]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
6fe83c6e672cede74bad42d286f1e8fccf0f1b4a
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "../include/proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "../common/cmd.h"
18 #include "../common/iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint32_t iso14a_timeout;
24 uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
25 int rsamples = 0;
26 int traceLen = 0;
27 int tracing = TRUE;
28 uint8_t trigger = 0;
29 // the block number for the ISO14443-4 PCB
30 static uint8_t iso14_pcb_blocknum = 0;
31
32 //
33 // ISO14443 timing:
34 //
35 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36 #define REQUEST_GUARD_TIME (7000/16 + 1)
37 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39 // bool LastCommandWasRequest = FALSE;
40
41 //
42 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43 //
44 // When the PM acts as reader and is receiving tag data, it takes
45 // 3 ticks delay in the AD converter
46 // 16 ticks until the modulation detector completes and sets curbit
47 // 8 ticks until bit_to_arm is assigned from curbit
48 // 8*16 ticks for the transfer from FPGA to ARM
49 // 4*16 ticks until we measure the time
50 // - 8*16 ticks because we measure the time of the previous transfer
51 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
52
53 // When the PM acts as a reader and is sending, it takes
54 // 4*16 ticks until we can write data to the sending hold register
55 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
56 // 8 ticks until the first transfer starts
57 // 8 ticks later the FPGA samples the data
58 // 1 tick to assign mod_sig_coil
59 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60
61 // When the PM acts as tag and is receiving it takes
62 // 2 ticks delay in the RF part (for the first falling edge),
63 // 3 ticks for the A/D conversion,
64 // 8 ticks on average until the start of the SSC transfer,
65 // 8 ticks until the SSC samples the first data
66 // 7*16 ticks to complete the transfer from FPGA to ARM
67 // 8 ticks until the next ssp_clk rising edge
68 // 4*16 ticks until we measure the time
69 // - 8*16 ticks because we measure the time of the previous transfer
70 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
71
72 // The FPGA will report its internal sending delay in
73 uint16_t FpgaSendQueueDelay;
74 // the 5 first bits are the number of bits buffered in mod_sig_buf
75 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77
78 // When the PM acts as tag and is sending, it takes
79 // 4*16 ticks until we can write data to the sending hold register
80 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
81 // 8 ticks until the first transfer starts
82 // 8 ticks later the FPGA samples the data
83 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84 // + 1 tick to assign mod_sig_coil
85 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
86
87 // When the PM acts as sniffer and is receiving tag data, it takes
88 // 3 ticks A/D conversion
89 // 14 ticks to complete the modulation detection
90 // 8 ticks (on average) until the result is stored in to_arm
91 // + the delays in transferring data - which is the same for
92 // sniffing reader and tag data and therefore not relevant
93 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
94
95 // When the PM acts as sniffer and is receiving reader data, it takes
96 // 2 ticks delay in analogue RF receiver (for the falling edge of the
97 // start bit, which marks the start of the communication)
98 // 3 ticks A/D conversion
99 // 8 ticks on average until the data is stored in to_arm.
100 // + the delays in transferring data - which is the same for
101 // sniffing reader and tag data and therefore not relevant
102 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
103
104 //variables used for timing purposes:
105 //these are in ssp_clk cycles:
106 uint32_t NextTransferTime;
107 uint32_t LastTimeProxToAirStart;
108 uint32_t LastProxToAirDuration;
109
110
111
112 // CARD TO READER - manchester
113 // Sequence D: 11110000 modulation with subcarrier during first half
114 // Sequence E: 00001111 modulation with subcarrier during second half
115 // Sequence F: 00000000 no modulation with subcarrier
116 // READER TO CARD - miller
117 // Sequence X: 00001100 drop after half a period
118 // Sequence Y: 00000000 no drop
119 // Sequence Z: 11000000 drop at start
120 #define SEC_D 0xf0
121 #define SEC_E 0x0f
122 #define SEC_F 0x00
123 #define SEC_X 0x0c
124 #define SEC_Y 0x00
125 #define SEC_Z 0xc0
126
127 const uint8_t OddByteParity[256] = {
128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144 };
145
146
147 void iso14a_set_trigger(bool enable) {
148 trigger = enable;
149 }
150
151 void iso14a_clear_trace() {
152 memset(trace, 0x44, TRACE_SIZE);
153 traceLen = 0;
154 }
155
156 void iso14a_set_tracing(bool enable) {
157 tracing = enable;
158 }
159
160 void iso14a_set_timeout(uint32_t timeout) {
161 iso14a_timeout = timeout;
162 }
163
164 //-----------------------------------------------------------------------------
165 // Generate the parity value for a byte sequence
166 //
167 //-----------------------------------------------------------------------------
168 byte_t oddparity (const byte_t bt)
169 {
170 return OddByteParity[bt];
171 }
172
173 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
174 {
175 int i;
176 uint32_t dwPar = 0;
177
178 // Generate the parity bits
179 for (i = 0; i < iLen; i++) {
180 // and save them to a 32Bit word
181 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
182 }
183 return dwPar;
184 }
185
186 void AppendCrc14443a(uint8_t* data, int len)
187 {
188 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
189 }
190
191 // The function LogTrace() is also used by the iClass implementation in iClass.c
192 bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
193 {
194 if (!tracing) return FALSE;
195 // Return when trace is full
196 if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
197 tracing = FALSE; // don't trace any more
198 return FALSE;
199 }
200
201 // Trace the random, i'm curious
202 trace[traceLen++] = ((timestamp >> 0) & 0xff);
203 trace[traceLen++] = ((timestamp >> 8) & 0xff);
204 trace[traceLen++] = ((timestamp >> 16) & 0xff);
205 trace[traceLen++] = ((timestamp >> 24) & 0xff);
206
207 if (!readerToTag) {
208 trace[traceLen - 1] |= 0x80;
209 }
210 trace[traceLen++] = ((dwParity >> 0) & 0xff);
211 trace[traceLen++] = ((dwParity >> 8) & 0xff);
212 trace[traceLen++] = ((dwParity >> 16) & 0xff);
213 trace[traceLen++] = ((dwParity >> 24) & 0xff);
214 trace[traceLen++] = iLen;
215 if (btBytes != NULL && iLen != 0) {
216 memcpy(trace + traceLen, btBytes, iLen);
217 }
218 traceLen += iLen;
219 return TRUE;
220 }
221
222 //=============================================================================
223 // ISO 14443 Type A - Miller decoder
224 //=============================================================================
225 // Basics:
226 // This decoder is used when the PM3 acts as a tag.
227 // The reader will generate "pauses" by temporarily switching of the field.
228 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
229 // The FPGA does a comparison with a threshold and would deliver e.g.:
230 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
231 // The Miller decoder needs to identify the following sequences:
232 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
233 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
234 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
235 // Note 1: the bitstream may start at any time. We therefore need to sync.
236 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
237 //-----------------------------------------------------------------------------
238 static tUart Uart;
239
240 // Lookup-Table to decide if 4 raw bits are a modulation.
241 // We accept two or three consecutive "0" in any position with the rest "1"
242 const bool Mod_Miller_LUT[] = {
243 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
244 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
245 };
246 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
247 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
248
249 void UartReset()
250 {
251 Uart.state = STATE_UNSYNCD;
252 Uart.bitCount = 0;
253 Uart.len = 0; // number of decoded data bytes
254 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
255 Uart.parityBits = 0; //
256 Uart.twoBits = 0x0000; // buffer for 2 Bits
257 Uart.highCnt = 0;
258 Uart.startTime = 0;
259 Uart.endTime = 0;
260 }
261
262
263 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
265 {
266
267 Uart.twoBits = (Uart.twoBits << 8) | bit;
268
269 if (Uart.state == STATE_UNSYNCD) { // not yet synced
270 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
271 if (Uart.twoBits == 0xffff) {
272 Uart.highCnt++;
273 } else {
274 Uart.highCnt = 0;
275 }
276 } else {
277 Uart.syncBit = 0xFFFF; // not set
278 // look for 00xx1111 (the start bit)
279 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
280 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
281 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
282 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
283 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
284 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
285 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
286 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
287 if (Uart.syncBit != 0xFFFF) {
288 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
289 Uart.startTime -= Uart.syncBit;
290 Uart.endTime = Uart.startTime;
291 Uart.state = STATE_START_OF_COMMUNICATION;
292 }
293 }
294
295 } else {
296
297 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
298 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
299 UartReset();
300 Uart.highCnt = 6;
301 } else { // Modulation in first half = Sequence Z = logic "0"
302 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
303 UartReset();
304 Uart.highCnt = 6;
305 } else {
306 Uart.bitCount++;
307 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
308 Uart.state = STATE_MILLER_Z;
309 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
310 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
311 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
312 Uart.parityBits <<= 1; // make room for the parity bit
313 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
314 Uart.bitCount = 0;
315 Uart.shiftReg = 0;
316 }
317 }
318 }
319 } else {
320 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
321 Uart.bitCount++;
322 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
323 Uart.state = STATE_MILLER_X;
324 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
325 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
326 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
327 Uart.parityBits <<= 1; // make room for the new parity bit
328 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
329 Uart.bitCount = 0;
330 Uart.shiftReg = 0;
331 }
332 } else { // no modulation in both halves - Sequence Y
333 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
334 Uart.state = STATE_UNSYNCD;
335 if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
336 Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
337 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
338 Uart.parityBits <<= 1; // no parity bit - add "0"
339 Uart.bitCount--; // last "0" was part of the EOC sequence
340 }
341 return TRUE;
342 }
343 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
344 UartReset();
345 Uart.highCnt = 6;
346 } else { // a logic "0"
347 Uart.bitCount++;
348 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
349 Uart.state = STATE_MILLER_Y;
350 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
351 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
352 Uart.parityBits <<= 1; // make room for the parity bit
353 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
354 Uart.bitCount = 0;
355 Uart.shiftReg = 0;
356 }
357 }
358 }
359 }
360
361 }
362
363 return FALSE; // not finished yet, need more data
364 }
365
366
367
368 //=============================================================================
369 // ISO 14443 Type A - Manchester decoder
370 //=============================================================================
371 // Basics:
372 // This decoder is used when the PM3 acts as a reader.
373 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
374 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
375 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
376 // The Manchester decoder needs to identify the following sequences:
377 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
378 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
379 // 8 ticks unmodulated: Sequence F = end of communication
380 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
381 // Note 1: the bitstream may start at any time. We therefore need to sync.
382 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
383 static tDemod Demod;
384
385 // Lookup-Table to decide if 4 raw bits are a modulation.
386 // We accept three or four "1" in any position
387 const bool Mod_Manchester_LUT[] = {
388 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
389 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
390 };
391
392 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
393 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
394
395
396 void DemodReset()
397 {
398 Demod.state = DEMOD_UNSYNCD;
399 Demod.len = 0; // number of decoded data bytes
400 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
401 Demod.parityBits = 0; //
402 Demod.collisionPos = 0; // Position of collision bit
403 Demod.twoBits = 0xffff; // buffer for 2 Bits
404 Demod.highCnt = 0;
405 Demod.startTime = 0;
406 Demod.endTime = 0;
407 }
408
409 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
410 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
411 {
412
413 Demod.twoBits = (Demod.twoBits << 8) | bit;
414
415 if (Demod.state == DEMOD_UNSYNCD) {
416
417 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
418 if (Demod.twoBits == 0x0000) {
419 Demod.highCnt++;
420 } else {
421 Demod.highCnt = 0;
422 }
423 } else {
424 Demod.syncBit = 0xFFFF; // not set
425 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
426 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
427 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
428 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
429 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
430 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
431 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
432 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
433 if (Demod.syncBit != 0xFFFF) {
434 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
435 Demod.startTime -= Demod.syncBit;
436 Demod.bitCount = offset; // number of decoded data bits
437 Demod.state = DEMOD_MANCHESTER_DATA;
438 }
439 }
440
441 } else {
442
443 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
444 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
445 if (!Demod.collisionPos) {
446 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
447 }
448 } // modulation in first half only - Sequence D = 1
449 Demod.bitCount++;
450 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
451 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
452 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
453 Demod.parityBits <<= 1; // make room for the parity bit
454 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
455 Demod.bitCount = 0;
456 Demod.shiftReg = 0;
457 }
458 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
459 } else { // no modulation in first half
460 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
461 Demod.bitCount++;
462 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
463 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
464 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
465 Demod.parityBits <<= 1; // make room for the new parity bit
466 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
467 Demod.bitCount = 0;
468 Demod.shiftReg = 0;
469 }
470 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
471 } else { // no modulation in both halves - End of communication
472 if (Demod.len > 0 || Demod.bitCount > 0) { // received something
473 if(Demod.bitCount > 0) { // if we decoded bits
474 Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
475 Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
476 // No parity bit, so just shift a 0
477 Demod.parityBits <<= 1;
478 }
479 return TRUE; // we are finished with decoding the raw data sequence
480 } else { // nothing received. Start over
481 DemodReset();
482 }
483 }
484 }
485
486 }
487
488 return FALSE; // not finished yet, need more data
489 }
490
491 //=============================================================================
492 // Finally, a `sniffer' for ISO 14443 Type A
493 // Both sides of communication!
494 //=============================================================================
495
496 //-----------------------------------------------------------------------------
497 // Record the sequence of commands sent by the reader to the tag, with
498 // triggering so that we start recording at the point that the tag is moved
499 // near the reader.
500 //-----------------------------------------------------------------------------
501 void RAMFUNC SnoopIso14443a(uint8_t param) {
502 // param:
503 // bit 0 - trigger from first card answer
504 // bit 1 - trigger from first reader 7-bit request
505
506 LEDsoff();
507 // init trace buffer
508 iso14a_clear_trace();
509 iso14a_set_tracing(TRUE);
510
511 // We won't start recording the frames that we acquire until we trigger;
512 // a good trigger condition to get started is probably when we see a
513 // response from the tag.
514 // triggered == FALSE -- to wait first for card
515 bool triggered = !(param & 0x03);
516
517 // The command (reader -> tag) that we're receiving.
518 // The length of a received command will in most cases be no more than 18 bytes.
519 // So 32 should be enough!
520 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
521 // The response (tag -> reader) that we're receiving.
522 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
523
524 // As we receive stuff, we copy it from receivedCmd or receivedResponse
525 // into trace, along with its length and other annotations.
526 //uint8_t *trace = (uint8_t *)BigBuf;
527
528 // The DMA buffer, used to stream samples from the FPGA
529 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
530 uint8_t *data = dmaBuf;
531 uint8_t previous_data = 0;
532 int maxDataLen = 0;
533 int dataLen = 0;
534 bool TagIsActive = FALSE;
535 bool ReaderIsActive = FALSE;
536
537 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
538
539 // Set up the demodulator for tag -> reader responses.
540 Demod.output = receivedResponse;
541
542 // Set up the demodulator for the reader -> tag commands
543 Uart.output = receivedCmd;
544
545 // Setup and start DMA.
546 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
547
548 // And now we loop, receiving samples.
549 for(uint32_t rsamples = 0; TRUE; ) {
550
551 if(BUTTON_PRESS()) {
552 DbpString("cancelled by button");
553 break;
554 }
555
556 LED_A_ON();
557 WDT_HIT();
558
559 int register readBufDataP = data - dmaBuf;
560 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
561 if (readBufDataP <= dmaBufDataP){
562 dataLen = dmaBufDataP - readBufDataP;
563 } else {
564 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
565 }
566 // test for length of buffer
567 if(dataLen > maxDataLen) {
568 maxDataLen = dataLen;
569 if(dataLen > 400) {
570 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
571 break;
572 }
573 }
574 if(dataLen < 1) continue;
575
576 // primary buffer was stopped( <-- we lost data!
577 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
578 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
579 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
580 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
581 }
582 // secondary buffer sets as primary, secondary buffer was stopped
583 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
584 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
585 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
586 }
587
588 LED_A_OFF();
589
590 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
591
592 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
593 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
594 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
595 LED_C_ON();
596
597 // check - if there is a short 7bit request from reader
598 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
599
600 if(triggered) {
601 if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
602 if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
603 }
604 /* And ready to receive another command. */
605 UartReset();
606 /* And also reset the demod code, which might have been */
607 /* false-triggered by the commands from the reader. */
608 DemodReset();
609 LED_B_OFF();
610 }
611 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
612 }
613
614 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
615 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
616 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
617 LED_B_ON();
618
619 if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
620 if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
621
622 if ((!triggered) && (param & 0x01)) triggered = TRUE;
623
624 // And ready to receive another response.
625 DemodReset();
626 LED_C_OFF();
627 }
628 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
629 }
630 }
631
632 previous_data = *data;
633 rsamples++;
634 data++;
635 if(data == dmaBuf + DMA_BUFFER_SIZE) {
636 data = dmaBuf;
637 }
638 } // main cycle
639
640 DbpString("COMMAND FINISHED");
641
642 FpgaDisableSscDma();
643 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
644 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
645 LEDsoff();
646 }
647
648 //-----------------------------------------------------------------------------
649 // Prepare tag messages
650 //-----------------------------------------------------------------------------
651 static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
652 {
653 int i;
654
655 ToSendReset();
656
657 // Correction bit, might be removed when not needed
658 ToSendStuffBit(0);
659 ToSendStuffBit(0);
660 ToSendStuffBit(0);
661 ToSendStuffBit(0);
662 ToSendStuffBit(1); // 1
663 ToSendStuffBit(0);
664 ToSendStuffBit(0);
665 ToSendStuffBit(0);
666
667 // Send startbit
668 ToSend[++ToSendMax] = SEC_D;
669 LastProxToAirDuration = 8 * ToSendMax - 4;
670
671 for(i = 0; i < len; i++) {
672 int j;
673 uint8_t b = cmd[i];
674
675 // Data bits
676 for(j = 0; j < 8; j++) {
677 if(b & 1) {
678 ToSend[++ToSendMax] = SEC_D;
679 } else {
680 ToSend[++ToSendMax] = SEC_E;
681 }
682 b >>= 1;
683 }
684
685 // Get the parity bit
686 if ((dwParity >> i) & 0x01) {
687 ToSend[++ToSendMax] = SEC_D;
688 LastProxToAirDuration = 8 * ToSendMax - 4;
689 } else {
690 ToSend[++ToSendMax] = SEC_E;
691 LastProxToAirDuration = 8 * ToSendMax;
692 }
693 }
694
695 // Send stopbit
696 ToSend[++ToSendMax] = SEC_F;
697
698 // Convert from last byte pos to length
699 ToSendMax++;
700 }
701
702 static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
703 CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
704 }
705
706
707 static void Code4bitAnswerAsTag(uint8_t cmd)
708 {
709 int i;
710
711 ToSendReset();
712
713 // Correction bit, might be removed when not needed
714 ToSendStuffBit(0);
715 ToSendStuffBit(0);
716 ToSendStuffBit(0);
717 ToSendStuffBit(0);
718 ToSendStuffBit(1); // 1
719 ToSendStuffBit(0);
720 ToSendStuffBit(0);
721 ToSendStuffBit(0);
722
723 // Send startbit
724 ToSend[++ToSendMax] = SEC_D;
725
726 uint8_t b = cmd;
727 for(i = 0; i < 4; i++) {
728 if(b & 1) {
729 ToSend[++ToSendMax] = SEC_D;
730 LastProxToAirDuration = 8 * ToSendMax - 4;
731 } else {
732 ToSend[++ToSendMax] = SEC_E;
733 LastProxToAirDuration = 8 * ToSendMax;
734 }
735 b >>= 1;
736 }
737
738 // Send stopbit
739 ToSend[++ToSendMax] = SEC_F;
740
741 // Convert from last byte pos to length
742 ToSendMax++;
743 }
744
745 //-----------------------------------------------------------------------------
746 // Wait for commands from reader
747 // Stop when button is pressed
748 // Or return TRUE when command is captured
749 //-----------------------------------------------------------------------------
750 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
751 {
752 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
753 // only, since we are receiving, not transmitting).
754 // Signal field is off with the appropriate LED
755 LED_D_OFF();
756 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
757
758 // Now run a `software UART' on the stream of incoming samples.
759 UartReset();
760 Uart.output = received;
761
762 // clear RXRDY:
763 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
764
765 for(;;) {
766 WDT_HIT();
767
768 if(BUTTON_PRESS()) return FALSE;
769
770 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
771 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
772 if(MillerDecoding(b, 0)) {
773 *len = Uart.len;
774 return TRUE;
775 }
776 }
777 }
778 }
779
780 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
781 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
782 int EmSend4bit(uint8_t resp);
783 int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
784 int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
785 int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
786 int EmSendCmd(uint8_t *resp, int respLen);
787 int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
788 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
789 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
790
791 static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
792
793 typedef struct {
794 uint8_t* response;
795 size_t response_n;
796 uint8_t* modulation;
797 size_t modulation_n;
798 uint32_t ProxToAirDuration;
799 } tag_response_info_t;
800
801 void reset_free_buffer() {
802 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
803 }
804
805 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
806 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
807 // This will need the following byte array for a modulation sequence
808 // 144 data bits (18 * 8)
809 // 18 parity bits
810 // 2 Start and stop
811 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
812 // 1 just for the case
813 // ----------- +
814 // 166 bytes, since every bit that needs to be send costs us a byte
815 //
816
817 // Prepare the tag modulation bits from the message
818 CodeIso14443aAsTag(response_info->response,response_info->response_n);
819
820 // Make sure we do not exceed the free buffer space
821 if (ToSendMax > max_buffer_size) {
822 Dbprintf("Out of memory, when modulating bits for tag answer:");
823 Dbhexdump(response_info->response_n,response_info->response,false);
824 return false;
825 }
826
827 // Copy the byte array, used for this modulation to the buffer position
828 memcpy(response_info->modulation,ToSend,ToSendMax);
829
830 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
831 response_info->modulation_n = ToSendMax;
832 response_info->ProxToAirDuration = LastProxToAirDuration;
833
834 return true;
835 }
836
837 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
838 // Retrieve and store the current buffer index
839 response_info->modulation = free_buffer_pointer;
840
841 // Determine the maximum size we can use from our buffer
842 size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
843
844 // Forward the prepare tag modulation function to the inner function
845 if (prepare_tag_modulation(response_info,max_buffer_size)) {
846 // Update the free buffer offset
847 free_buffer_pointer += ToSendMax;
848 return true;
849 } else {
850 return false;
851 }
852 }
853
854 //-----------------------------------------------------------------------------
855 // Main loop of simulated tag: receive commands from reader, decide what
856 // response to send, and send it.
857 //-----------------------------------------------------------------------------
858 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
859 {
860 // Enable and clear the trace
861 iso14a_clear_trace();
862 iso14a_set_tracing(TRUE);
863
864 uint8_t sak;
865
866 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
867 uint8_t response1[2];
868
869 switch (tagType) {
870 case 1: { // MIFARE Classic
871 // Says: I am Mifare 1k - original line
872 response1[0] = 0x04;
873 response1[1] = 0x00;
874 sak = 0x08;
875 } break;
876 case 2: { // MIFARE Ultralight
877 // Says: I am a stupid memory tag, no crypto
878 response1[0] = 0x04;
879 response1[1] = 0x00;
880 sak = 0x00;
881 } break;
882 case 3: { // MIFARE DESFire
883 // Says: I am a DESFire tag, ph33r me
884 response1[0] = 0x04;
885 response1[1] = 0x03;
886 sak = 0x20;
887 } break;
888 case 4: { // ISO/IEC 14443-4
889 // Says: I am a javacard (JCOP)
890 response1[0] = 0x04;
891 response1[1] = 0x00;
892 sak = 0x28;
893 } break;
894 default: {
895 Dbprintf("Error: unkown tagtype (%d)",tagType);
896 return;
897 } break;
898 }
899
900 // The second response contains the (mandatory) first 24 bits of the UID
901 uint8_t response2[5];
902
903 // Check if the uid uses the (optional) part
904 uint8_t response2a[5];
905 if (uid_2nd) {
906 response2[0] = 0x88;
907 num_to_bytes(uid_1st,3,response2+1);
908 num_to_bytes(uid_2nd,4,response2a);
909 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
910
911 // Configure the ATQA and SAK accordingly
912 response1[0] |= 0x40;
913 sak |= 0x04;
914 } else {
915 num_to_bytes(uid_1st,4,response2);
916 // Configure the ATQA and SAK accordingly
917 response1[0] &= 0xBF;
918 sak &= 0xFB;
919 }
920
921 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
922 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
923
924 // Prepare the mandatory SAK (for 4 and 7 byte UID)
925 uint8_t response3[3];
926 response3[0] = sak;
927 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
928
929 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
930 uint8_t response3a[3];
931 response3a[0] = sak & 0xFB;
932 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
933
934 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
935 uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
936 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
937
938 #define TAG_RESPONSE_COUNT 7
939 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
940 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
941 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
942 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
943 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
944 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
945 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
946 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
947 };
948
949 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
950 // Such a response is less time critical, so we can prepare them on the fly
951 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
952 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
953 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
954 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
955 tag_response_info_t dynamic_response_info = {
956 .response = dynamic_response_buffer,
957 .response_n = 0,
958 .modulation = dynamic_modulation_buffer,
959 .modulation_n = 0
960 };
961
962 // Reset the offset pointer of the free buffer
963 reset_free_buffer();
964
965 // Prepare the responses of the anticollision phase
966 // there will be not enough time to do this at the moment the reader sends it REQA
967 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
968 prepare_allocated_tag_modulation(&responses[i]);
969 }
970
971 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
972 int len = 0;
973
974 // To control where we are in the protocol
975 int order = 0;
976 int lastorder;
977
978 // Just to allow some checks
979 int happened = 0;
980 int happened2 = 0;
981 int cmdsRecvd = 0;
982
983 // We need to listen to the high-frequency, peak-detected path.
984 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
985
986 cmdsRecvd = 0;
987 tag_response_info_t* p_response;
988
989 LED_A_ON();
990 for(;;) {
991 // Clean receive command buffer
992
993 if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
994 DbpString("Button press");
995 break;
996 }
997
998 p_response = NULL;
999
1000 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1001 // Okay, look at the command now.
1002 lastorder = order;
1003 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1004 p_response = &responses[0]; order = 1;
1005 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1006 p_response = &responses[0]; order = 6;
1007 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1008 p_response = &responses[1]; order = 2;
1009 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1010 p_response = &responses[2]; order = 20;
1011 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1012 p_response = &responses[3]; order = 3;
1013 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1014 p_response = &responses[4]; order = 30;
1015 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1016 EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
1017 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1018 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1019 p_response = NULL;
1020 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1021 // DbpString("Reader requested we HALT!:");
1022 if (tracing) {
1023 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1024 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1025 }
1026 p_response = NULL;
1027 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1028 p_response = &responses[5]; order = 7;
1029 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1030 if (tagType == 1 || tagType == 2) { // RATS not supported
1031 EmSend4bit(CARD_NACK_NA);
1032 p_response = NULL;
1033 } else {
1034 p_response = &responses[6]; order = 70;
1035 }
1036 } else if (order == 7 && len == 8) { // Received authentication request
1037 if (tracing) {
1038 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1039 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1040 }
1041 uint32_t nr = bytes_to_num(receivedCmd,4);
1042 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1043 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1044 } else {
1045 // Check for ISO 14443A-4 compliant commands, look at left nibble
1046 switch (receivedCmd[0]) {
1047
1048 case 0x0B:
1049 case 0x0A: { // IBlock (command)
1050 dynamic_response_info.response[0] = receivedCmd[0];
1051 dynamic_response_info.response[1] = 0x00;
1052 dynamic_response_info.response[2] = 0x90;
1053 dynamic_response_info.response[3] = 0x00;
1054 dynamic_response_info.response_n = 4;
1055 } break;
1056
1057 case 0x1A:
1058 case 0x1B: { // Chaining command
1059 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1060 dynamic_response_info.response_n = 2;
1061 } break;
1062
1063 case 0xaa:
1064 case 0xbb: {
1065 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1066 dynamic_response_info.response_n = 2;
1067 } break;
1068
1069 case 0xBA: { //
1070 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1071 dynamic_response_info.response_n = 2;
1072 } break;
1073
1074 case 0xCA:
1075 case 0xC2: { // Readers sends deselect command
1076 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1077 dynamic_response_info.response_n = 2;
1078 } break;
1079
1080 default: {
1081 // Never seen this command before
1082 if (tracing) {
1083 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1084 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1085 }
1086 Dbprintf("Received unknown command (len=%d):",len);
1087 Dbhexdump(len,receivedCmd,false);
1088 // Do not respond
1089 dynamic_response_info.response_n = 0;
1090 } break;
1091 }
1092
1093 if (dynamic_response_info.response_n > 0) {
1094 // Copy the CID from the reader query
1095 dynamic_response_info.response[1] = receivedCmd[1];
1096
1097 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1098 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1099 dynamic_response_info.response_n += 2;
1100
1101 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1102 Dbprintf("Error preparing tag response");
1103 if (tracing) {
1104 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1105 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1106 }
1107 break;
1108 }
1109 p_response = &dynamic_response_info;
1110 }
1111 }
1112
1113 // Count number of wakeups received after a halt
1114 if(order == 6 && lastorder == 5) { happened++; }
1115
1116 // Count number of other messages after a halt
1117 if(order != 6 && lastorder == 5) { happened2++; }
1118
1119 if(cmdsRecvd > 999) {
1120 DbpString("1000 commands later...");
1121 break;
1122 }
1123 cmdsRecvd++;
1124
1125 if (p_response != NULL) {
1126 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1127 // do the tracing for the previous reader request and this tag answer:
1128 EmLogTrace(Uart.output,
1129 Uart.len,
1130 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1131 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1132 Uart.parityBits,
1133 p_response->response,
1134 p_response->response_n,
1135 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1136 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1137 SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
1138 }
1139
1140 if (!tracing) {
1141 Dbprintf("Trace Full. Simulation stopped.");
1142 break;
1143 }
1144 }
1145
1146 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1147 LED_A_OFF();
1148 }
1149
1150
1151 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1152 // of bits specified in the delay parameter.
1153 void PrepareDelayedTransfer(uint16_t delay)
1154 {
1155 uint8_t bitmask = 0;
1156 uint8_t bits_to_shift = 0;
1157 uint8_t bits_shifted = 0;
1158
1159 delay &= 0x07;
1160 if (delay) {
1161 for (uint16_t i = 0; i < delay; i++) {
1162 bitmask |= (0x01 << i);
1163 }
1164 ToSend[ToSendMax++] = 0x00;
1165 for (uint16_t i = 0; i < ToSendMax; i++) {
1166 bits_to_shift = ToSend[i] & bitmask;
1167 ToSend[i] = ToSend[i] >> delay;
1168 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1169 bits_shifted = bits_to_shift;
1170 }
1171 }
1172 }
1173
1174
1175 //-------------------------------------------------------------------------------------
1176 // Transmit the command (to the tag) that was placed in ToSend[].
1177 // Parameter timing:
1178 // if NULL: transfer at next possible time, taking into account
1179 // request guard time and frame delay time
1180 // if == 0: transfer immediately and return time of transfer
1181 // if != 0: delay transfer until time specified
1182 //-------------------------------------------------------------------------------------
1183 static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
1184 {
1185
1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1187
1188 uint32_t ThisTransferTime = 0;
1189
1190 if (timing) {
1191 if(*timing == 0) { // Measure time
1192 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1193 } else {
1194 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1195 }
1196 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1197 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1198 LastTimeProxToAirStart = *timing;
1199 } else {
1200 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1201 while(GetCountSspClk() < ThisTransferTime);
1202 LastTimeProxToAirStart = ThisTransferTime;
1203 }
1204
1205 // clear TXRDY
1206 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1207
1208 uint16_t c = 0;
1209 for(;;) {
1210 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1211 AT91C_BASE_SSC->SSC_THR = cmd[c];
1212 c++;
1213 if(c >= len) {
1214 break;
1215 }
1216 }
1217 }
1218
1219 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1220 }
1221
1222
1223 //-----------------------------------------------------------------------------
1224 // Prepare reader command (in bits, support short frames) to send to FPGA
1225 //-----------------------------------------------------------------------------
1226 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
1227 {
1228 int i, j;
1229 int last;
1230 uint8_t b;
1231
1232 ToSendReset();
1233
1234 // Start of Communication (Seq. Z)
1235 ToSend[++ToSendMax] = SEC_Z;
1236 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1237 last = 0;
1238
1239 size_t bytecount = nbytes(bits);
1240 // Generate send structure for the data bits
1241 for (i = 0; i < bytecount; i++) {
1242 // Get the current byte to send
1243 b = cmd[i];
1244 size_t bitsleft = MIN((bits-(i*8)),8);
1245
1246 for (j = 0; j < bitsleft; j++) {
1247 if (b & 1) {
1248 // Sequence X
1249 ToSend[++ToSendMax] = SEC_X;
1250 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1251 last = 1;
1252 } else {
1253 if (last == 0) {
1254 // Sequence Z
1255 ToSend[++ToSendMax] = SEC_Z;
1256 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1257 } else {
1258 // Sequence Y
1259 ToSend[++ToSendMax] = SEC_Y;
1260 last = 0;
1261 }
1262 }
1263 b >>= 1;
1264 }
1265
1266 // Only transmit (last) parity bit if we transmitted a complete byte
1267 if (j == 8) {
1268 // Get the parity bit
1269 if ((dwParity >> i) & 0x01) {
1270 // Sequence X
1271 ToSend[++ToSendMax] = SEC_X;
1272 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1273 last = 1;
1274 } else {
1275 if (last == 0) {
1276 // Sequence Z
1277 ToSend[++ToSendMax] = SEC_Z;
1278 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1279 } else {
1280 // Sequence Y
1281 ToSend[++ToSendMax] = SEC_Y;
1282 last = 0;
1283 }
1284 }
1285 }
1286 }
1287
1288 // End of Communication: Logic 0 followed by Sequence Y
1289 if (last == 0) {
1290 // Sequence Z
1291 ToSend[++ToSendMax] = SEC_Z;
1292 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1293 } else {
1294 // Sequence Y
1295 ToSend[++ToSendMax] = SEC_Y;
1296 last = 0;
1297 }
1298 ToSend[++ToSendMax] = SEC_Y;
1299
1300 // Convert to length of command:
1301 ToSendMax++;
1302 }
1303
1304 //-----------------------------------------------------------------------------
1305 // Prepare reader command to send to FPGA
1306 //-----------------------------------------------------------------------------
1307 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1308 {
1309 CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
1310 }
1311
1312 //-----------------------------------------------------------------------------
1313 // Wait for commands from reader
1314 // Stop when button is pressed (return 1) or field was gone (return 2)
1315 // Or return 0 when command is captured
1316 //-----------------------------------------------------------------------------
1317 static int EmGetCmd(uint8_t *received, int *len)
1318 {
1319 *len = 0;
1320
1321 uint32_t timer = 0, vtime = 0;
1322 int analogCnt = 0;
1323 int analogAVG = 0;
1324
1325 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1326 // only, since we are receiving, not transmitting).
1327 // Signal field is off with the appropriate LED
1328 LED_D_OFF();
1329 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1330
1331 // Set ADC to read field strength
1332 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1333 AT91C_BASE_ADC->ADC_MR =
1334 ADC_MODE_PRESCALE(32) |
1335 ADC_MODE_STARTUP_TIME(16) |
1336 ADC_MODE_SAMPLE_HOLD_TIME(8);
1337 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1338 // start ADC
1339 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1340
1341 // Now run a 'software UART' on the stream of incoming samples.
1342 UartReset();
1343 Uart.output = received;
1344
1345 // Clear RXRDY:
1346 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1347
1348 for(;;) {
1349 WDT_HIT();
1350
1351 if (BUTTON_PRESS()) return 1;
1352
1353 // test if the field exists
1354 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1355 analogCnt++;
1356 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1357 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1358 if (analogCnt >= 32) {
1359 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1360 vtime = GetTickCount();
1361 if (!timer) timer = vtime;
1362 // 50ms no field --> card to idle state
1363 if (vtime - timer > 50) return 2;
1364 } else
1365 if (timer) timer = 0;
1366 analogCnt = 0;
1367 analogAVG = 0;
1368 }
1369 }
1370
1371 // receive and test the miller decoding
1372 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1373 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1374 if(MillerDecoding(b, 0)) {
1375 *len = Uart.len;
1376 return 0;
1377 }
1378 }
1379
1380 }
1381 }
1382
1383
1384 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
1385 {
1386 uint8_t b;
1387 uint16_t i = 0;
1388 uint32_t ThisTransferTime;
1389
1390 // Modulate Manchester
1391 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1392
1393 // include correction bit if necessary
1394 if (Uart.parityBits & 0x01) {
1395 correctionNeeded = TRUE;
1396 }
1397 if(correctionNeeded) {
1398 // 1236, so correction bit needed
1399 i = 0;
1400 } else {
1401 i = 1;
1402 }
1403
1404 // clear receiving shift register and holding register
1405 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1406 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1407 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1408 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1409
1410 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1411 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1412 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1413 if (AT91C_BASE_SSC->SSC_RHR) break;
1414 }
1415
1416 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1417
1418 // Clear TXRDY:
1419 AT91C_BASE_SSC->SSC_THR = SEC_F;
1420
1421 // send cycle
1422 for(; i <= respLen; ) {
1423 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1424 AT91C_BASE_SSC->SSC_THR = resp[i++];
1425 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1426 }
1427
1428 if(BUTTON_PRESS()) {
1429 break;
1430 }
1431 }
1432
1433 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1434 for (i = 0; i < 2 ; ) {
1435 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1436 AT91C_BASE_SSC->SSC_THR = SEC_F;
1437 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1438 i++;
1439 }
1440 }
1441
1442 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1443
1444 return 0;
1445 }
1446
1447 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1448 Code4bitAnswerAsTag(resp);
1449 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1450 // do the tracing for the previous reader request and this tag answer:
1451 EmLogTrace(Uart.output,
1452 Uart.len,
1453 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1454 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1455 Uart.parityBits,
1456 &resp,
1457 1,
1458 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1459 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1460 SwapBits(GetParity(&resp, 1), 1));
1461 return res;
1462 }
1463
1464 int EmSend4bit(uint8_t resp){
1465 return EmSend4bitEx(resp, false);
1466 }
1467
1468 int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
1469 CodeIso14443aAsTagPar(resp, respLen, par);
1470 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1471 // do the tracing for the previous reader request and this tag answer:
1472 EmLogTrace(Uart.output,
1473 Uart.len,
1474 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1475 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1476 Uart.parityBits,
1477 resp,
1478 respLen,
1479 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1480 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1481 SwapBits(GetParity(resp, respLen), respLen));
1482 return res;
1483 }
1484
1485 int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
1486 return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
1487 }
1488
1489 int EmSendCmd(uint8_t *resp, int respLen){
1490 return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
1491 }
1492
1493 int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
1494 return EmSendCmdExPar(resp, respLen, false, par);
1495 }
1496
1497 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
1498 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
1499 {
1500 if (tracing) {
1501 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1502 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1503 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1504 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1505 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1506 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1507 reader_EndTime = tag_StartTime - exact_fdt;
1508 reader_StartTime = reader_EndTime - reader_modlen;
1509 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
1510 return FALSE;
1511 } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
1512 return FALSE;
1513 } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
1514 return FALSE;
1515 } else {
1516 return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
1517 }
1518 } else {
1519 return TRUE;
1520 }
1521 }
1522
1523 //-----------------------------------------------------------------------------
1524 // Wait a certain time for tag response
1525 // If a response is captured return TRUE
1526 // If it takes too long return FALSE
1527 //-----------------------------------------------------------------------------
1528 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
1529 {
1530 uint16_t c;
1531
1532 // Set FPGA mode to "reader listen mode", no modulation (listen
1533 // only, since we are receiving, not transmitting).
1534 // Signal field is on with the appropriate LED
1535 LED_D_ON();
1536 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1537
1538 // Now get the answer from the card
1539 DemodReset();
1540 Demod.output = receivedResponse;
1541
1542 // clear RXRDY:
1543 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1544
1545 c = 0;
1546 for(;;) {
1547 WDT_HIT();
1548
1549 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1550 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1551 if(ManchesterDecoding(b, offset, 0)) {
1552 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1553 return TRUE;
1554 } else if(c++ > iso14a_timeout) {
1555 return FALSE;
1556 }
1557 }
1558 }
1559 }
1560
1561 void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
1562 {
1563
1564 CodeIso14443aBitsAsReaderPar(frame,bits,par);
1565
1566 // Send command to tag
1567 TransmitFor14443a(ToSend, ToSendMax, timing);
1568 if(trigger)
1569 LED_A_ON();
1570
1571 // Log reader command in trace buffer
1572 if (tracing) {
1573 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1574 LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
1575 }
1576 }
1577
1578 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
1579 {
1580 ReaderTransmitBitsPar(frame,len*8,par, timing);
1581 }
1582
1583 void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
1584 {
1585 // Generate parity and redirect
1586 ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
1587 }
1588
1589 void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
1590 {
1591 // Generate parity and redirect
1592 ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
1593 }
1594
1595 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
1596 {
1597 if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
1598 if (tracing) {
1599 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1600 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1601 }
1602 return Demod.len;
1603 }
1604
1605 int ReaderReceive(uint8_t* receivedAnswer)
1606 {
1607 return ReaderReceiveOffset(receivedAnswer, 0);
1608 }
1609
1610 int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
1611 {
1612 if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
1613 if (tracing) {
1614 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1615 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1616 }
1617 *parptr = Demod.parityBits;
1618 return Demod.len;
1619 }
1620
1621 /* performs iso14443a anticollision procedure
1622 * fills the uid pointer unless NULL
1623 * fills resp_data unless NULL */
1624 int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
1625 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1626 uint8_t sel_all[] = { 0x93,0x20 };
1627 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1628 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1629 uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
1630 byte_t uid_resp[4];
1631 size_t uid_resp_len;
1632
1633 uint8_t sak = 0x04; // cascade uid
1634 int cascade_level = 0;
1635 int len;
1636
1637 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1638 ReaderTransmitBitsPar(wupa,7,0, NULL);
1639
1640 // Receive the ATQA
1641 if(!ReaderReceive(resp)) return 0;
1642 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1643
1644 if(p_hi14a_card) {
1645 memcpy(p_hi14a_card->atqa, resp, 2);
1646 p_hi14a_card->uidlen = 0;
1647 memset(p_hi14a_card->uid,0,10);
1648 }
1649
1650 // clear uid
1651 if (uid_ptr) {
1652 memset(uid_ptr,0,10);
1653 }
1654
1655 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1656 // which case we need to make a cascade 2 request and select - this is a long UID
1657 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1658 for(; sak & 0x04; cascade_level++) {
1659 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1660 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1661
1662 // SELECT_ALL
1663 ReaderTransmit(sel_all,sizeof(sel_all), NULL);
1664 if (!ReaderReceive(resp)) return 0;
1665
1666 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1667 memset(uid_resp, 0, 4);
1668 uint16_t uid_resp_bits = 0;
1669 uint16_t collision_answer_offset = 0;
1670 // anti-collision-loop:
1671 while (Demod.collisionPos) {
1672 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1673 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1674 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1675 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1676 }
1677 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1678 uid_resp_bits++;
1679 // construct anticollosion command:
1680 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1681 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1682 sel_uid[2+i] = uid_resp[i];
1683 }
1684 collision_answer_offset = uid_resp_bits%8;
1685 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1686 if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
1687 }
1688 // finally, add the last bits and BCC of the UID
1689 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1690 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1691 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1692 }
1693
1694 } else { // no collision, use the response to SELECT_ALL as current uid
1695 memcpy(uid_resp,resp,4);
1696 }
1697 uid_resp_len = 4;
1698 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1699
1700 // calculate crypto UID. Always use last 4 Bytes.
1701 if(cuid_ptr) {
1702 *cuid_ptr = bytes_to_num(uid_resp, 4);
1703 }
1704
1705 // Construct SELECT UID command
1706 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1707 memcpy(sel_uid+2,uid_resp,4); // the UID
1708 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1709 AppendCrc14443a(sel_uid,7); // calculate and add CRC
1710 ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
1711
1712 // Receive the SAK
1713 if (!ReaderReceive(resp)) return 0;
1714 sak = resp[0];
1715
1716 // Test if more parts of the uid are comming
1717 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1718 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1719 // http://www.nxp.com/documents/application_note/AN10927.pdf
1720 // This was earlier:
1721 //memcpy(uid_resp, uid_resp + 1, 3);
1722 // But memcpy should not be used for overlapping arrays,
1723 // and memmove appears to not be available in the arm build.
1724 // So this has been replaced with a for-loop:
1725 for(int xx = 0; xx < 3; xx++)
1726 uid_resp[xx] = uid_resp[xx+1];
1727 uid_resp_len = 3;
1728 }
1729
1730 if(uid_ptr) {
1731 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1732 }
1733
1734 if(p_hi14a_card) {
1735 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1736 p_hi14a_card->uidlen += uid_resp_len;
1737 }
1738 }
1739
1740 if(p_hi14a_card) {
1741 p_hi14a_card->sak = sak;
1742 p_hi14a_card->ats_len = 0;
1743 }
1744
1745 if( (sak & 0x20) == 0) {
1746 return 2; // non iso14443a compliant tag
1747 }
1748
1749 // Request for answer to select
1750 AppendCrc14443a(rats, 2);
1751 ReaderTransmit(rats, sizeof(rats), NULL);
1752
1753 if (!(len = ReaderReceive(resp))) return 0;
1754
1755 if(p_hi14a_card) {
1756 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1757 p_hi14a_card->ats_len = len;
1758 }
1759
1760 // reset the PCB block number
1761 iso14_pcb_blocknum = 0;
1762 return 1;
1763 }
1764
1765 void iso14443a_setup(uint8_t fpga_minor_mode) {
1766 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1767 // Set up the synchronous serial port
1768 FpgaSetupSsc();
1769 // connect Demodulated Signal to ADC:
1770 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1771
1772 // Signal field is on with the appropriate LED
1773 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1774 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1775 LED_D_ON();
1776 } else {
1777 LED_D_OFF();
1778 }
1779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1780
1781 // Start the timer
1782 StartCountSspClk();
1783
1784 DemodReset();
1785 UartReset();
1786 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1787 iso14a_set_timeout(1050); // 10ms default 10*105 =
1788 }
1789
1790 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1791 uint8_t real_cmd[cmd_len+4];
1792 real_cmd[0] = 0x0a; //I-Block
1793 // put block number into the PCB
1794 real_cmd[0] |= iso14_pcb_blocknum;
1795 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1796 memcpy(real_cmd+2, cmd, cmd_len);
1797 AppendCrc14443a(real_cmd,cmd_len+2);
1798
1799 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1800 size_t len = ReaderReceive(data);
1801 uint8_t * data_bytes = (uint8_t *) data;
1802 if (!len)
1803 return 0; //DATA LINK ERROR
1804 // if we received an I- or R(ACK)-Block with a block number equal to the
1805 // current block number, toggle the current block number
1806 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1807 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1808 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1809 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1810 {
1811 iso14_pcb_blocknum ^= 1;
1812 }
1813
1814 return len;
1815 }
1816
1817 //-----------------------------------------------------------------------------
1818 // Read an ISO 14443a tag. Send out commands and store answers.
1819 //
1820 //-----------------------------------------------------------------------------
1821 void ReaderIso14443a(UsbCommand *c)
1822 {
1823 iso14a_command_t param = c->arg[0];
1824 uint8_t *cmd = c->d.asBytes;
1825 size_t len = c->arg[1] & 0xFFFF;
1826 size_t lenbits = c->arg[1] >> 16;
1827 uint32_t arg0 = 0;
1828 byte_t buf[USB_CMD_DATA_SIZE];
1829
1830 if(param & ISO14A_CONNECT) {
1831 iso14a_clear_trace();
1832 }
1833
1834 iso14a_set_tracing(TRUE);
1835
1836 if(param & ISO14A_REQUEST_TRIGGER) {
1837 iso14a_set_trigger(TRUE);
1838 }
1839
1840 if(param & ISO14A_CONNECT) {
1841 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1842 if(!(param & ISO14A_NO_SELECT)) {
1843 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1844 arg0 = iso14443a_select_card(NULL,card,NULL);
1845 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1846 }
1847 }
1848
1849 if(param & ISO14A_SET_TIMEOUT) {
1850 iso14a_set_timeout(c->arg[2]);
1851 }
1852
1853 if(param & ISO14A_APDU) {
1854 arg0 = iso14_apdu(cmd, len, buf);
1855 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1856 }
1857
1858 if(param & ISO14A_RAW) {
1859 if(param & ISO14A_APPEND_CRC) {
1860 AppendCrc14443a(cmd,len);
1861 len += 2;
1862 lenbits += 16;
1863 }
1864 if(lenbits>0) {
1865
1866 ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
1867 } else {
1868 ReaderTransmit(cmd,len, NULL);
1869 }
1870 arg0 = ReaderReceive(buf);
1871 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1872 }
1873
1874 if(param & ISO14A_REQUEST_TRIGGER) {
1875 iso14a_set_trigger(FALSE);
1876 }
1877
1878 if(param & ISO14A_NO_DISCONNECT) {
1879 return;
1880 }
1881
1882 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1883 LEDsoff();
1884 }
1885
1886
1887 // Determine the distance between two nonces.
1888 // Assume that the difference is small, but we don't know which is first.
1889 // Therefore try in alternating directions.
1890 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1891
1892 uint16_t i;
1893 uint32_t nttmp1, nttmp2;
1894
1895 if (nt1 == nt2) return 0;
1896
1897 nttmp1 = nt1;
1898 nttmp2 = nt2;
1899
1900 for (i = 1; i < 32768; i++) {
1901 nttmp1 = prng_successor(nttmp1, 1);
1902 if (nttmp1 == nt2) return i;
1903 nttmp2 = prng_successor(nttmp2, 1);
1904 if (nttmp2 == nt1) return -i;
1905 }
1906
1907 return(-99999); // either nt1 or nt2 are invalid nonces
1908 }
1909
1910
1911 //-----------------------------------------------------------------------------
1912 // Recover several bits of the cypher stream. This implements (first stages of)
1913 // the algorithm described in "The Dark Side of Security by Obscurity and
1914 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1915 // (article by Nicolas T. Courtois, 2009)
1916 //-----------------------------------------------------------------------------
1917 void ReaderMifare(bool first_try)
1918 {
1919 // Mifare AUTH
1920 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1921 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1922 static uint8_t mf_nr_ar3;
1923
1924 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
1925
1926 iso14a_clear_trace();
1927 iso14a_set_tracing(TRUE);
1928
1929 byte_t nt_diff = 0;
1930 byte_t par = 0;
1931 //byte_t par_mask = 0xff;
1932 static byte_t par_low = 0;
1933 bool led_on = TRUE;
1934 uint8_t uid[10];
1935 uint32_t cuid;
1936
1937 uint32_t nt = 0;
1938 uint32_t previous_nt = 0;
1939 static uint32_t nt_attacked = 0;
1940 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1941 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
1942
1943 static uint32_t sync_time;
1944 static uint32_t sync_cycles;
1945 int catch_up_cycles = 0;
1946 int last_catch_up = 0;
1947 uint16_t consecutive_resyncs = 0;
1948 int isOK = 0;
1949
1950
1951
1952 if (first_try) {
1953 mf_nr_ar3 = 0;
1954 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
1955 sync_time = GetCountSspClk() & 0xfffffff8;
1956 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1957 nt_attacked = 0;
1958 nt = 0;
1959 par = 0;
1960 }
1961 else {
1962 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1963 // nt_attacked = prng_successor(nt_attacked, 1);
1964 mf_nr_ar3++;
1965 mf_nr_ar[3] = mf_nr_ar3;
1966 par = par_low;
1967 }
1968
1969 LED_A_ON();
1970 LED_B_OFF();
1971 LED_C_OFF();
1972
1973
1974 for(uint16_t i = 0; TRUE; i++) {
1975
1976 WDT_HIT();
1977
1978 // Test if the action was cancelled
1979 if(BUTTON_PRESS()) {
1980 break;
1981 }
1982
1983 LED_C_ON();
1984
1985 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1986 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1987 continue;
1988 }
1989
1990 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1991 catch_up_cycles = 0;
1992
1993 // if we missed the sync time already, advance to the next nonce repeat
1994 while(GetCountSspClk() > sync_time) {
1995 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1996 }
1997
1998 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1999 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2000
2001 // Receive the (4 Byte) "random" nonce
2002 if (!ReaderReceive(receivedAnswer)) {
2003 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2004 continue;
2005 }
2006
2007 previous_nt = nt;
2008 nt = bytes_to_num(receivedAnswer, 4);
2009
2010 // Transmit reader nonce with fake par
2011 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2012
2013 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2014 int nt_distance = dist_nt(previous_nt, nt);
2015 if (nt_distance == 0) {
2016 nt_attacked = nt;
2017 }
2018 else {
2019 if (nt_distance == -99999) { // invalid nonce received, try again
2020 continue;
2021 }
2022 sync_cycles = (sync_cycles - nt_distance);
2023 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2024 continue;
2025 }
2026 }
2027
2028 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2029 catch_up_cycles = -dist_nt(nt_attacked, nt);
2030 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2031 catch_up_cycles = 0;
2032 continue;
2033 }
2034 if (catch_up_cycles == last_catch_up) {
2035 consecutive_resyncs++;
2036 }
2037 else {
2038 last_catch_up = catch_up_cycles;
2039 consecutive_resyncs = 0;
2040 }
2041 if (consecutive_resyncs < 3) {
2042 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2043 }
2044 else {
2045 sync_cycles = sync_cycles + catch_up_cycles;
2046 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2047 }
2048 continue;
2049 }
2050
2051 consecutive_resyncs = 0;
2052
2053 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2054 if (ReaderReceive(receivedAnswer))
2055 {
2056 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2057
2058 if (nt_diff == 0)
2059 {
2060 par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2061 }
2062
2063 led_on = !led_on;
2064 if(led_on) LED_B_ON(); else LED_B_OFF();
2065
2066 par_list[nt_diff] = par;
2067 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2068
2069 // Test if the information is complete
2070 if (nt_diff == 0x07) {
2071 isOK = 1;
2072 break;
2073 }
2074
2075 nt_diff = (nt_diff + 1) & 0x07;
2076 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2077 par = par_low;
2078 } else {
2079 if (nt_diff == 0 && first_try)
2080 {
2081 par++;
2082 } else {
2083 par = (((par >> 3) + 1) << 3) | par_low;
2084 }
2085 }
2086 }
2087
2088
2089 mf_nr_ar[3] &= 0x1F;
2090
2091 byte_t buf[28];
2092 memcpy(buf + 0, uid, 4);
2093 num_to_bytes(nt, 4, buf + 4);
2094 memcpy(buf + 8, par_list, 8);
2095 memcpy(buf + 16, ks_list, 8);
2096 memcpy(buf + 24, mf_nr_ar, 4);
2097
2098 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2099
2100 // Thats it...
2101 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2102 LEDsoff();
2103
2104 iso14a_set_tracing(FALSE);
2105 }
2106
2107 /**
2108 *MIFARE 1K simulate.
2109 *
2110 *@param flags :
2111 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2112 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2113 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2114 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2115 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2116 */
2117 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2118 {
2119 int cardSTATE = MFEMUL_NOFIELD;
2120 int _7BUID = 0;
2121 int vHf = 0; // in mV
2122 int res;
2123 uint32_t selTimer = 0;
2124 uint32_t authTimer = 0;
2125 uint32_t par = 0;
2126 int len = 0;
2127 uint8_t cardWRBL = 0;
2128 uint8_t cardAUTHSC = 0;
2129 uint8_t cardAUTHKEY = 0xff; // no authentication
2130 uint32_t cardRr = 0;
2131 uint32_t cuid = 0;
2132 //uint32_t rn_enc = 0;
2133 uint32_t ans = 0;
2134 uint32_t cardINTREG = 0;
2135 uint8_t cardINTBLOCK = 0;
2136 struct Crypto1State mpcs = {0, 0};
2137 struct Crypto1State *pcs;
2138 pcs = &mpcs;
2139 uint32_t numReads = 0;//Counts numer of times reader read a block
2140 uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
2141 uint8_t *response = eml_get_bigbufptr_sendbuf();
2142
2143 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2144 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2145 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2146 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2147 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2148
2149 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2150 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2151
2152 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2153 // This can be used in a reader-only attack.
2154 // (it can also be retrieved via 'hf 14a list', but hey...
2155 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2156 uint8_t ar_nr_collected = 0;
2157
2158 // clear trace
2159 iso14a_clear_trace();
2160 iso14a_set_tracing(TRUE);
2161
2162 // Authenticate response - nonce
2163 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2164
2165 //-- Determine the UID
2166 // Can be set from emulator memory, incoming data
2167 // and can be 7 or 4 bytes long
2168 if (flags & FLAG_4B_UID_IN_DATA)
2169 {
2170 // 4B uid comes from data-portion of packet
2171 memcpy(rUIDBCC1,datain,4);
2172 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2173
2174 } else if (flags & FLAG_7B_UID_IN_DATA) {
2175 // 7B uid comes from data-portion of packet
2176 memcpy(&rUIDBCC1[1],datain,3);
2177 memcpy(rUIDBCC2, datain+3, 4);
2178 _7BUID = true;
2179 } else {
2180 // get UID from emul memory
2181 emlGetMemBt(receivedCmd, 7, 1);
2182 _7BUID = !(receivedCmd[0] == 0x00);
2183 if (!_7BUID) { // ---------- 4BUID
2184 emlGetMemBt(rUIDBCC1, 0, 4);
2185 } else { // ---------- 7BUID
2186 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2187 emlGetMemBt(rUIDBCC2, 3, 4);
2188 }
2189 }
2190
2191 /*
2192 * Regardless of what method was used to set the UID, set fifth byte and modify
2193 * the ATQA for 4 or 7-byte UID
2194 */
2195 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2196 if (_7BUID) {
2197 rATQA[0] = 0x44;
2198 rUIDBCC1[0] = 0x88;
2199 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2200 }
2201
2202 // We need to listen to the high-frequency, peak-detected path.
2203 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2204
2205
2206 if (MF_DBGLEVEL >= 1) {
2207 if (!_7BUID) {
2208 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
2209 } else {
2210 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
2211 }
2212 }
2213
2214 bool finished = FALSE;
2215 while (!BUTTON_PRESS() && !finished) {
2216 WDT_HIT();
2217
2218 // find reader field
2219 // Vref = 3300mV, and an 10:1 voltage divider on the input
2220 // can measure voltages up to 33000 mV
2221 if (cardSTATE == MFEMUL_NOFIELD) {
2222 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2223 if (vHf > MF_MINFIELDV) {
2224 cardSTATE_TO_IDLE();
2225 LED_A_ON();
2226 }
2227 }
2228 if(cardSTATE == MFEMUL_NOFIELD) continue;
2229
2230 //Now, get data
2231
2232 res = EmGetCmd(receivedCmd, &len);
2233 if (res == 2) { //Field is off!
2234 cardSTATE = MFEMUL_NOFIELD;
2235 LEDsoff();
2236 continue;
2237 } else if (res == 1) {
2238 break; //return value 1 means button press
2239 }
2240
2241 // REQ or WUP request in ANY state and WUP in HALTED state
2242 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2243 selTimer = GetTickCount();
2244 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2245 cardSTATE = MFEMUL_SELECT1;
2246
2247 // init crypto block
2248 LED_B_OFF();
2249 LED_C_OFF();
2250 crypto1_destroy(pcs);
2251 cardAUTHKEY = 0xff;
2252 continue;
2253 }
2254
2255 switch (cardSTATE) {
2256 case MFEMUL_NOFIELD:
2257 case MFEMUL_HALTED:
2258 case MFEMUL_IDLE:{
2259 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2260 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2261 break;
2262 }
2263 case MFEMUL_SELECT1:{
2264 // select all
2265 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2266 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2267 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2268 break;
2269 }
2270
2271 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2272 {
2273 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2274 }
2275 // select card
2276 if (len == 9 &&
2277 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2278 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2279 cuid = bytes_to_num(rUIDBCC1, 4);
2280 if (!_7BUID) {
2281 cardSTATE = MFEMUL_WORK;
2282 LED_B_ON();
2283 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2284 break;
2285 } else {
2286 cardSTATE = MFEMUL_SELECT2;
2287 }
2288 }
2289 break;
2290 }
2291 case MFEMUL_AUTH1:{
2292 if( len != 8)
2293 {
2294 cardSTATE_TO_IDLE();
2295 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2296 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2297 break;
2298 }
2299 uint32_t ar = bytes_to_num(receivedCmd, 4);
2300 uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
2301
2302 //Collect AR/NR
2303 if(ar_nr_collected < 2){
2304 if(ar_nr_responses[2] != ar)
2305 {// Avoid duplicates... probably not necessary, ar should vary.
2306 ar_nr_responses[ar_nr_collected*4] = cuid;
2307 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2308 ar_nr_responses[ar_nr_collected*4+2] = ar;
2309 ar_nr_responses[ar_nr_collected*4+3] = nr;
2310 ar_nr_collected++;
2311 }
2312 }
2313
2314 // --- crypto
2315 crypto1_word(pcs, ar , 1);
2316 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2317
2318 // test if auth OK
2319 if (cardRr != prng_successor(nonce, 64)){
2320 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
2321 // Shouldn't we respond anything here?
2322 // Right now, we don't nack or anything, which causes the
2323 // reader to do a WUPA after a while. /Martin
2324 // -- which is the correct response. /piwi
2325 cardSTATE_TO_IDLE();
2326 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2327 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2328 break;
2329 }
2330
2331 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2332
2333 num_to_bytes(ans, 4, rAUTH_AT);
2334 // --- crypto
2335 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2336 LED_C_ON();
2337 cardSTATE = MFEMUL_WORK;
2338 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2339 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2340 GetTickCount() - authTimer);
2341 break;
2342 }
2343 case MFEMUL_SELECT2:{
2344 if (!len) {
2345 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2346 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2347 break;
2348 }
2349 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2350 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2351 break;
2352 }
2353
2354 // select 2 card
2355 if (len == 9 &&
2356 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2357 EmSendCmd(rSAK, sizeof(rSAK));
2358 cuid = bytes_to_num(rUIDBCC2, 4);
2359 cardSTATE = MFEMUL_WORK;
2360 LED_B_ON();
2361 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2362 break;
2363 }
2364
2365 // i guess there is a command). go into the work state.
2366 if (len != 4) {
2367 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2368 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2369 break;
2370 }
2371 cardSTATE = MFEMUL_WORK;
2372 //goto lbWORK;
2373 //intentional fall-through to the next case-stmt
2374 }
2375
2376 case MFEMUL_WORK:{
2377 if (len == 0) {
2378 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2379 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2380 break;
2381 }
2382
2383 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2384
2385 if(encrypted_data) {
2386 // decrypt seqence
2387 mf_crypto1_decrypt(pcs, receivedCmd, len);
2388 }
2389
2390 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2391 authTimer = GetTickCount();
2392 cardAUTHSC = receivedCmd[1] / 4; // received block num
2393 cardAUTHKEY = receivedCmd[0] - 0x60;
2394 crypto1_destroy(pcs);//Added by martin
2395 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2396
2397 if (!encrypted_data) { // first authentication
2398 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2399
2400 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2401 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2402 } else { // nested authentication
2403 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2404 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2405 num_to_bytes(ans, 4, rAUTH_AT);
2406 }
2407 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2408 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2409 cardSTATE = MFEMUL_AUTH1;
2410 break;
2411 }
2412
2413 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2414 // BUT... ACK --> NACK
2415 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2416 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2417 break;
2418 }
2419
2420 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2421 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2422 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2423 break;
2424 }
2425
2426 if(len != 4) {
2427 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2428 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2429 break;
2430 }
2431
2432 if(receivedCmd[0] == 0x30 // read block
2433 || receivedCmd[0] == 0xA0 // write block
2434 || receivedCmd[0] == 0xC0 // inc
2435 || receivedCmd[0] == 0xC1 // dec
2436 || receivedCmd[0] == 0xC2 // restore
2437 || receivedCmd[0] == 0xB0) { // transfer
2438 if (receivedCmd[1] >= 16 * 4) {
2439 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2440 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2441 break;
2442 }
2443
2444 if (receivedCmd[1] / 4 != cardAUTHSC) {
2445 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2446 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2447 break;
2448 }
2449 }
2450 // read block
2451 if (receivedCmd[0] == 0x30) {
2452 if (MF_DBGLEVEL >= 4) {
2453 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2454 }
2455 emlGetMem(response, receivedCmd[1], 1);
2456 AppendCrc14443a(response, 16);
2457 mf_crypto1_encrypt(pcs, response, 18, &par);
2458 EmSendCmdPar(response, 18, par);
2459 numReads++;
2460 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2461 Dbprintf("%d reads done, exiting", numReads);
2462 finished = true;
2463 }
2464 break;
2465 }
2466 // write block
2467 if (receivedCmd[0] == 0xA0) {
2468 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2469 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2470 cardSTATE = MFEMUL_WRITEBL2;
2471 cardWRBL = receivedCmd[1];
2472 break;
2473 }
2474 // increment, decrement, restore
2475 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2476 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2477 if (emlCheckValBl(receivedCmd[1])) {
2478 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2479 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2480 break;
2481 }
2482 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2483 if (receivedCmd[0] == 0xC1)
2484 cardSTATE = MFEMUL_INTREG_INC;
2485 if (receivedCmd[0] == 0xC0)
2486 cardSTATE = MFEMUL_INTREG_DEC;
2487 if (receivedCmd[0] == 0xC2)
2488 cardSTATE = MFEMUL_INTREG_REST;
2489 cardWRBL = receivedCmd[1];
2490 break;
2491 }
2492 // transfer
2493 if (receivedCmd[0] == 0xB0) {
2494 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2495 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2496 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2497 else
2498 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2499 break;
2500 }
2501 // halt
2502 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2503 LED_B_OFF();
2504 LED_C_OFF();
2505 cardSTATE = MFEMUL_HALTED;
2506 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2507 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2508 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2509 break;
2510 }
2511 // RATS
2512 if (receivedCmd[0] == 0xe0) {//RATS
2513 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2514 break;
2515 }
2516 // command not allowed
2517 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2518 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2519 break;
2520 }
2521 case MFEMUL_WRITEBL2:{
2522 if (len == 18){
2523 mf_crypto1_decrypt(pcs, receivedCmd, len);
2524 emlSetMem(receivedCmd, cardWRBL, 1);
2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2526 cardSTATE = MFEMUL_WORK;
2527 } else {
2528 cardSTATE_TO_IDLE();
2529 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2530 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2531 }
2532 break;
2533 }
2534
2535 case MFEMUL_INTREG_INC:{
2536 mf_crypto1_decrypt(pcs, receivedCmd, len);
2537 memcpy(&ans, receivedCmd, 4);
2538 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2539 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2540 cardSTATE_TO_IDLE();
2541 break;
2542 }
2543 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2544 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2545 cardINTREG = cardINTREG + ans;
2546 cardSTATE = MFEMUL_WORK;
2547 break;
2548 }
2549 case MFEMUL_INTREG_DEC:{
2550 mf_crypto1_decrypt(pcs, receivedCmd, len);
2551 memcpy(&ans, receivedCmd, 4);
2552 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2553 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2554 cardSTATE_TO_IDLE();
2555 break;
2556 }
2557 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2558 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2559 cardINTREG = cardINTREG - ans;
2560 cardSTATE = MFEMUL_WORK;
2561 break;
2562 }
2563 case MFEMUL_INTREG_REST:{
2564 mf_crypto1_decrypt(pcs, receivedCmd, len);
2565 memcpy(&ans, receivedCmd, 4);
2566 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2567 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2568 cardSTATE_TO_IDLE();
2569 break;
2570 }
2571 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2572 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2573 cardSTATE = MFEMUL_WORK;
2574 break;
2575 }
2576 }
2577 }
2578
2579 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2580 LEDsoff();
2581
2582 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2583 {
2584 //May just aswell send the collected ar_nr in the response aswell
2585 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2586 }
2587
2588 if(flags & FLAG_NR_AR_ATTACK)
2589 {
2590 if(ar_nr_collected > 1) {
2591 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2592 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2593 ar_nr_responses[0], // UID
2594 ar_nr_responses[1], //NT
2595 ar_nr_responses[2], //AR1
2596 ar_nr_responses[3], //NR1
2597 ar_nr_responses[6], //AR2
2598 ar_nr_responses[7] //NR2
2599 );
2600 } else {
2601 Dbprintf("Failed to obtain two AR/NR pairs!");
2602 if(ar_nr_collected >0) {
2603 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2604 ar_nr_responses[0], // UID
2605 ar_nr_responses[1], //NT
2606 ar_nr_responses[2], //AR1
2607 ar_nr_responses[3] //NR1
2608 );
2609 }
2610 }
2611 }
2612 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
2613 }
2614
2615
2616
2617 //-----------------------------------------------------------------------------
2618 // MIFARE sniffer.
2619 //
2620 //-----------------------------------------------------------------------------
2621 void RAMFUNC SniffMifare(uint8_t param) {
2622 // param:
2623 // bit 0 - trigger from first card answer
2624 // bit 1 - trigger from first reader 7-bit request
2625
2626 // C(red) A(yellow) B(green)
2627 LEDsoff();
2628 // init trace buffer
2629 iso14a_clear_trace();
2630 iso14a_set_tracing(TRUE);
2631
2632 // The command (reader -> tag) that we're receiving.
2633 // The length of a received command will in most cases be no more than 18 bytes.
2634 // So 32 should be enough!
2635 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
2636 // The response (tag -> reader) that we're receiving.
2637 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
2638
2639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2640 // into trace, along with its length and other annotations.
2641 //uint8_t *trace = (uint8_t *)BigBuf;
2642
2643 // The DMA buffer, used to stream samples from the FPGA
2644 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2645 uint8_t *data = dmaBuf;
2646 uint8_t previous_data = 0;
2647 int maxDataLen = 0;
2648 int dataLen = 0;
2649 bool ReaderIsActive = FALSE;
2650 bool TagIsActive = FALSE;
2651
2652 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2653
2654 // Set up the demodulator for tag -> reader responses.
2655 Demod.output = receivedResponse;
2656
2657 // Set up the demodulator for the reader -> tag commands
2658 Uart.output = receivedCmd;
2659
2660 // Setup for the DMA.
2661 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2662
2663 LED_D_OFF();
2664
2665 // init sniffer
2666 MfSniffInit();
2667
2668 // And now we loop, receiving samples.
2669 for(uint32_t sniffCounter = 0; TRUE; ) {
2670
2671 if(BUTTON_PRESS()) {
2672 DbpString("cancelled by button");
2673 break;
2674 }
2675
2676 LED_A_ON();
2677 WDT_HIT();
2678
2679 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2680 // check if a transaction is completed (timeout after 2000ms).
2681 // if yes, stop the DMA transfer and send what we have so far to the client
2682 if (MfSniffSend(2000)) {
2683 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2684 sniffCounter = 0;
2685 data = dmaBuf;
2686 maxDataLen = 0;
2687 ReaderIsActive = FALSE;
2688 TagIsActive = FALSE;
2689 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2690 }
2691 }
2692
2693 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2694 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2695 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2696 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2697 } else {
2698 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2699 }
2700 // test for length of buffer
2701 if(dataLen > maxDataLen) { // we are more behind than ever...
2702 maxDataLen = dataLen;
2703 if(dataLen > 400) {
2704 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2705 break;
2706 }
2707 }
2708 if(dataLen < 1) continue;
2709
2710 // primary buffer was stopped ( <-- we lost data!
2711 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2712 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2713 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2714 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2715 }
2716 // secondary buffer sets as primary, secondary buffer was stopped
2717 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2718 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2719 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2720 }
2721
2722 LED_A_OFF();
2723
2724 if (sniffCounter & 0x01) {
2725
2726 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2727 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2728 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2729 LED_C_INV();
2730 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
2731
2732 /* And ready to receive another command. */
2733 UartReset();
2734
2735 /* And also reset the demod code */
2736 DemodReset();
2737 }
2738 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2739 }
2740
2741 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2742 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2743 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2744 LED_C_INV();
2745
2746 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
2747
2748 // And ready to receive another response.
2749 DemodReset();
2750 }
2751 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2752 }
2753 }
2754
2755 previous_data = *data;
2756 sniffCounter++;
2757 data++;
2758 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2759 data = dmaBuf;
2760 }
2761
2762 } // main cycle
2763
2764 DbpString("COMMAND FINISHED");
2765
2766 FpgaDisableSscDma();
2767 MfSniffEnd();
2768
2769 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2770 LEDsoff();
2771 }
Impressum, Datenschutz