0-4. 
 437         if(addr 
<= 0x04) return 0; 
 440         crc_clear(&legic_crc
); 
 441         crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */ 
 442         crc_update(&legic_crc
, addr
, addr_sz
); 
 443         crc_update(&legic_crc
, byte
, 8); 
 444         uint32_t crc 
= crc_finish(&legic_crc
); 
 446         // send write command 
 447         uint32_t cmd 
= ((crc     
<<(addr_sz
+1+8)) //CRC 
 448                    |(byte    
<<(addr_sz
+1))   //Data 
 449                    |(addr    
<<1)             //Address 
 450                    |(0x00    <<0));           //CMD = W 
 451     uint32_t cmd_sz 
= addr_sz
+1+8+4;          //crc+data+cmd 
 453     legic_prng_forward(2); /* we wait anyways */ 
 455     while(timer
->TC_CV 
< 387) ; /* ~ 258us */ 
 457         frame_send_rwd(cmd
, cmd_sz
); 
 459 // wllm-rbnt doesnt have these 
 460 //      AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; 
 461 //      AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; 
 464     int t
, old_level 
= 0, edges 
= 0; 
 467         while(timer
->TC_CV 
< 387) ; /* ~ 258us */ 
 469     for( t 
= 0; t 
< 80; t
++) { 
 471                 next_bit_at 
+= TAG_TIME_BIT
; 
 472         while(timer
->TC_CV 
< next_bit_at
) { 
 473             int level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 474             if(level 
!= old_level
) { 
 479         if(edges 
> 20 && edges 
< 60) { /* expected are 42 edges */ 
 480                         int t 
= timer
->TC_CV
; 
 481                         int c 
= t 
/ TAG_TIME_BIT
; 
 484                         legic_prng_forward(c
); 
 493 int LegicRfReader(int offset
, int bytes
, int iv
) { 
 495         // ice_legic_setup(); 
 496         // ice_legic_select_card(); 
 499         int byte_index 
= 0, cmd_sz 
= 0, card_sz 
= 0; 
 501         iv 
= (iv 
<= 0 ) ? SESSION_IV 
: iv
;                                                                                                          
 505         if ( MF_DBGLEVEL 
>= 2) DbpString("setting up legic card"); 
 507         uint32_t tag_type 
= perform_setup_phase_rwd(iv
); 
 509          //we lose to mutch time with dprintf 
 510         switch_off_tag_rwd(); 
 514                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM22 card found, reading card ..."); 
 519                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM256 card found, reading card ..."); 
 524                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM1024 card found, reading card ..."); 
 529                         if ( MF_DBGLEVEL 
>= 1) Dbprintf("Unknown card format: %x",tag_type
); 
 535         if(bytes
+offset 
>= card_sz
) 
 536                 bytes 
= card_sz 
- offset
; 
 538         perform_setup_phase_rwd(iv
); 
 540         legic_prng_forward(2); 
 543         while(byte_index 
< bytes
) { 
 544                 int r 
= legic_read_byte(byte_index
+offset
, cmd_sz
); 
 545                 if(r 
== -1 || BUTTON_PRESS()) {                  
 546                 switch_off_tag_rwd(); 
 548                 if ( MF_DBGLEVEL 
>= 2) DbpString("operation aborted"); 
 551                 cardmem
[byte_index
] = r
; 
 556         switch_off_tag_rwd(); 
 559         if ( MF_DBGLEVEL 
>= 1) Dbprintf("Card read, use 'hf legic decode' or"); 
 560     if ( MF_DBGLEVEL 
>= 1) Dbprintf("'data hexsamples %d' to view results", (bytes
+7) & ~7); 
 564 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { 
 568         perform_setup_phase_rwd(SESSION_IV); 
 569     //legic_prng_forward(2); 
 570         while(byte_index < bytes) { 
 573                 //check if the DCF should be changed 
 574                 if ( (offset == 0x05) && (bytes == 0x02) ) { 
 575                         //write DCF in reverse order (addr 0x06 before 0x05) 
 576                         r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 577                         //legic_prng_forward(1); 
 580                                 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 582                         //legic_prng_forward(1); 
 585                         r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); 
 587                 if((r != 0) || BUTTON_PRESS()) { 
 588                         Dbprintf("operation aborted @ 0x%03.3x", byte_index); 
 589         switch_off_tag_rwd(); 
 597         if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); 
 601     DbpString("write successful"); 
 605 void LegicRfWriter(int offset
, int bytes
, int iv
) { 
 607         int byte_index 
= 0, addr_sz 
= 0; 
 609         iv 
= (iv 
<=0 ) ? SESSION_IV 
: iv
;                                                                                  
 613         if ( MF_DBGLEVEL 
>= 2)  DbpString("setting up legic card"); 
 615         uint32_t tag_type 
= perform_setup_phase_rwd(iv
); 
 617         switch_off_tag_rwd(); 
 621                         if(offset
+bytes 
> 22) { 
 622                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+bytes
); 
 626                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
); 
 629                         if(offset
+bytes 
> 0x100) { 
 630                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+bytes
); 
 634                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
); 
 637                         if(offset
+bytes 
> 0x400) { 
 638                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+bytes
); 
 642                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+bytes
); 
 645                         Dbprintf("No or unknown card found, aborting"); 
 650         perform_setup_phase_rwd(iv
); 
 651         while(byte_index 
< bytes
) { 
 654                 //check if the DCF should be changed 
 655                 if ( ((byte_index
+offset
) == 0x05) && (bytes 
>= 0x02) ) { 
 656                         //write DCF in reverse order (addr 0x06 before 0x05) 
 657                         r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
); 
 659                         // write second byte on success... 
 662                                 r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
); 
 666                         r 
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
); 
 669                 if((r 
!= 0) || BUTTON_PRESS()) { 
 670                         Dbprintf("operation aborted @ 0x%03.3x", byte_index
); 
 671                         switch_off_tag_rwd(); 
 680     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 683 void LegicRfRawWriter(int address
, int byte
, int iv
) { 
 685         int byte_index 
= 0, addr_sz 
= 0; 
 687         iv 
= (iv 
<= 0) ? SESSION_IV 
: iv
; 
 691         if ( MF_DBGLEVEL 
>= 2) DbpString("setting up legic card"); 
 693         uint32_t tag_type 
= perform_setup_phase_rwd(iv
); 
 695         switch_off_tag_rwd(); 
 700                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
); 
 704                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 707                         if(address 
> 0x100) { 
 708                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
); 
 712                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 715                         if(address 
> 0x400) { 
 716                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
); 
 720                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
); 
 723                         Dbprintf("No or unknown card found, aborting"); 
 727         Dbprintf("integer value: %d address: %d  addr_sz: %d", byte
, address
, addr_sz
); 
 730         perform_setup_phase_rwd(iv
); 
 731     //legic_prng_forward(2); 
 733         int r 
= legic_write_byte(byte
, address
, addr_sz
); 
 735         if((r 
!= 0) || BUTTON_PRESS()) { 
 736                 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
); 
 737                 switch_off_tag_rwd(); 
 743     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 746 /* Handle (whether to respond) a frame in tag mode 
 747  * Only called when simulating a tag. 
 749 static void frame_handle_tag(struct legic_frame 
const * const f
) 
 751         uint8_t *BigBuf 
= BigBuf_get_addr(); 
 753    /* First Part of Handshake (IV) */ 
 758                 prng_timer
->TC_CCR 
= AT91C_TC_SWTRG
; 
 759                 while(prng_timer
->TC_CV 
> 1) ; 
 761         legic_prng_init(f
->data
); 
 762         frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */ 
 763         legic_state 
= STATE_IV
; 
 764         legic_read_count 
= 0; 
 766         legic_prng_iv 
= f
->data
; 
 771         //while(timer->TC_CV < 280); 
 777    if(legic_state 
== STATE_IV
) { 
 778       int local_key 
= get_key_stream(3, 6); 
 779       int xored 
= 0x39 ^ local_key
; 
 780       if((f
->bits 
== 6) && (f
->data 
== xored
)) { 
 781          legic_state 
= STATE_CON
; 
 786          //while(timer->TC_CV < 200); 
 791          legic_state 
= STATE_DISCON
; 
 793          Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
); 
 800       if(legic_state 
== STATE_CON
) { 
 801          int key   
= get_key_stream(2, 11); //legic_phase_drift, 11); 
 802          int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; 
 803          int data 
= BigBuf
[addr
]; 
 804          int hash 
= LegicCRC(addr
, data
, 11) << 8; 
 805          BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
; 
 808          //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); 
 809          legic_prng_forward(legic_reqresp_drift
); 
 811          frame_send_tag(hash 
| data
, 12, 1); 
 816          legic_prng_forward(2); 
 817          //while(timer->TC_CV < 180); 
 826       int key   
= get_key_stream(-1, 23); //legic_frame_drift, 23); 
 827       int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; addr 
= addr 
& 0x3ff; 
 828       int data  
= f
->data 
^ key
; data 
= data 
>> 11; data 
= data 
& 0xff; 
 831       legic_state 
= STATE_DISCON
; 
 833       Dbprintf("write - addr: %x, data: %x", addr
, data
); 
 837    if(legic_state 
!= STATE_DISCON
) { 
 838       Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
); 
 840       Dbprintf("IV: %03.3x", legic_prng_iv
); 
 841       for(i 
= 0; i
<legic_read_count
; i
++) { 
 842          Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]); 
 845       for(i 
= -1; i
<legic_read_count
; i
++) { 
 847          t  
= BigBuf
[OFFSET_LOG
+256+i
*4]; 
 848          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8; 
 849          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16; 
 850          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24; 
 852          Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",  
 853             BigBuf
[OFFSET_LOG
+128+i
], 
 854             BigBuf
[OFFSET_LOG
+384+i
], 
 858    legic_state 
= STATE_DISCON
;  
 859    legic_read_count 
= 0; 
 865 /* Read bit by bit untill full frame is received 
 866  * Call to process frame end answer 
 868 static void emit(int bit
) { 
 872                         frame_append_bit(¤t_frame
, 1); 
 875                         frame_append_bit(¤t_frame
, 0); 
 878                         if(current_frame
.bits 
<= 4) { 
 879                                 frame_clean(¤t_frame
); 
 881                                 frame_handle_tag(¤t_frame
); 
 882                                 frame_clean(¤t_frame
); 
 889 void LegicRfSimulate(int phase
, int frame
, int reqresp
) 
 891   /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,  
 892    * modulation mode set to 212kHz subcarrier. We are getting the incoming raw 
 893    * envelope waveform on DIN and should send our response on DOUT. 
 895    * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll 
 896    * measure the time between two rising edges on DIN, and no encoding on the 
 897    * subcarrier from card to reader, so we'll just shift out our verbatim data 
 898    * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, 
 899    * seems to be 300us-ish. 
 902         legic_phase_drift 
= phase
; 
 903         legic_frame_drift 
= frame
; 
 904         legic_reqresp_drift 
= reqresp
; 
 906         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 907         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 909         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR 
| FPGA_HF_SIMULATOR_MODULATE_212K
); 
 911         /* Bitbang the receiver */ 
 912         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 913         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 916         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 920         legic_state 
= STATE_DISCON
; 
 923         DbpString("Starting Legic emulator, press button to end"); 
 925         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 926                 int level 
= !!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 927                 int time 
= timer
->TC_CV
; 
 929                 if(level 
!= old_level
) { 
 931                                 timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 933                                 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) { 
 938                                 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) { 
 953                 if(time 
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) { 
 959                 if(time 
>= (20*RWD_TIME_1
) && (timer
->TC_SR 
& AT91C_TC_CLKSTA
)) { 
 960                         timer
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 966         if ( MF_DBGLEVEL 
>= 1) DbpString("Stopped"); 
 970 //----------------------------------------------------------------------------- 
 971 //----------------------------------------------------------------------------- 
 974 //----------------------------------------------------------------------------- 
 975 // Code up a string of octets at layer 2 (including CRC, we don't generate 
 976 // that here) so that they can be transmitted to the reader. Doesn't transmit 
 977 // them yet, just leaves them ready to send in ToSend[]. 
 978 //----------------------------------------------------------------------------- 
 979 // static void CodeLegicAsTag(const uint8_t *cmd, int len) 
 985         // // Transmit a burst of ones, as the initial thing that lets the 
 986         // // reader get phase sync. This (TR1) must be > 80/fs, per spec, 
 987         // // but tag that I've tried (a Paypass) exceeds that by a fair bit, 
 989         // for(i = 0; i < 20; i++) { 
 990                 // ToSendStuffBit(1); 
 991                 // ToSendStuffBit(1); 
 992                 // ToSendStuffBit(1); 
 993                 // ToSendStuffBit(1); 
 997         // for(i = 0; i < 10; i++) { 
 998                 // ToSendStuffBit(0); 
 999                 // ToSendStuffBit(0); 
1000                 // ToSendStuffBit(0); 
1001                 // ToSendStuffBit(0); 
1003         // for(i = 0; i < 2; i++) { 
1004                 // ToSendStuffBit(1); 
1005                 // ToSendStuffBit(1); 
1006                 // ToSendStuffBit(1); 
1007                 // ToSendStuffBit(1); 
1010         // for(i = 0; i < len; i++) { 
1012                 // uint8_t b = cmd[i]; 
1015                 // ToSendStuffBit(0); 
1016                 // ToSendStuffBit(0); 
1017                 // ToSendStuffBit(0); 
1018                 // ToSendStuffBit(0); 
1021                 // for(j = 0; j < 8; j++) { 
1023                                 // ToSendStuffBit(1); 
1024                                 // ToSendStuffBit(1); 
1025                                 // ToSendStuffBit(1); 
1026                                 // ToSendStuffBit(1); 
1028                                 // ToSendStuffBit(0); 
1029                                 // ToSendStuffBit(0); 
1030                                 // ToSendStuffBit(0); 
1031                                 // ToSendStuffBit(0); 
1037                 // ToSendStuffBit(1); 
1038                 // ToSendStuffBit(1); 
1039                 // ToSendStuffBit(1); 
1040                 // ToSendStuffBit(1); 
1044         // for(i = 0; i < 10; i++) { 
1045                 // ToSendStuffBit(0); 
1046                 // ToSendStuffBit(0); 
1047                 // ToSendStuffBit(0); 
1048                 // ToSendStuffBit(0); 
1050         // for(i = 0; i < 2; i++) { 
1051                 // ToSendStuffBit(1); 
1052                 // ToSendStuffBit(1); 
1053                 // ToSendStuffBit(1); 
1054                 // ToSendStuffBit(1); 
1057         // // Convert from last byte pos to length 
1061 //----------------------------------------------------------------------------- 
1062 // The software UART that receives commands from the reader, and its state 
1064 //----------------------------------------------------------------------------- 
1068                 STATE_GOT_FALLING_EDGE_OF_SOF
, 
1069                 STATE_AWAITING_START_BIT
, 
1070                 STATE_RECEIVING_DATA
 
1080 /* Receive & handle a bit coming from the reader. 
1082  * This function is called 4 times per bit (every 2 subcarrier cycles). 
1083  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1086  * LED A -> ON once we have received the SOF and are expecting the rest. 
1087  * LED A -> OFF once we have received EOF or are in error state or unsynced 
1089  * Returns: true if we received a EOF 
1090  *          false if we are still waiting for some more 
1092 // static RAMFUNC int HandleLegicUartBit(uint8_t bit) 
1094         // switch(Uart.state) { 
1095                 // case STATE_UNSYNCD: 
1097                                 // // we went low, so this could be the beginning of an SOF 
1098                                 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; 
1104                 // case STATE_GOT_FALLING_EDGE_OF_SOF: 
1106                         // if(Uart.posCnt == 2) {       // sample every 4 1/fs in the middle of a bit 
1108                                         // if(Uart.bitCnt > 9) { 
1109                                                 // // we've seen enough consecutive 
1110                                                 // // zeros that it's a valid SOF 
1112                                                 // Uart.byteCnt = 0; 
1113                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1114                                                 // LED_A_ON(); // Indicate we got a valid SOF 
1116                                                 // // didn't stay down long enough 
1117                                                 // // before going high, error 
1118                                                 // Uart.state = STATE_UNSYNCD; 
1121                                         // // do nothing, keep waiting 
1125                         // if(Uart.posCnt >= 4) Uart.posCnt = 0; 
1126                         // if(Uart.bitCnt > 12) { 
1127                                 // // Give up if we see too many zeros without 
1130                                 // Uart.state = STATE_UNSYNCD; 
1134                 // case STATE_AWAITING_START_BIT: 
1137                                 // if(Uart.posCnt > 50/2) {     // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs 
1138                                         // // stayed high for too long between 
1139                                         // // characters, error 
1140                                         // Uart.state = STATE_UNSYNCD; 
1143                                 // // falling edge, this starts the data byte 
1146                                 // Uart.shiftReg = 0; 
1147                                 // Uart.state = STATE_RECEIVING_DATA; 
1151                 // case STATE_RECEIVING_DATA: 
1153                         // if(Uart.posCnt == 2) { 
1154                                 // // time to sample a bit 
1155                                 // Uart.shiftReg >>= 1; 
1157                                         // Uart.shiftReg |= 0x200; 
1161                         // if(Uart.posCnt >= 4) { 
1164                         // if(Uart.bitCnt == 10) { 
1165                                 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) 
1167                                         // // this is a data byte, with correct 
1168                                         // // start and stop bits 
1169                                         // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; 
1172                                         // if(Uart.byteCnt >= Uart.byteCntMax) { 
1173                                                 // // Buffer overflowed, give up 
1175                                                 // Uart.state = STATE_UNSYNCD; 
1177                                                 // // so get the next byte now 
1179                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1181                                 // } else if (Uart.shiftReg == 0x000) { 
1182                                         // // this is an EOF byte 
1183                                         // LED_A_OFF(); // Finished receiving 
1184                                         // Uart.state = STATE_UNSYNCD; 
1185                                         // if (Uart.byteCnt != 0) { 
1189                                         // // this is an error 
1191                                         // Uart.state = STATE_UNSYNCD; 
1198                         // Uart.state = STATE_UNSYNCD; 
1206 static void UartReset() 
1208         Uart
.byteCntMax 
= MAX_FRAME_SIZE
; 
1209         Uart
.state 
= STATE_UNSYNCD
; 
1213         memset(Uart
.output
, 0x00, MAX_FRAME_SIZE
); 
1216 // static void UartInit(uint8_t *data) 
1218         // Uart.output = data; 
1222 //============================================================================= 
1223 // An LEGIC reader. We take layer two commands, code them 
1224 // appropriately, and then send them to the tag. We then listen for the 
1225 // tag's response, which we leave in the buffer to be demodulated on the 
1227 //============================================================================= 
1232                 DEMOD_PHASE_REF_TRAINING
, 
1233                 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
, 
1234                 DEMOD_GOT_FALLING_EDGE_OF_SOF
, 
1235                 DEMOD_AWAITING_START_BIT
, 
1236                 DEMOD_RECEIVING_DATA
 
1249  * Handles reception of a bit from the tag 
1251  * This function is called 2 times per bit (every 4 subcarrier cycles). 
1252  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1255  * LED C -> ON once we have received the SOF and are expecting the rest. 
1256  * LED C -> OFF once we have received EOF or are unsynced 
1258  * Returns: true if we received a EOF 
1259  *          false if we are still waiting for some more 
1263  #ifndef SUBCARRIER_DETECT_THRESHOLD 
1264  # define SUBCARRIER_DETECT_THRESHOLD   8 
1267  // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) 
1268 #ifndef CHECK_FOR_SUBCARRIER 
1269 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } 
1272 // The soft decision on the bit uses an estimate of just the 
1273 // quadrant of the reference angle, not the exact angle. 
1274 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) 
1275 #define MAKE_SOFT_DECISION() { \ 
1276                 if(Demod.sumI > 0) \ 
1281                 if(Demod.sumQ > 0) \ 
1288 static RAMFUNC 
int HandleLegicSamplesDemod(int ci
, int cq
) 
1293         int halfci 
= (ai 
>> 1); 
1294         int halfcq 
= (aq 
>> 1); 
1296         switch(Demod
.state
) { 
1299                         CHECK_FOR_SUBCARRIER() 
1301                         if(v 
> SUBCARRIER_DETECT_THRESHOLD
) {   // subcarrier detected 
1302                                 Demod
.state 
= DEMOD_PHASE_REF_TRAINING
; 
1309                 case DEMOD_PHASE_REF_TRAINING
: 
1310                         if(Demod
.posCount 
< 8) { 
1312                                 CHECK_FOR_SUBCARRIER() 
1314                                 if (v 
> SUBCARRIER_DETECT_THRESHOLD
) { 
1315                                         // set the reference phase (will code a logic '1') by averaging over 32 1/fs. 
1316                                         // note: synchronization time > 80 1/fs 
1322                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1325                                 Demod
.state 
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
; 
1329                 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
: 
1331                         MAKE_SOFT_DECISION() 
1333                         //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); 
1334                         // logic '0' detected 
1337                                 Demod
.state 
= DEMOD_GOT_FALLING_EDGE_OF_SOF
; 
1339                                 // start of SOF sequence 
1342                                 // maximum length of TR1 = 200 1/fs 
1343                                 if(Demod
.posCount 
> 25*2) Demod
.state 
= DEMOD_UNSYNCD
; 
1348                 case DEMOD_GOT_FALLING_EDGE_OF_SOF
: 
1351                         MAKE_SOFT_DECISION() 
1354                                 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges 
1355                                 if(Demod
.posCount 
< 10*2) {  
1356                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1358                                         LED_C_ON(); // Got SOF 
1359                                         Demod
.state 
= DEMOD_AWAITING_START_BIT
; 
1364                                 // low phase of SOF too long (> 12 etu) 
1365                                 if(Demod
.posCount 
> 13*2) {  
1366                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1372                 case DEMOD_AWAITING_START_BIT
: 
1375                         MAKE_SOFT_DECISION() 
1378                                 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs 
1379                                 if(Demod
.posCount 
> 3*2) {  
1380                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1384                                 // start bit detected 
1386                                 Demod
.posCount 
= 1;                             // this was the first half 
1389                                 Demod
.state 
= DEMOD_RECEIVING_DATA
; 
1393                 case DEMOD_RECEIVING_DATA
: 
1395                         MAKE_SOFT_DECISION() 
1397                         if(Demod
.posCount 
== 0) { 
1398                                 // first half of bit 
1402                                 // second half of bit 
1404                                 Demod
.shiftReg 
>>= 1; 
1406                                 if(Demod
.thisBit 
> 0)  
1407                                         Demod
.shiftReg 
|= 0x200; 
1411                                 if(Demod
.bitCount 
== 10) { 
1413                                         uint16_t s 
= Demod
.shiftReg
; 
1415                                         if((s 
& 0x200) && !(s 
& 0x001)) {  
1416                                                 // stop bit == '1', start bit == '0' 
1417                                                 uint8_t b 
= (s 
>> 1); 
1418                                                 Demod
.output
[Demod
.len
] = b
; 
1420                                                 Demod
.state 
= DEMOD_AWAITING_START_BIT
; 
1422                                                 Demod
.state 
= DEMOD_UNSYNCD
; 
1426                                                         // This is EOF (start, stop and all data bits == '0' 
1436                         Demod
.state 
= DEMOD_UNSYNCD
; 
1443 // Clear out the state of the "UART" that receives from the tag. 
1444 static void DemodReset() { 
1446         Demod
.state 
= DEMOD_UNSYNCD
; 
1453         memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
); 
1456 static void DemodInit(uint8_t *data
) { 
1457         Demod
.output 
= data
; 
1462  *  Demodulate the samples we received from the tag, also log to tracebuffer 
1463  *  quiet: set to 'TRUE' to disable debug output 
1465  #define LEGIC_DMA_BUFFER_SIZE 256 
1466 static void GetSamplesForLegicDemod(int n
, bool quiet
) 
1469         bool gotFrame 
= FALSE
; 
1470         int lastRxCounter 
= LEGIC_DMA_BUFFER_SIZE
; 
1471         int     ci
, cq
, samples 
= 0; 
1475         // And put the FPGA in the appropriate mode 
1476         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR 
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
); 
1478         // The response (tag -> reader) that we're receiving. 
1479         // Set up the demodulator for tag -> reader responses. 
1480         DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
)); 
1482         // The DMA buffer, used to stream samples from the FPGA 
1483         int8_t *dmaBuf 
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
); 
1484         int8_t *upTo 
= dmaBuf
; 
1486         // Setup and start DMA. 
1487         if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){ 
1488                 if (MF_DBGLEVEL 
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");  
1492         // Signal field is ON with the appropriate LED: 
1495                 int behindBy 
= lastRxCounter 
- AT91C_BASE_PDC_SSC
->PDC_RCR
; 
1496                 if(behindBy 
> max
) max 
= behindBy
; 
1498                 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) { 
1502                         if(upTo 
>= dmaBuf 
+ LEGIC_DMA_BUFFER_SIZE
) { 
1504                                 AT91C_BASE_PDC_SSC
->PDC_RNPR 
= (uint32_t) upTo
; 
1505                                 AT91C_BASE_PDC_SSC
->PDC_RNCR 
= LEGIC_DMA_BUFFER_SIZE
; 
1508                         if(lastRxCounter 
<= 0) 
1509                                 lastRxCounter 
= LEGIC_DMA_BUFFER_SIZE
; 
1513                         gotFrame 
= HandleLegicSamplesDemod(ci 
, cq 
); 
1518                 if(samples 
> n 
|| gotFrame
) 
1522         FpgaDisableSscDma(); 
1524         if (!quiet 
&& Demod
.len 
== 0) { 
1525                 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", 
1536         if (Demod
.len 
> 0) { 
1537                 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00}; 
1538                 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
); 
1541 //----------------------------------------------------------------------------- 
1542 // Transmit the command (to the tag) that was placed in ToSend[]. 
1543 //----------------------------------------------------------------------------- 
1544 static void TransmitForLegic(void) 
1550         while(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) 
1551                 AT91C_BASE_SSC
->SSC_THR 
= 0xff; 
1553         // Signal field is ON with the appropriate Red LED 
1556         // Signal we are transmitting with the Green LED 
1558         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX 
| FPGA_HF_READER_TX_SHALLOW_MOD
); 
1560         for(c 
= 0; c 
< 10;) { 
1561                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1562                         AT91C_BASE_SSC
->SSC_THR 
= 0xff; 
1565                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1566                         volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1574                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1575                         AT91C_BASE_SSC
->SSC_THR 
= ToSend
[c
]; 
1576                         legic_prng_forward(1); // forward the lfsr  
1578                         if(c 
>= ToSendMax
) { 
1582                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1583                         volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1592 //----------------------------------------------------------------------------- 
1593 // Code a layer 2 command (string of octets, including CRC) into ToSend[], 
1594 // so that it is ready to transmit to the tag using TransmitForLegic(). 
1595 //----------------------------------------------------------------------------- 
1596 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
) 
1604         for(i 
= 0; i 
< 7; i
++) 
1608         for(i 
= 0; i 
< cmdlen
; i
++) { 
1614                 for(j 
= 0; j 
< bits
; j
++) { 
1624         // Convert from last character reference to length 
1629   Convenience function to encode, transmit and trace Legic comms 
1631 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
) 
1633         CodeLegicBitsAsReader(cmd
, cmdlen
, bits
); 
1636                 uint8_t parity
[1] = {0x00}; 
1637                 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
); 
1641 int ice_legic_select_card() 
1643         //int cmd_size=0, card_size=0; 
1644         uint8_t wakeup
[] = { 0x7F }; 
1645         uint8_t getid
[] = {0x19}; 
1647         legic_prng_init(SESSION_IV
); 
1649         // first, wake up the tag, 7bits 
1650         CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7); 
1652         GetSamplesForLegicDemod(1000, TRUE
); 
1654         // frame_clean(¤t_frame); 
1655         //frame_receive_rwd(¤t_frame, 6, 1); 
1657         legic_prng_forward(1); /* we wait anyways */ 
1659         //while(timer->TC_CV < 387) ; /* ~ 258us */ 
1660         //frame_send_rwd(0x19, 6); 
1661         CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8); 
1662         GetSamplesForLegicDemod(1000, TRUE
); 
1664         //if (Demod.len < 14) return 2;  
1665         Dbprintf("CARD TYPE: %02x  LEN: %d", Demod
.output
[0], Demod
.len
); 
1667         switch(Demod
.output
[0]) { 
1669                         DbpString("MIM 256 card found"); 
1674                         DbpString("MIM 1024 card found"); 
1676                         // card_size = 1024; 
1683                 // bytes = card_size; 
1685         // if(bytes + offset >= card_size) 
1686                 // bytes = card_size - offset;   
1688         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1693 // Set up LEGIC communication 
1694 void ice_legic_setup() { 
1697         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
1698         BigBuf_free(); BigBuf_Clear_ext(false); 
1704         // Set up the synchronous serial port 
1707         // connect Demodulated Signal to ADC: 
1708         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1710         // Signal field is on with the appropriate LED 
1712         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX 
| FPGA_HF_READER_TX_SHALLOW_MOD
); 
1715         //StartCountSspClk(); 
1718         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);