]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
610781d240ed23dcad0fa6ca94c667ec8466aa9e
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40 //clear read buffer
41 BigBuf_Clear_keep_EM();
42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
73
74 // now do the read
75 DoAcquisition_config(false);
76 }
77
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
81 0011010010100001
82 01111111
83 101010101010101[0]000...
84
85 [5555fe852c5555555555555555fe0000]
86 */
87 void ReadTItag(void)
88 {
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
209 if (crc != (shift2&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
211 } else {
212 DbpString("Info: CRC is good");
213 }
214 }
215 }
216
217 void WriteTIbyte(uint8_t b)
218 {
219 int i = 0;
220
221 // modulate 8 bits out to the antenna
222 for (i=0; i<8; i++)
223 {
224 if (b&(1<<i)) {
225 // stop modulating antenna
226 LOW(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 // modulate antenna
229 HIGH(GPIO_SSC_DOUT);
230 SpinDelayUs(1000);
231 } else {
232 // stop modulating antenna
233 LOW(GPIO_SSC_DOUT);
234 SpinDelayUs(300);
235 // modulate antenna
236 HIGH(GPIO_SSC_DOUT);
237 SpinDelayUs(1700);
238 }
239 }
240 }
241
242 void AcquireTiType(void)
243 {
244 int i, j, n;
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
248
249 // clear buffer
250 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
251 BigBuf_Clear_ext(false);
252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
289 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
300 n = TIBUFLEN*32;
301 // unpack buffer
302 for (i=TIBUFLEN-1; i>=0; i--) {
303 for (j=0; j<32; j++) {
304 if(BigBuf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311 }
312
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317 {
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi, (unsigned int) idlo, crc);
331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
382 DbpString("Now use `lf ti read` to check");
383 }
384
385 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
386 {
387 int i;
388 uint8_t *tab = BigBuf_get_addr();
389
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
392
393 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
394
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400
401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 DbpString("Stopped");
407 return;
408 }
409 WDT_HIT();
410 }
411 if (ledcontrol)
412 LED_D_ON();
413
414 if(tab[i])
415 OPEN_COIL();
416 else
417 SHORT_COIL();
418
419 if (ledcontrol)
420 LED_D_OFF();
421 //wait until SSC_CLK goes LOW
422 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
423 if(BUTTON_PRESS()) {
424 DbpString("Stopped");
425 return;
426 }
427 WDT_HIT();
428 }
429
430 i++;
431 if(i == period) {
432
433 i = 0;
434 if (gap) {
435 SHORT_COIL();
436 SpinDelayUs(gap);
437 }
438 }
439 }
440 }
441
442 #define DEBUG_FRAME_CONTENTS 1
443 void SimulateTagLowFrequencyBidir(int divisor, int t0)
444 {
445 }
446
447 // compose fc/8 fc/10 waveform (FSK2)
448 static void fc(int c, int *n)
449 {
450 uint8_t *dest = BigBuf_get_addr();
451 int idx;
452
453 // for when we want an fc8 pattern every 4 logical bits
454 if(c==0) {
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
457 dest[((*n)++)]=1;
458 dest[((*n)++)]=1;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 dest[((*n)++)]=0;
462 dest[((*n)++)]=0;
463 }
464
465 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
466 if(c==8) {
467 for (idx=0; idx<6; idx++) {
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
470 dest[((*n)++)]=1;
471 dest[((*n)++)]=1;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 dest[((*n)++)]=0;
475 dest[((*n)++)]=0;
476 }
477 }
478
479 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
480 if(c==10) {
481 for (idx=0; idx<5; idx++) {
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 dest[((*n)++)]=0;
492 }
493 }
494 }
495 // compose fc/X fc/Y waveform (FSKx)
496 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
497 {
498 uint8_t *dest = BigBuf_get_addr();
499 uint8_t halfFC = fc/2;
500 uint8_t wavesPerClock = clock/fc;
501 uint8_t mod = clock % fc; //modifier
502 uint8_t modAdj = fc/mod; //how often to apply modifier
503 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
504 // loop through clock - step field clock
505 for (uint8_t idx=0; idx < wavesPerClock; idx++){
506 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
507 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
508 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
509 *n += fc;
510 }
511 if (mod>0) (*modCnt)++;
512 if ((mod>0) && modAdjOk){ //fsk2
513 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
514 memset(dest+(*n), 0, fc-halfFC);
515 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
516 *n += fc;
517 }
518 }
519 if (mod>0 && !modAdjOk){ //fsk1
520 memset(dest+(*n), 0, mod-(mod/2));
521 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
522 *n += mod;
523 }
524 }
525
526 // prepare a waveform pattern in the buffer based on the ID given then
527 // simulate a HID tag until the button is pressed
528 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
529 {
530 int n=0, i=0;
531 /*
532 HID tag bitstream format
533 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
534 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
535 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
536 A fc8 is inserted before every 4 bits
537 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
538 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
539 */
540
541 if (hi>0xFFF) {
542 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
543 return;
544 }
545 fc(0,&n);
546 // special start of frame marker containing invalid bit sequences
547 fc(8, &n); fc(8, &n); // invalid
548 fc(8, &n); fc(10, &n); // logical 0
549 fc(10, &n); fc(10, &n); // invalid
550 fc(8, &n); fc(10, &n); // logical 0
551
552 WDT_HIT();
553 // manchester encode bits 43 to 32
554 for (i=11; i>=0; i--) {
555 if ((i%4)==3) fc(0,&n);
556 if ((hi>>i)&1) {
557 fc(10, &n); fc(8, &n); // low-high transition
558 } else {
559 fc(8, &n); fc(10, &n); // high-low transition
560 }
561 }
562
563 WDT_HIT();
564 // manchester encode bits 31 to 0
565 for (i=31; i>=0; i--) {
566 if ((i%4)==3) fc(0,&n);
567 if ((lo>>i)&1) {
568 fc(10, &n); fc(8, &n); // low-high transition
569 } else {
570 fc(8, &n); fc(10, &n); // high-low transition
571 }
572 }
573
574 if (ledcontrol)
575 LED_A_ON();
576 SimulateTagLowFrequency(n, 0, ledcontrol);
577
578 if (ledcontrol)
579 LED_A_OFF();
580 }
581
582 // prepare a waveform pattern in the buffer based on the ID given then
583 // simulate a FSK tag until the button is pressed
584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
585 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
586 {
587 int ledcontrol=1;
588 int n=0, i=0;
589 uint8_t fcHigh = arg1 >> 8;
590 uint8_t fcLow = arg1 & 0xFF;
591 uint16_t modCnt = 0;
592 uint8_t clk = arg2 & 0xFF;
593 uint8_t invert = (arg2 >> 8) & 1;
594
595 for (i=0; i<size; i++){
596 if (BitStream[i] == invert){
597 fcAll(fcLow, &n, clk, &modCnt);
598 } else {
599 fcAll(fcHigh, &n, clk, &modCnt);
600 }
601 }
602 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
603 /*Dbprintf("DEBUG: First 32:");
604 uint8_t *dest = BigBuf_get_addr();
605 i=0;
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
607 i+=16;
608 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
609 */
610 if (ledcontrol)
611 LED_A_ON();
612
613 SimulateTagLowFrequency(n, 0, ledcontrol);
614
615 if (ledcontrol)
616 LED_A_OFF();
617 }
618
619 // compose ask waveform for one bit(ASK)
620 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
621 {
622 uint8_t *dest = BigBuf_get_addr();
623 uint8_t halfClk = clock/2;
624 // c = current bit 1 or 0
625 if (manchester==1){
626 memset(dest+(*n), c, halfClk);
627 memset(dest+(*n) + halfClk, c^1, halfClk);
628 } else {
629 memset(dest+(*n), c, clock);
630 }
631 *n += clock;
632 }
633
634 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
635 {
636 uint8_t *dest = BigBuf_get_addr();
637 uint8_t halfClk = clock/2;
638 if (c){
639 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
640 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
641 } else {
642 memset(dest+(*n), c ^ *phase, clock);
643 *phase ^= 1;
644 }
645 *n += clock;
646 }
647
648 // args clock, ask/man or askraw, invert, transmission separator
649 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
650 {
651 int ledcontrol = 1;
652 int n=0, i=0;
653 uint8_t clk = (arg1 >> 8) & 0xFF;
654 uint8_t encoding = arg1 & 0xFF;
655 uint8_t separator = arg2 & 1;
656 uint8_t invert = (arg2 >> 8) & 1;
657
658 if (encoding==2){ //biphase
659 uint8_t phase=0;
660 for (i=0; i<size; i++){
661 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
662 }
663 if (phase==1) { //run a second set inverted to keep phase in check
664 for (i=0; i<size; i++){
665 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
666 }
667 }
668 } else { // ask/manchester || ask/raw
669 for (i=0; i<size; i++){
670 askSimBit(BitStream[i]^invert, &n, clk, encoding);
671 }
672 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
673 for (i=0; i<size; i++){
674 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
675 }
676 }
677 }
678
679 if (separator==1) Dbprintf("sorry but separator option not yet available");
680
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
682 //DEBUG
683 //Dbprintf("First 32:");
684 //uint8_t *dest = BigBuf_get_addr();
685 //i=0;
686 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
687 //i+=16;
688 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
689
690 if (ledcontrol) LED_A_ON();
691 SimulateTagLowFrequency(n, 0, ledcontrol);
692 if (ledcontrol) LED_A_OFF();
693 }
694
695 //carrier can be 2,4 or 8
696 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
697 {
698 uint8_t *dest = BigBuf_get_addr();
699 uint8_t halfWave = waveLen/2;
700 //uint8_t idx;
701 int i = 0;
702 if (phaseChg){
703 // write phase change
704 memset(dest+(*n), *curPhase^1, halfWave);
705 memset(dest+(*n) + halfWave, *curPhase, halfWave);
706 *n += waveLen;
707 *curPhase ^= 1;
708 i += waveLen;
709 }
710 //write each normal clock wave for the clock duration
711 for (; i < clk; i+=waveLen){
712 memset(dest+(*n), *curPhase, halfWave);
713 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
714 *n += waveLen;
715 }
716 }
717
718 // args clock, carrier, invert,
719 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
720 {
721 int ledcontrol=1;
722 int n=0, i=0;
723 uint8_t clk = arg1 >> 8;
724 uint8_t carrier = arg1 & 0xFF;
725 uint8_t invert = arg2 & 0xFF;
726 uint8_t curPhase = 0;
727 for (i=0; i<size; i++){
728 if (BitStream[i] == curPhase){
729 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
730 } else {
731 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
732 }
733 }
734 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
735 //Dbprintf("DEBUG: First 32:");
736 //uint8_t *dest = BigBuf_get_addr();
737 //i=0;
738 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
739 //i+=16;
740 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
741
742 if (ledcontrol) LED_A_ON();
743 SimulateTagLowFrequency(n, 0, ledcontrol);
744 if (ledcontrol) LED_A_OFF();
745 }
746
747 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
748 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
749 {
750 uint8_t *dest = BigBuf_get_addr();
751 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
752 size_t size;
753 uint32_t hi2=0, hi=0, lo=0;
754 int idx=0;
755 // Configure to go in 125Khz listen mode
756 LFSetupFPGAForADC(95, true);
757
758 //clear read buffer
759 BigBuf_Clear_keep_EM();
760
761 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
762
763 WDT_HIT();
764 if (ledcontrol) LED_A_ON();
765
766 DoAcquisition_default(-1,true);
767 // FSK demodulator
768 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
769 size = 50*128*2; //big enough to catch 2 sequences of largest format
770 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
771
772 if (idx>0 && lo>0 && (size==96 || size==192)){
773 // go over previously decoded manchester data and decode into usable tag ID
774 if (hi2 != 0){ //extra large HID tags 88/192 bits
775 Dbprintf("TAG ID: %x%08x%08x (%d)",
776 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
777 }else { //standard HID tags 44/96 bits
778 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
779 uint8_t bitlen = 0;
780 uint32_t fc = 0;
781 uint32_t cardnum = 0;
782 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
783 uint32_t lo2=0;
784 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
785 uint8_t idx3 = 1;
786 while(lo2 > 1){ //find last bit set to 1 (format len bit)
787 lo2=lo2 >> 1;
788 idx3++;
789 }
790 bitlen = idx3+19;
791 fc =0;
792 cardnum=0;
793 if(bitlen == 26){
794 cardnum = (lo>>1)&0xFFFF;
795 fc = (lo>>17)&0xFF;
796 }
797 if(bitlen == 37){
798 cardnum = (lo>>1)&0x7FFFF;
799 fc = ((hi&0xF)<<12)|(lo>>20);
800 }
801 if(bitlen == 34){
802 cardnum = (lo>>1)&0xFFFF;
803 fc= ((hi&1)<<15)|(lo>>17);
804 }
805 if(bitlen == 35){
806 cardnum = (lo>>1)&0xFFFFF;
807 fc = ((hi&1)<<11)|(lo>>21);
808 }
809 }
810 else { //if bit 38 is not set then 37 bit format is used
811 bitlen= 37;
812 fc =0;
813 cardnum=0;
814 if(bitlen==37){
815 cardnum = (lo>>1)&0x7FFFF;
816 fc = ((hi&0xF)<<12)|(lo>>20);
817 }
818 }
819 //Dbprintf("TAG ID: %x%08x (%d)",
820 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
821 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
822 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
823 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
824 }
825 if (findone){
826 if (ledcontrol) LED_A_OFF();
827 *high = hi;
828 *low = lo;
829 return;
830 }
831 // reset
832 }
833 hi2 = hi = lo = idx = 0;
834 WDT_HIT();
835 }
836 DbpString("Stopped");
837 if (ledcontrol) LED_A_OFF();
838 }
839
840 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
841 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
842 {
843 uint8_t *dest = BigBuf_get_addr();
844 size_t size;
845 int idx=0;
846 //clear read buffer
847 BigBuf_Clear_keep_EM();
848 // Configure to go in 125Khz listen mode
849 LFSetupFPGAForADC(95, true);
850
851 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
852
853 WDT_HIT();
854 if (ledcontrol) LED_A_ON();
855
856 DoAcquisition_default(-1,true);
857 // FSK demodulator
858 size = 50*128*2; //big enough to catch 2 sequences of largest format
859 idx = AWIDdemodFSK(dest, &size);
860
861 if (idx<=0 || size!=96) continue;
862 // Index map
863 // 0 10 20 30 40 50 60
864 // | | | | | | |
865 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
866 // -----------------------------------------------------------------------------
867 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
868 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
869 // |---26 bit---| |-----117----||-------------142-------------|
870 // b = format bit len, o = odd parity of last 3 bits
871 // f = facility code, c = card number
872 // w = wiegand parity
873 // (26 bit format shown)
874
875 //get raw ID before removing parities
876 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
877 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
878 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
879
880 size = removeParity(dest, idx+8, 4, 1, 88);
881 if (size != 66) continue;
882 // ok valid card found!
883
884 // Index map
885 // 0 10 20 30 40 50 60
886 // | | | | | | |
887 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
888 // -----------------------------------------------------------------------------
889 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
890 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
891 // |26 bit| |-117--| |-----142------|
892 // b = format bit len, o = odd parity of last 3 bits
893 // f = facility code, c = card number
894 // w = wiegand parity
895 // (26 bit format shown)
896
897 uint32_t fc = 0;
898 uint32_t cardnum = 0;
899 uint32_t code1 = 0;
900 uint32_t code2 = 0;
901 uint8_t fmtLen = bytebits_to_byte(dest,8);
902 if (fmtLen==26){
903 fc = bytebits_to_byte(dest+9, 8);
904 cardnum = bytebits_to_byte(dest+17, 16);
905 code1 = bytebits_to_byte(dest+8,fmtLen);
906 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
907 } else {
908 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
909 if (fmtLen>32){
910 code1 = bytebits_to_byte(dest+8,fmtLen-32);
911 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
912 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
913 } else{
914 code1 = bytebits_to_byte(dest+8,fmtLen);
915 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
916 }
917 }
918 if (findone){
919 if (ledcontrol) LED_A_OFF();
920 return;
921 }
922 // reset
923 idx = 0;
924 WDT_HIT();
925 }
926 DbpString("Stopped");
927 if (ledcontrol) LED_A_OFF();
928 }
929
930 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
931 {
932 uint8_t *dest = BigBuf_get_addr();
933
934 size_t size=0, idx=0;
935 int clk=0, invert=0, errCnt=0, maxErr=20;
936 uint32_t hi=0;
937 uint64_t lo=0;
938 //clear read buffer
939 BigBuf_Clear_keep_EM();
940 // Configure to go in 125Khz listen mode
941 LFSetupFPGAForADC(95, true);
942
943 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
944
945 WDT_HIT();
946 if (ledcontrol) LED_A_ON();
947
948 DoAcquisition_default(-1,true);
949 size = BigBuf_max_traceLen();
950 //askdemod and manchester decode
951 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
952 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
953 WDT_HIT();
954
955 if (errCnt<0) continue;
956
957 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
958 if (errCnt){
959 if (size>64){
960 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
961 hi,
962 (uint32_t)(lo>>32),
963 (uint32_t)lo,
964 (uint32_t)(lo&0xFFFF),
965 (uint32_t)((lo>>16LL) & 0xFF),
966 (uint32_t)(lo & 0xFFFFFF));
967 } else {
968 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
969 (uint32_t)(lo>>32),
970 (uint32_t)lo,
971 (uint32_t)(lo&0xFFFF),
972 (uint32_t)((lo>>16LL) & 0xFF),
973 (uint32_t)(lo & 0xFFFFFF));
974 }
975
976 if (findone){
977 if (ledcontrol) LED_A_OFF();
978 *high=lo>>32;
979 *low=lo & 0xFFFFFFFF;
980 return;
981 }
982 }
983 WDT_HIT();
984 hi = lo = size = idx = 0;
985 clk = invert = errCnt = 0;
986 }
987 DbpString("Stopped");
988 if (ledcontrol) LED_A_OFF();
989 }
990
991 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
992 {
993 uint8_t *dest = BigBuf_get_addr();
994 int idx=0;
995 uint32_t code=0, code2=0;
996 uint8_t version=0;
997 uint8_t facilitycode=0;
998 uint16_t number=0;
999 //clear read buffer
1000 BigBuf_Clear_keep_EM();
1001 // Configure to go in 125Khz listen mode
1002 LFSetupFPGAForADC(95, true);
1003
1004 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1005 WDT_HIT();
1006 if (ledcontrol) LED_A_ON();
1007 DoAcquisition_default(-1,true);
1008 //fskdemod and get start index
1009 WDT_HIT();
1010 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1011 if (idx<0) continue;
1012 //valid tag found
1013
1014 //Index map
1015 //0 10 20 30 40 50 60
1016 //| | | | | | |
1017 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1018 //-----------------------------------------------------------------------------
1019 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1020 //
1021 //XSF(version)facility:codeone+codetwo
1022 //Handle the data
1023 if(findone){ //only print binary if we are doing one
1024 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1025 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1026 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1027 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1028 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1029 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1030 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1031 }
1032 code = bytebits_to_byte(dest+idx,32);
1033 code2 = bytebits_to_byte(dest+idx+32,32);
1034 version = bytebits_to_byte(dest+idx+27,8); //14,4
1035 facilitycode = bytebits_to_byte(dest+idx+18,8);
1036 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1037
1038 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1039 // if we're only looking for one tag
1040 if (findone){
1041 if (ledcontrol) LED_A_OFF();
1042 //LED_A_OFF();
1043 *high=code;
1044 *low=code2;
1045 return;
1046 }
1047 code=code2=0;
1048 version=facilitycode=0;
1049 number=0;
1050 idx=0;
1051
1052 WDT_HIT();
1053 }
1054 DbpString("Stopped");
1055 if (ledcontrol) LED_A_OFF();
1056 }
1057
1058 /*------------------------------
1059 * T5555/T5557/T5567/T5577 routines
1060 *------------------------------
1061 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1062 *
1063 * Relevant communication times in microsecond
1064 * To compensate antenna falling times shorten the write times
1065 * and enlarge the gap ones.
1066 * Q5 tags seems to have issues when these values changes.
1067 */
1068 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1069 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1070 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1071 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1072 #define READ_GAP 15*8
1073
1074 void TurnReadLFOn(int delay) {
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1076 // Give it a bit of time for the resonant antenna to settle.
1077 SpinDelayUs(delay); //155*8 //50*8
1078 }
1079
1080 // Write one bit to card
1081 void T55xxWriteBit(int bit) {
1082 if (!bit)
1083 TurnReadLFOn(WRITE_0);
1084 else
1085 TurnReadLFOn(WRITE_1);
1086 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1087 SpinDelayUs(WRITE_GAP);
1088 }
1089
1090 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1091 void T55xxResetRead(void) {
1092 LED_A_ON();
1093 //clear buffer now so it does not interfere with timing later
1094 BigBuf_Clear_keep_EM();
1095
1096 // Set up FPGA, 125kHz
1097 LFSetupFPGAForADC(95, true);
1098
1099 // Trigger T55x7 in mode.
1100 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1101 SpinDelayUs(START_GAP);
1102
1103 // reset tag - op code 00
1104 T55xxWriteBit(0);
1105 T55xxWriteBit(0);
1106
1107 // Turn field on to read the response
1108 TurnReadLFOn(READ_GAP);
1109
1110 // Acquisition
1111 doT55x7Acquisition(BigBuf_max_traceLen());
1112
1113 // Turn the field off
1114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1115 cmd_send(CMD_ACK,0,0,0,0,0);
1116 LED_A_OFF();
1117 }
1118
1119 // Write one card block in page 0, no lock
1120 void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1121 LED_A_ON();
1122 bool PwdMode = arg & 0x1;
1123 uint8_t Page = (arg & 0x2)>>1;
1124 uint32_t i = 0;
1125
1126 // Set up FPGA, 125kHz
1127 LFSetupFPGAForADC(95, true);
1128
1129 // Trigger T55x7 in mode.
1130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1131 SpinDelayUs(START_GAP);
1132
1133 // Opcode 10
1134 T55xxWriteBit(1);
1135 T55xxWriteBit(Page); //Page 0
1136 if (PwdMode){
1137 // Send Pwd
1138 for (i = 0x80000000; i != 0; i >>= 1)
1139 T55xxWriteBit(Pwd & i);
1140 }
1141 // Send Lock bit
1142 T55xxWriteBit(0);
1143
1144 // Send Data
1145 for (i = 0x80000000; i != 0; i >>= 1)
1146 T55xxWriteBit(Data & i);
1147
1148 // Send Block number
1149 for (i = 0x04; i != 0; i >>= 1)
1150 T55xxWriteBit(Block & i);
1151
1152 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1153 // so wait a little more)
1154 TurnReadLFOn(20 * 1000);
1155 //could attempt to do a read to confirm write took
1156 // as the tag should repeat back the new block
1157 // until it is reset, but to confirm it we would
1158 // need to know the current block 0 config mode
1159
1160 // turn field off
1161 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1162 LED_A_OFF();
1163 }
1164
1165 // Write one card block in page 0, no lock
1166 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1167 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1168 cmd_send(CMD_ACK,0,0,0,0,0);
1169 }
1170
1171 // Read one card block in page [page]
1172 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1173 LED_A_ON();
1174 bool PwdMode = arg0 & 0x1;
1175 uint8_t Page = (arg0 & 0x2) >> 1;
1176 uint32_t i = 0;
1177 bool RegReadMode = (Block == 0xFF);
1178
1179 //clear buffer now so it does not interfere with timing later
1180 BigBuf_Clear_ext(false);
1181
1182 //make sure block is at max 7
1183 Block &= 0x7;
1184
1185 // Set up FPGA, 125kHz to power up the tag
1186 LFSetupFPGAForADC(95, true);
1187
1188 // Trigger T55x7 Direct Access Mode with start gap
1189 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1190 SpinDelayUs(START_GAP);
1191
1192 // Opcode 1[page]
1193 T55xxWriteBit(1);
1194 T55xxWriteBit(Page); //Page 0
1195
1196 if (PwdMode){
1197 // Send Pwd
1198 for (i = 0x80000000; i != 0; i >>= 1)
1199 T55xxWriteBit(Pwd & i);
1200 }
1201 // Send a zero bit separation
1202 T55xxWriteBit(0);
1203
1204 // Send Block number (if direct access mode)
1205 if (!RegReadMode)
1206 for (i = 0x04; i != 0; i >>= 1)
1207 T55xxWriteBit(Block & i);
1208
1209 // Turn field on to read the response
1210 TurnReadLFOn(READ_GAP);
1211
1212 // Acquisition
1213 doT55x7Acquisition(12000);
1214
1215 // Turn the field off
1216 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1217 cmd_send(CMD_ACK,0,0,0,0,0);
1218 LED_A_OFF();
1219 }
1220
1221 void T55xxWakeUp(uint32_t Pwd){
1222 LED_B_ON();
1223 uint32_t i = 0;
1224
1225 // Set up FPGA, 125kHz
1226 LFSetupFPGAForADC(95, true);
1227
1228 // Trigger T55x7 Direct Access Mode
1229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1230 SpinDelayUs(START_GAP);
1231
1232 // Opcode 10
1233 T55xxWriteBit(1);
1234 T55xxWriteBit(0); //Page 0
1235
1236 // Send Pwd
1237 for (i = 0x80000000; i != 0; i >>= 1)
1238 T55xxWriteBit(Pwd & i);
1239
1240 // Turn and leave field on to let the begin repeating transmission
1241 TurnReadLFOn(20*1000);
1242 }
1243
1244 /*-------------- Cloning routines -----------*/
1245
1246 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1247 // write last block first and config block last (if included)
1248 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1249 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1250 }
1251 }
1252
1253 // Copy HID id to card and setup block 0 config
1254 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1255 uint32_t data[] = {0,0,0,0,0,0,0};
1256 uint8_t last_block = 0;
1257
1258 if (longFMT) {
1259 // Ensure no more than 84 bits supplied
1260 if (hi2>0xFFFFF) {
1261 DbpString("Tags can only have 84 bits.");
1262 return;
1263 }
1264 // Build the 6 data blocks for supplied 84bit ID
1265 last_block = 6;
1266 // load preamble (1D) & long format identifier (9E manchester encoded)
1267 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1268 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1269 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1270 data[3] = manchesterEncode2Bytes(hi >> 16);
1271 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1272 data[5] = manchesterEncode2Bytes(lo >> 16);
1273 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1274 } else {
1275 // Ensure no more than 44 bits supplied
1276 if (hi>0xFFF) {
1277 DbpString("Tags can only have 44 bits.");
1278 return;
1279 }
1280 // Build the 3 data blocks for supplied 44bit ID
1281 last_block = 3;
1282 // load preamble
1283 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1284 data[2] = manchesterEncode2Bytes(lo >> 16);
1285 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1286 }
1287 // load chip config block
1288 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1289
1290 //TODO add selection of chip for Q5 or T55x7
1291 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1292
1293 LED_D_ON();
1294 // Program the data blocks for supplied ID
1295 // and the block 0 for HID format
1296 WriteT55xx(data, 0, last_block+1);
1297
1298 LED_D_OFF();
1299
1300 DbpString("DONE!");
1301 }
1302
1303 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1304 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1305 //TODO add selection of chip for Q5 or T55x7
1306 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1307
1308 LED_D_ON();
1309 // Program the data blocks for supplied ID
1310 // and the block 0 config
1311 WriteT55xx(data, 0, 3);
1312
1313 LED_D_OFF();
1314
1315 DbpString("DONE!");
1316 }
1317
1318 // Clone Indala 64-bit tag by UID to T55x7
1319 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1320 //Program the 2 data blocks for supplied 64bit UID
1321 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1322 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1323 //TODO add selection of chip for Q5 or T55x7
1324 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1325
1326 WriteT55xx(data, 0, 3);
1327 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1328 // T5567WriteBlock(0x603E1042,0);
1329 DbpString("DONE!");
1330 }
1331 // Clone Indala 224-bit tag by UID to T55x7
1332 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1333 //Program the 7 data blocks for supplied 224bit UID
1334 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1335 // and the block 0 for Indala224 format
1336 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1337 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1338 //TODO add selection of chip for Q5 or T55x7
1339 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1340 WriteT55xx(data, 0, 8);
1341 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1342 // T5567WriteBlock(0x603E10E2,0);
1343 DbpString("DONE!");
1344 }
1345 // clone viking tag to T55xx
1346 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1347 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1348 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1349 // Program the data blocks for supplied ID and the block 0 config
1350 WriteT55xx(data, 0, 3);
1351 LED_D_OFF();
1352 cmd_send(CMD_ACK,0,0,0,0,0);
1353 }
1354
1355 // Define 9bit header for EM410x tags
1356 #define EM410X_HEADER 0x1FF
1357 #define EM410X_ID_LENGTH 40
1358
1359 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1360 int i, id_bit;
1361 uint64_t id = EM410X_HEADER;
1362 uint64_t rev_id = 0; // reversed ID
1363 int c_parity[4]; // column parity
1364 int r_parity = 0; // row parity
1365 uint32_t clock = 0;
1366
1367 // Reverse ID bits given as parameter (for simpler operations)
1368 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1369 if (i < 32) {
1370 rev_id = (rev_id << 1) | (id_lo & 1);
1371 id_lo >>= 1;
1372 } else {
1373 rev_id = (rev_id << 1) | (id_hi & 1);
1374 id_hi >>= 1;
1375 }
1376 }
1377
1378 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1379 id_bit = rev_id & 1;
1380
1381 if (i % 4 == 0) {
1382 // Don't write row parity bit at start of parsing
1383 if (i)
1384 id = (id << 1) | r_parity;
1385 // Start counting parity for new row
1386 r_parity = id_bit;
1387 } else {
1388 // Count row parity
1389 r_parity ^= id_bit;
1390 }
1391
1392 // First elements in column?
1393 if (i < 4)
1394 // Fill out first elements
1395 c_parity[i] = id_bit;
1396 else
1397 // Count column parity
1398 c_parity[i % 4] ^= id_bit;
1399
1400 // Insert ID bit
1401 id = (id << 1) | id_bit;
1402 rev_id >>= 1;
1403 }
1404
1405 // Insert parity bit of last row
1406 id = (id << 1) | r_parity;
1407
1408 // Fill out column parity at the end of tag
1409 for (i = 0; i < 4; ++i)
1410 id = (id << 1) | c_parity[i];
1411
1412 // Add stop bit
1413 id <<= 1;
1414
1415 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1416 LED_D_ON();
1417
1418 // Write EM410x ID
1419 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1420
1421 clock = (card & 0xFF00) >> 8;
1422 clock = (clock == 0) ? 64 : clock;
1423 Dbprintf("Clock rate: %d", clock);
1424 if (card & 0xFF) { //t55x7
1425 clock = GetT55xxClockBit(clock);
1426 if (clock == 0) {
1427 Dbprintf("Invalid clock rate: %d", clock);
1428 return;
1429 }
1430 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1431 } else { //t5555 (Q5)
1432 clock = (clock-2)>>1; //n = (RF-2)/2
1433 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1434 }
1435
1436 WriteT55xx(data, 0, 3);
1437
1438 LED_D_OFF();
1439 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1440 (uint32_t)(id >> 32), (uint32_t)id);
1441 }
1442
1443 //-----------------------------------
1444 // EM4469 / EM4305 routines
1445 //-----------------------------------
1446 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1447 #define FWD_CMD_WRITE 0xA
1448 #define FWD_CMD_READ 0x9
1449 #define FWD_CMD_DISABLE 0x5
1450
1451 uint8_t forwardLink_data[64]; //array of forwarded bits
1452 uint8_t * forward_ptr; //ptr for forward message preparation
1453 uint8_t fwd_bit_sz; //forwardlink bit counter
1454 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1455
1456 //====================================================================
1457 // prepares command bits
1458 // see EM4469 spec
1459 //====================================================================
1460 //--------------------------------------------------------------------
1461 // VALUES TAKEN FROM EM4x function: SendForward
1462 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1463 // WRITE_GAP = 128; (16*8)
1464 // WRITE_1 = 256 32*8; (32*8)
1465
1466 // These timings work for 4469/4269/4305 (with the 55*8 above)
1467 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1468
1469 uint8_t Prepare_Cmd( uint8_t cmd ) {
1470
1471 *forward_ptr++ = 0; //start bit
1472 *forward_ptr++ = 0; //second pause for 4050 code
1473
1474 *forward_ptr++ = cmd;
1475 cmd >>= 1;
1476 *forward_ptr++ = cmd;
1477 cmd >>= 1;
1478 *forward_ptr++ = cmd;
1479 cmd >>= 1;
1480 *forward_ptr++ = cmd;
1481
1482 return 6; //return number of emited bits
1483 }
1484
1485 //====================================================================
1486 // prepares address bits
1487 // see EM4469 spec
1488 //====================================================================
1489 uint8_t Prepare_Addr( uint8_t addr ) {
1490
1491 register uint8_t line_parity;
1492
1493 uint8_t i;
1494 line_parity = 0;
1495 for(i=0;i<6;i++) {
1496 *forward_ptr++ = addr;
1497 line_parity ^= addr;
1498 addr >>= 1;
1499 }
1500
1501 *forward_ptr++ = (line_parity & 1);
1502
1503 return 7; //return number of emited bits
1504 }
1505
1506 //====================================================================
1507 // prepares data bits intreleaved with parity bits
1508 // see EM4469 spec
1509 //====================================================================
1510 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1511
1512 register uint8_t line_parity;
1513 register uint8_t column_parity;
1514 register uint8_t i, j;
1515 register uint16_t data;
1516
1517 data = data_low;
1518 column_parity = 0;
1519
1520 for(i=0; i<4; i++) {
1521 line_parity = 0;
1522 for(j=0; j<8; j++) {
1523 line_parity ^= data;
1524 column_parity ^= (data & 1) << j;
1525 *forward_ptr++ = data;
1526 data >>= 1;
1527 }
1528 *forward_ptr++ = line_parity;
1529 if(i == 1)
1530 data = data_hi;
1531 }
1532
1533 for(j=0; j<8; j++) {
1534 *forward_ptr++ = column_parity;
1535 column_parity >>= 1;
1536 }
1537 *forward_ptr = 0;
1538
1539 return 45; //return number of emited bits
1540 }
1541
1542 //====================================================================
1543 // Forward Link send function
1544 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1545 // fwd_bit_count set with number of bits to be sent
1546 //====================================================================
1547 void SendForward(uint8_t fwd_bit_count) {
1548
1549 fwd_write_ptr = forwardLink_data;
1550 fwd_bit_sz = fwd_bit_count;
1551
1552 LED_D_ON();
1553
1554 // Set up FPGA, 125kHz
1555 LFSetupFPGAForADC(95, true);
1556
1557 // force 1st mod pulse (start gap must be longer for 4305)
1558 fwd_bit_sz--; //prepare next bit modulation
1559 fwd_write_ptr++;
1560 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1561 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1562 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1563 SpinDelayUs(16*8); //16 cycles on (8us each)
1564
1565 // now start writting
1566 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1567 if(((*fwd_write_ptr++) & 1) == 1)
1568 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1569 else {
1570 //These timings work for 4469/4269/4305 (with the 55*8 above)
1571 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1572 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1573 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1574 SpinDelayUs(9*8); //16 cycles on (8us each)
1575 }
1576 }
1577 }
1578
1579 void EM4xLogin(uint32_t Password) {
1580
1581 uint8_t fwd_bit_count;
1582
1583 forward_ptr = forwardLink_data;
1584 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1585 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1586
1587 SendForward(fwd_bit_count);
1588
1589 //Wait for command to complete
1590 SpinDelay(20);
1591 }
1592
1593 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1594
1595 uint8_t fwd_bit_count;
1596 uint8_t *dest = BigBuf_get_addr();
1597 uint16_t bufferlength = BigBuf_max_traceLen();
1598 uint32_t i = 0;
1599
1600 // Clear destination buffer before sending the command
1601 BigBuf_Clear_ext(false);
1602
1603 //If password mode do login
1604 if (PwdMode == 1) EM4xLogin(Pwd);
1605
1606 forward_ptr = forwardLink_data;
1607 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1608 fwd_bit_count += Prepare_Addr( Address );
1609
1610 // Connect the A/D to the peak-detected low-frequency path.
1611 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1612 // Now set up the SSC to get the ADC samples that are now streaming at us.
1613 FpgaSetupSsc();
1614
1615 SendForward(fwd_bit_count);
1616
1617 // Now do the acquisition
1618 i = 0;
1619 for(;;) {
1620 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1621 AT91C_BASE_SSC->SSC_THR = 0x43;
1622 }
1623 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1624 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1625 i++;
1626 if (i >= bufferlength) break;
1627 }
1628 }
1629 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1630 cmd_send(CMD_ACK,0,0,0,0,0);
1631 LED_D_OFF();
1632 }
1633
1634 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1635
1636 uint8_t fwd_bit_count;
1637
1638 //If password mode do login
1639 if (PwdMode == 1) EM4xLogin(Pwd);
1640
1641 forward_ptr = forwardLink_data;
1642 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1643 fwd_bit_count += Prepare_Addr( Address );
1644 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1645
1646 SendForward(fwd_bit_count);
1647
1648 //Wait for write to complete
1649 SpinDelay(20);
1650 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1651 LED_D_OFF();
1652 }
Impressum, Datenschutz