1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
26 #include "lfsampling.h"
32 #define abs(x) ( ((x)<0) ? -(x) : (x) )
34 //=============================================================================
35 // A buffer where we can queue things up to be sent through the FPGA, for
36 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
37 // is the order in which they go out on the wire.
38 //=============================================================================
40 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
41 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
44 struct common_area common_area
__attribute__((section(".commonarea")));
46 void ToSendReset(void)
52 void ToSendStuffBit(int b
)
56 ToSend
[ToSendMax
] = 0;
61 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
66 if(ToSendMax
>= sizeof(ToSend
)) {
68 DbpString("ToSendStuffBit overflowed!");
72 //=============================================================================
73 // Debug print functions, to go out over USB, to the usual PC-side client.
74 //=============================================================================
76 void DbpString(char *str
)
78 byte_t len
= strlen(str
);
79 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
83 void DbpIntegers(int x1
, int x2
, int x3
)
85 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
89 void Dbprintf(const char *fmt
, ...) {
90 // should probably limit size here; oh well, let's just use a big buffer
91 char output_string
[128];
95 kvsprintf(fmt
, output_string
, 10, ap
);
98 DbpString(output_string
);
101 // prints HEX & ASCII
102 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
115 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
118 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
120 Dbprintf("%*D",l
,d
," ");
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch
)
137 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
138 AT91C_BASE_ADC
->ADC_MR
=
139 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
140 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
141 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
143 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
144 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
145 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
148 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
150 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
152 // Note: with the "historic" values in the comments above, the error was 34% !!!
154 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
158 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
160 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
165 int AvgAdc(int ch
) // was static - merlok
170 for(i
= 0; i
< 32; i
++) {
174 return (a
+ 15) >> 5;
177 void MeasureAntennaTuning(void)
179 uint8_t LF_Results
[256];
180 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
181 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
186 * Sweeps the useful LF range of the proxmark from
187 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
188 * read the voltage in the antenna, the result left
189 * in the buffer is a graph which should clearly show
190 * the resonating frequency of your LF antenna
191 * ( hopefully around 95 if it is tuned to 125kHz!)
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
196 for (i
=255; i
>=19; i
--) {
198 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
200 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
201 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
202 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
204 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
205 if(LF_Results
[i
] > peak
) {
207 peak
= LF_Results
[i
];
213 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
216 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
220 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
222 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
229 void MeasureAntennaTuningHf(void)
231 int vHf
= 0; // in mV
233 DbpString("Measuring HF antenna, press button to exit");
235 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
236 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
237 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
243 Dbprintf("%d mV",vHf
);
244 if (BUTTON_PRESS()) break;
246 DbpString("cancelled");
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void ReadMem(int addr
)
255 const uint8_t *data
= ((uint8_t *)addr
);
257 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
258 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
261 /* osimage version information is linked in */
262 extern struct version_information version_information
;
263 /* bootrom version information is pointed to from _bootphase1_version_pointer */
264 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
265 void SendVersion(void)
267 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
268 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
270 /* Try to find the bootrom version information. Expect to find a pointer at
271 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
272 * pointer, then use it.
274 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
275 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
276 strcat(VersionString
, "bootrom version information appears invalid\n");
278 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
279 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
282 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
283 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
285 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
286 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
287 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
288 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
290 // Send Chip ID and used flash memory
291 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
292 uint32_t compressed_data_section_size
= common_area
.arg1
;
293 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
297 // samy's sniff and repeat routine
300 DbpString("Stand-alone mode! No PC necessary.");
301 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
303 // 3 possible options? no just 2 for now
306 int high
[OPTS
], low
[OPTS
];
308 // Oooh pretty -- notify user we're in elite samy mode now
310 LED(LED_ORANGE
, 200);
312 LED(LED_ORANGE
, 200);
314 LED(LED_ORANGE
, 200);
316 LED(LED_ORANGE
, 200);
323 // Turn on selected LED
324 LED(selected
+ 1, 0);
331 // Was our button held down or pressed?
332 int button_pressed
= BUTTON_HELD(1000);
335 // Button was held for a second, begin recording
336 if (button_pressed
> 0 && cardRead
== 0)
339 LED(selected
+ 1, 0);
343 DbpString("Starting recording");
345 // wait for button to be released
346 while(BUTTON_PRESS())
349 /* need this delay to prevent catching some weird data */
352 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
353 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
356 LED(selected
+ 1, 0);
357 // Finished recording
359 // If we were previously playing, set playing off
360 // so next button push begins playing what we recorded
367 else if (button_pressed
> 0 && cardRead
== 1)
370 LED(selected
+ 1, 0);
374 Dbprintf("Cloning %x %x %x", selected
, high
[selected
], low
[selected
]);
376 // wait for button to be released
377 while(BUTTON_PRESS())
380 /* need this delay to prevent catching some weird data */
383 CopyHIDtoT55x7(high
[selected
], low
[selected
], 0, 0);
384 Dbprintf("Cloned %x %x %x", selected
, high
[selected
], low
[selected
]);
387 LED(selected
+ 1, 0);
388 // Finished recording
390 // If we were previously playing, set playing off
391 // so next button push begins playing what we recorded
398 // Change where to record (or begin playing)
399 else if (button_pressed
)
401 // Next option if we were previously playing
403 selected
= (selected
+ 1) % OPTS
;
407 LED(selected
+ 1, 0);
409 // Begin transmitting
413 DbpString("Playing");
414 // wait for button to be released
415 while(BUTTON_PRESS())
417 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
418 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
419 DbpString("Done playing");
420 if (BUTTON_HELD(1000) > 0)
422 DbpString("Exiting");
427 /* We pressed a button so ignore it here with a delay */
430 // when done, we're done playing, move to next option
431 selected
= (selected
+ 1) % OPTS
;
434 LED(selected
+ 1, 0);
437 while(BUTTON_PRESS())
446 Listen and detect an external reader. Determine the best location
450 Inside the ListenReaderField() function, there is two mode.
451 By default, when you call the function, you will enter mode 1.
452 If you press the PM3 button one time, you will enter mode 2.
453 If you press the PM3 button a second time, you will exit the function.
455 DESCRIPTION OF MODE 1:
456 This mode just listens for an external reader field and lights up green
457 for HF and/or red for LF. This is the original mode of the detectreader
460 DESCRIPTION OF MODE 2:
461 This mode will visually represent, using the LEDs, the actual strength of the
462 current compared to the maximum current detected. Basically, once you know
463 what kind of external reader is present, it will help you spot the best location to place
464 your antenna. You will probably not get some good results if there is a LF and a HF reader
465 at the same place! :-)
469 static const char LIGHT_SCHEME
[] = {
470 0x0, /* ---- | No field detected */
471 0x1, /* X--- | 14% of maximum current detected */
472 0x2, /* -X-- | 29% of maximum current detected */
473 0x4, /* --X- | 43% of maximum current detected */
474 0x8, /* ---X | 57% of maximum current detected */
475 0xC, /* --XX | 71% of maximum current detected */
476 0xE, /* -XXX | 86% of maximum current detected */
477 0xF, /* XXXX | 100% of maximum current detected */
479 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
481 void ListenReaderField(int limit
)
483 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
484 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
485 int mode
=1, display_val
, display_max
, i
;
489 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
492 // switch off FPGA - we don't want to measure our own signal
493 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
494 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
498 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
500 if(limit
!= HF_ONLY
) {
501 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
505 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
507 if (limit
!= LF_ONLY
) {
508 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
513 if (BUTTON_PRESS()) {
518 DbpString("Signal Strength Mode");
522 DbpString("Stopped");
530 if (limit
!= HF_ONLY
) {
532 if (abs(lf_av
- lf_baseline
) > REPORT_CHANGE
)
538 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
539 // see if there's a significant change
540 if(abs(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
541 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
548 if (limit
!= LF_ONLY
) {
550 if (abs(hf_av
- hf_baseline
) > REPORT_CHANGE
)
556 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
557 // see if there's a significant change
558 if(abs(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
559 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
567 if (limit
== LF_ONLY
) {
569 display_max
= lf_max
;
570 } else if (limit
== HF_ONLY
) {
572 display_max
= hf_max
;
573 } else { /* Pick one at random */
574 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
576 display_max
= hf_max
;
579 display_max
= lf_max
;
582 for (i
=0; i
<LIGHT_LEN
; i
++) {
583 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
584 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
585 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
586 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
587 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
595 void UsbPacketReceived(uint8_t *packet
, int len
)
597 UsbCommand
*c
= (UsbCommand
*)packet
;
599 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
603 case CMD_SET_LF_SAMPLING_CONFIG
:
604 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
606 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
607 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
609 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
610 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
612 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
613 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
615 case CMD_HID_DEMOD_FSK
:
616 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
618 case CMD_HID_SIM_TAG
:
619 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
621 case CMD_FSK_SIM_TAG
:
622 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
624 case CMD_ASK_SIM_TAG
:
625 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
627 case CMD_PSK_SIM_TAG
:
628 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
630 case CMD_HID_CLONE_TAG
:
631 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
633 case CMD_IO_DEMOD_FSK
:
634 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
636 case CMD_IO_CLONE_TAG
:
637 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
639 case CMD_EM410X_DEMOD
:
640 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
642 case CMD_EM410X_WRITE_TAG
:
643 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
645 case CMD_READ_TI_TYPE
:
648 case CMD_WRITE_TI_TYPE
:
649 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
651 case CMD_SIMULATE_TAG_125K
:
653 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
656 case CMD_LF_SIMULATE_BIDIR
:
657 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
659 case CMD_INDALA_CLONE_TAG
:
660 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
662 case CMD_INDALA_CLONE_TAG_L
:
663 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
665 case CMD_T55XX_READ_BLOCK
:
666 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
668 case CMD_T55XX_WRITE_BLOCK
:
669 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
671 case CMD_T55XX_READ_TRACE
:
674 case CMD_PCF7931_READ
:
676 cmd_send(CMD_ACK
,0,0,0,0,0);
678 case CMD_EM4X_READ_WORD
:
679 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
681 case CMD_EM4X_WRITE_WORD
:
682 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
684 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
685 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
690 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
691 SnoopHitag(c
->arg
[0]);
693 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
694 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
696 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
697 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
702 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
703 AcquireRawAdcSamplesIso15693();
705 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
706 RecordRawAdcSamplesIso15693();
709 case CMD_ISO_15693_COMMAND
:
710 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
713 case CMD_ISO_15693_FIND_AFI
:
714 BruteforceIso15693Afi(c
->arg
[0]);
717 case CMD_ISO_15693_DEBUG
:
718 SetDebugIso15693(c
->arg
[0]);
721 case CMD_READER_ISO_15693
:
722 ReaderIso15693(c
->arg
[0]);
724 case CMD_SIMTAG_ISO_15693
:
725 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
730 case CMD_SIMULATE_TAG_LEGIC_RF
:
731 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
734 case CMD_WRITER_LEGIC_RF
:
735 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
738 case CMD_READER_LEGIC_RF
:
739 LegicRfReader(c
->arg
[0], c
->arg
[1]);
743 #ifdef WITH_ISO14443b
744 case CMD_READ_SRI512_TAG
:
745 ReadSTMemoryIso14443b(0x0F);
747 case CMD_READ_SRIX4K_TAG
:
748 ReadSTMemoryIso14443b(0x7F);
750 case CMD_SNOOP_ISO_14443B
:
753 case CMD_SIMULATE_TAG_ISO_14443B
:
754 SimulateIso14443bTag();
756 case CMD_ISO_14443B_COMMAND
:
757 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
761 #ifdef WITH_ISO14443a
762 case CMD_SNOOP_ISO_14443a
:
763 SniffIso14443a(c
->arg
[0]);
765 case CMD_READER_ISO_14443a
:
768 case CMD_SIMULATE_TAG_ISO_14443a
:
769 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
772 case CMD_EPA_PACE_COLLECT_NONCE
:
773 EPA_PACE_Collect_Nonce(c
);
775 case CMD_EPA_PACE_REPLAY
:
779 case CMD_READER_MIFARE
:
780 ReaderMifare(c
->arg
[0]);
782 case CMD_MIFARE_READBL
:
783 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
785 case CMD_MIFAREU_READBL
:
786 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
788 case CMD_MIFAREUC_AUTH
:
789 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
791 case CMD_MIFAREU_READCARD
:
792 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
794 case CMD_MIFAREUC_SETPWD
:
795 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
797 case CMD_MIFARE_READSC
:
798 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFARE_WRITEBL
:
801 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
803 //case CMD_MIFAREU_WRITEBL_COMPAT:
804 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
806 case CMD_MIFAREU_WRITEBL
:
807 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
809 case CMD_MIFARE_NESTED
:
810 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
812 case CMD_MIFARE_CHKKEYS
:
813 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
815 case CMD_SIMULATE_MIFARE_CARD
:
816 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
820 case CMD_MIFARE_SET_DBGMODE
:
821 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 case CMD_MIFARE_EML_MEMCLR
:
824 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
826 case CMD_MIFARE_EML_MEMSET
:
827 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
829 case CMD_MIFARE_EML_MEMGET
:
830 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
832 case CMD_MIFARE_EML_CARDLOAD
:
833 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
836 // Work with "magic Chinese" card
837 case CMD_MIFARE_CSETBLOCK
:
838 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
840 case CMD_MIFARE_CGETBLOCK
:
841 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
843 case CMD_MIFARE_CIDENT
:
848 case CMD_MIFARE_SNIFFER
:
849 SniffMifare(c
->arg
[0]);
853 case CMD_MIFARE_DESFIRE_READBL
: break;
854 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
855 case CMD_MIFARE_DESFIRE_AUTH1
:
856 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
858 case CMD_MIFARE_DESFIRE_AUTH2
:
859 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
861 case CMD_MIFARE_DES_READER
:
862 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
864 case CMD_MIFARE_DESFIRE_INFO
:
865 MifareDesfireGetInformation();
867 case CMD_MIFARE_DESFIRE
:
868 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
871 case CMD_MIFARE_COLLECT_NONCES
:
872 MifareCollectNonces(c
->arg
[0], c
->arg
[1]);
877 // Makes use of ISO14443a FPGA Firmware
878 case CMD_SNOOP_ICLASS
:
881 case CMD_SIMULATE_TAG_ICLASS
:
882 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
884 case CMD_READER_ICLASS
:
885 ReaderIClass(c
->arg
[0]);
887 case CMD_READER_ICLASS_REPLAY
:
888 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
890 case CMD_ICLASS_EML_MEMSET
:
891 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
899 case CMD_MEASURE_ANTENNA_TUNING
:
900 MeasureAntennaTuning();
903 case CMD_MEASURE_ANTENNA_TUNING_HF
:
904 MeasureAntennaTuningHf();
907 case CMD_LISTEN_READER_FIELD
:
908 ListenReaderField(c
->arg
[0]);
911 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
912 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
914 LED_D_OFF(); // LED D indicates field ON or OFF
917 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
920 uint8_t *BigBuf
= BigBuf_get_addr();
921 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
922 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
923 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
925 // Trigger a finish downloading signal with an ACK frame
926 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
930 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
931 uint8_t *b
= BigBuf_get_addr();
932 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
933 cmd_send(CMD_ACK
,0,0,0,0,0);
940 case CMD_SET_LF_DIVISOR
:
941 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
942 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
945 case CMD_SET_ADC_MUX
:
947 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
948 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
949 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
950 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
966 case CMD_SETUP_WRITE
:
967 case CMD_FINISH_WRITE
:
968 case CMD_HARDWARE_RESET
:
972 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
974 // We're going to reset, and the bootrom will take control.
978 case CMD_START_FLASH
:
979 if(common_area
.flags
.bootrom_present
) {
980 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
983 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
987 case CMD_DEVICE_INFO
: {
988 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
989 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
990 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
994 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
999 void __attribute__((noreturn
)) AppMain(void)
1003 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1004 /* Initialize common area */
1005 memset(&common_area
, 0, sizeof(common_area
));
1006 common_area
.magic
= COMMON_AREA_MAGIC
;
1007 common_area
.version
= 1;
1009 common_area
.flags
.osimage_present
= 1;
1019 // The FPGA gets its clock from us from PCK0 output, so set that up.
1020 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1021 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1022 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1023 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1024 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1025 AT91C_PMC_PRES_CLK_4
;
1026 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1029 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1031 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1033 // Load the FPGA image, which we have stored in our flash.
1034 // (the HF version by default)
1035 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1043 byte_t rx
[sizeof(UsbCommand
)];
1048 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1050 UsbPacketReceived(rx
,rx_len
);
1056 if (BUTTON_HELD(1000) > 0)