]> cvs.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
7398f1b2d74b5ec586a3b3a11ff0f0e6b25cf344
[proxmark3-svn] / common / lfdemod.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2014
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdlib.h>
12 #include "lfdemod.h"
13 #include <string.h>
14
15 //to allow debug print calls when used not on device
16 void dummy(char *fmt, ...){}
17
18 #ifndef ON_DEVICE
19 #include "ui.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #define prnt PrintAndLog
23 #else
24 uint8_t g_debugMode=0;
25 #define prnt dummy
26 #endif
27
28 uint8_t justNoise(uint8_t *BitStream, size_t size)
29 {
30 static const uint8_t THRESHOLD = 123;
31 //test samples are not just noise
32 uint8_t justNoise1 = 1;
33 for(size_t idx=0; idx < size && justNoise1 ;idx++){
34 justNoise1 = BitStream[idx] < THRESHOLD;
35 }
36 return justNoise1;
37 }
38
39 //by marshmellow
40 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
41 int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
42 {
43 *high=0;
44 *low=255;
45 // get high and low thresholds
46 for (size_t i=0; i < size; i++){
47 if (BitStream[i] > *high) *high = BitStream[i];
48 if (BitStream[i] < *low) *low = BitStream[i];
49 }
50 if (*high < 123) return -1; // just noise
51 *high = ((*high-128)*fuzzHi + 12800)/100;
52 *low = ((*low-128)*fuzzLo + 12800)/100;
53 return 1;
54 }
55
56 // by marshmellow
57 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
58 // returns 1 if passed
59 uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
60 {
61 uint8_t ans = 0;
62 for (uint8_t i = 0; i < bitLen; i++){
63 ans ^= ((bits >> i) & 1);
64 }
65 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
66 return (ans == pType);
67 }
68
69 // by marshmellow
70 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
71 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
72 size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
73 {
74 uint32_t parityWd = 0;
75 size_t j = 0, bitCnt = 0;
76 for (int word = 0; word < (bLen); word+=pLen){
77 for (int bit=0; bit < pLen; bit++){
78 parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
79 BitStream[j++] = (BitStream[startIdx+word+bit]);
80 }
81 j--; // overwrite parity with next data
82 // if parity fails then return 0
83 if (pType == 2) { // then marker bit which should be a 1
84 if (!BitStream[j]) return 0;
85 } else {
86 if (parityTest(parityWd, pLen, pType) == 0) return 0;
87 }
88 bitCnt+=(pLen-1);
89 parityWd = 0;
90 }
91 // if we got here then all the parities passed
92 //return ID start index and size
93 return bitCnt;
94 }
95
96 // by marshmellow
97 // takes a array of binary values, length of bits per parity (includes parity bit),
98 // Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
99 size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
100 {
101 uint32_t parityWd = 0;
102 size_t j = 0, bitCnt = 0;
103 for (int word = 0; word < sourceLen; word+=pLen-1) {
104 for (int bit=0; bit < pLen-1; bit++){
105 parityWd = (parityWd << 1) | BitSource[word+bit];
106 dest[j++] = (BitSource[word+bit]);
107 }
108 // if parity fails then return 0
109 if (pType == 2) { // then marker bit which should be a 1
110 dest[j++]=1;
111 } else {
112 dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
113 }
114 bitCnt += pLen;
115 parityWd = 0;
116 }
117 // if we got here then all the parities passed
118 //return ID start index and size
119 return bitCnt;
120 }
121
122 uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
123 {
124 uint32_t num = 0;
125 for(int i = 0 ; i < numbits ; i++)
126 {
127 num = (num << 1) | (*src);
128 src++;
129 }
130 return num;
131 }
132
133 //least significant bit first
134 uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
135 {
136 uint32_t num = 0;
137 for(int i = 0 ; i < numbits ; i++)
138 {
139 num = (num << 1) | *(src + (numbits-(i+1)));
140 }
141 return num;
142 }
143
144 //by marshmellow
145 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
146 uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
147 {
148 uint8_t foundCnt=0;
149 for (int idx=0; idx < *size - pLen; idx++){
150 if (memcmp(BitStream+idx, preamble, pLen) == 0){
151 //first index found
152 foundCnt++;
153 if (foundCnt == 1){
154 *startIdx = idx;
155 }
156 if (foundCnt == 2){
157 *size = idx - *startIdx;
158 return 1;
159 }
160 }
161 }
162 return 0;
163 }
164
165 //by marshmellow
166 //takes 1s and 0s and searches for EM410x format - output EM ID
167 uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
168 {
169 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
170 // otherwise could be a void with no arguments
171 //set defaults
172 uint32_t i = 0;
173 if (BitStream[1]>1) return 0; //allow only 1s and 0s
174
175 // 111111111 bit pattern represent start of frame
176 // include 0 in front to help get start pos
177 uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
178 uint32_t idx = 0;
179 uint32_t parityBits = 0;
180 uint8_t errChk = 0;
181 uint8_t FmtLen = 10;
182 *startIdx = 0;
183 errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
184 if (errChk == 0 || *size < 64) return 0;
185 if (*size > 64) FmtLen = 22;
186 *startIdx += 1; //get rid of 0 from preamble
187 idx = *startIdx + 9;
188 for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
189 parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
190 //check even parity - quit if failed
191 if (parityTest(parityBits, 5, 0) == 0) return 0;
192 //set uint64 with ID from BitStream
193 for (uint8_t ii=0; ii<4; ii++){
194 *hi = (*hi << 1) | (*lo >> 63);
195 *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
196 }
197 }
198 if (errChk != 0) return 1;
199 //skip last 5 bit parity test for simplicity.
200 // *size = 64 | 128;
201 return 0;
202 }
203
204 //by marshmellow
205 //demodulates strong heavily clipped samples
206 int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
207 {
208 size_t bitCnt=0, smplCnt=0, errCnt=0;
209 uint8_t waveHigh = 0;
210 for (size_t i=0; i < *size; i++){
211 if (BinStream[i] >= high && waveHigh){
212 smplCnt++;
213 } else if (BinStream[i] <= low && !waveHigh){
214 smplCnt++;
215 } else { //transition
216 if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
217 if (smplCnt > clk-(clk/4)-1) { //full clock
218 if (smplCnt > clk + (clk/4)+1) { //too many samples
219 errCnt++;
220 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
221 BinStream[bitCnt++]=7;
222 } else if (waveHigh) {
223 BinStream[bitCnt++] = invert;
224 BinStream[bitCnt++] = invert;
225 } else if (!waveHigh) {
226 BinStream[bitCnt++] = invert ^ 1;
227 BinStream[bitCnt++] = invert ^ 1;
228 }
229 waveHigh ^= 1;
230 smplCnt = 0;
231 } else if (smplCnt > (clk/2) - (clk/4)-1) {
232 if (waveHigh) {
233 BinStream[bitCnt++] = invert;
234 } else if (!waveHigh) {
235 BinStream[bitCnt++] = invert ^ 1;
236 }
237 waveHigh ^= 1;
238 smplCnt = 0;
239 } else if (!bitCnt) {
240 //first bit
241 waveHigh = (BinStream[i] >= high);
242 smplCnt = 1;
243 } else {
244 smplCnt++;
245 //transition bit oops
246 }
247 } else { //haven't hit new high or new low yet
248 smplCnt++;
249 }
250 }
251 }
252 *size = bitCnt;
253 return errCnt;
254 }
255
256 //by marshmellow
257 void askAmp(uint8_t *BitStream, size_t size)
258 {
259 for(size_t i = 1; i<size; i++){
260 if (BitStream[i]-BitStream[i-1]>=30) //large jump up
261 BitStream[i]=127;
262 else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
263 BitStream[i]=-127;
264 }
265 return;
266 }
267
268 //by marshmellow
269 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
270 int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
271 {
272 if (*size==0) return -1;
273 int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
274 if (*clk==0 || start < 0) return -3;
275 if (*invert != 1) *invert = 0;
276 if (amp==1) askAmp(BinStream, *size);
277 if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d", *clk, start);
278
279 uint8_t initLoopMax = 255;
280 if (initLoopMax > *size) initLoopMax = *size;
281 // Detect high and lows
282 //25% clip in case highs and lows aren't clipped [marshmellow]
283 int high, low;
284 if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
285 return -2; //just noise
286
287 size_t errCnt = 0;
288 // if clean clipped waves detected run alternate demod
289 if (DetectCleanAskWave(BinStream, *size, high, low)) {
290 if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
291 errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
292 if (askType) //askman
293 return manrawdecode(BinStream, size, 0);
294 else //askraw
295 return errCnt;
296 }
297 if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
298
299 int lastBit; //set first clock check - can go negative
300 size_t i, bitnum = 0; //output counter
301 uint8_t midBit = 0;
302 uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
303 if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
304 size_t MaxBits = 3072; //max bits to collect
305 lastBit = start - *clk;
306
307 for (i = start; i < *size; ++i) {
308 if (i-lastBit >= *clk-tol){
309 if (BinStream[i] >= high) {
310 BinStream[bitnum++] = *invert;
311 } else if (BinStream[i] <= low) {
312 BinStream[bitnum++] = *invert ^ 1;
313 } else if (i-lastBit >= *clk+tol) {
314 if (bitnum > 0) {
315 if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
316 BinStream[bitnum++]=7;
317 errCnt++;
318 }
319 } else { //in tolerance - looking for peak
320 continue;
321 }
322 midBit = 0;
323 lastBit += *clk;
324 } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
325 if (BinStream[i] >= high) {
326 BinStream[bitnum++] = *invert;
327 } else if (BinStream[i] <= low) {
328 BinStream[bitnum++] = *invert ^ 1;
329 } else if (i-lastBit >= *clk/2+tol) {
330 BinStream[bitnum] = BinStream[bitnum-1];
331 bitnum++;
332 } else { //in tolerance - looking for peak
333 continue;
334 }
335 midBit = 1;
336 }
337 if (bitnum >= MaxBits) break;
338 }
339 *size = bitnum;
340 return errCnt;
341 }
342
343 //by marshmellow
344 //take 10 and 01 and manchester decode
345 //run through 2 times and take least errCnt
346 int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
347 {
348 uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
349 size_t i, ii;
350 uint16_t bestErr = 1000, bestRun = 0;
351 if (*size < 16) return -1;
352 //find correct start position [alignment]
353 for (ii=0;ii<2;++ii){
354 for (i=ii; i<*size-3; i+=2)
355 if (BitStream[i]==BitStream[i+1])
356 errCnt++;
357
358 if (bestErr>errCnt){
359 bestErr=errCnt;
360 bestRun=ii;
361 }
362 errCnt=0;
363 }
364 //decode
365 for (i=bestRun; i < *size-3; i+=2){
366 if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
367 BitStream[bitnum++]=invert;
368 } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
369 BitStream[bitnum++]=invert^1;
370 } else {
371 BitStream[bitnum++]=7;
372 }
373 if(bitnum>MaxBits) break;
374 }
375 *size=bitnum;
376 return bestErr;
377 }
378
379 uint32_t manchesterEncode2Bytes(uint16_t datain) {
380 uint32_t output = 0;
381 uint8_t curBit = 0;
382 for (uint8_t i=0; i<16; i++) {
383 curBit = (datain >> (15-i) & 1);
384 output |= (1<<(((15-i)*2)+curBit));
385 }
386 return output;
387 }
388
389 //by marshmellow
390 //encode binary data into binary manchester
391 int ManchesterEncode(uint8_t *BitStream, size_t size)
392 {
393 size_t modIdx=20000, i=0;
394 if (size>modIdx) return -1;
395 for (size_t idx=0; idx < size; idx++){
396 BitStream[idx+modIdx++] = BitStream[idx];
397 BitStream[idx+modIdx++] = BitStream[idx]^1;
398 }
399 for (; i<(size*2); i++){
400 BitStream[i] = BitStream[i+20000];
401 }
402 return i;
403 }
404
405 //by marshmellow
406 //take 01 or 10 = 1 and 11 or 00 = 0
407 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
408 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
409 int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
410 {
411 uint16_t bitnum = 0;
412 uint16_t errCnt = 0;
413 size_t i = offset;
414 uint16_t MaxBits=512;
415 //if not enough samples - error
416 if (*size < 51) return -1;
417 //check for phase change faults - skip one sample if faulty
418 uint8_t offsetA = 1, offsetB = 1;
419 for (; i<48; i+=2){
420 if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
421 if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
422 }
423 if (!offsetA && offsetB) offset++;
424 for (i=offset; i<*size-3; i+=2){
425 //check for phase error
426 if (BitStream[i+1]==BitStream[i+2]) {
427 BitStream[bitnum++]=7;
428 errCnt++;
429 }
430 if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
431 BitStream[bitnum++]=1^invert;
432 } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
433 BitStream[bitnum++]=invert;
434 } else {
435 BitStream[bitnum++]=7;
436 errCnt++;
437 }
438 if(bitnum>MaxBits) break;
439 }
440 *size=bitnum;
441 return errCnt;
442 }
443
444 // by marshmellow
445 // demod gProxIIDemod
446 // error returns as -x
447 // success returns start position in BitStream
448 // BitStream must contain previously askrawdemod and biphasedemoded data
449 int gProxII_Demod(uint8_t BitStream[], size_t *size)
450 {
451 size_t startIdx=0;
452 uint8_t preamble[] = {1,1,1,1,1,0};
453
454 uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
455 if (errChk == 0) return -3; //preamble not found
456 if (*size != 96) return -2; //should have found 96 bits
457 //check first 6 spacer bits to verify format
458 if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
459 //confirmed proper separator bits found
460 //return start position
461 return (int) startIdx;
462 }
463 return -5;
464 }
465
466 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
467 size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
468 {
469 size_t last_transition = 0;
470 size_t idx = 1;
471 //uint32_t maxVal=0;
472 if (fchigh==0) fchigh=10;
473 if (fclow==0) fclow=8;
474 //set the threshold close to 0 (graph) or 128 std to avoid static
475 uint8_t threshold_value = 123;
476 size_t preLastSample = 0;
477 size_t LastSample = 0;
478 size_t currSample = 0;
479 // sync to first lo-hi transition, and threshold
480
481 // Need to threshold first sample
482 // skip 160 samples to allow antenna/samples to settle
483 if(dest[160] < threshold_value) dest[0] = 0;
484 else dest[0] = 1;
485
486 size_t numBits = 0;
487 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
488 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
489 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
490 for(idx = 161; idx < size-20; idx++) {
491 // threshold current value
492
493 if (dest[idx] < threshold_value) dest[idx] = 0;
494 else dest[idx] = 1;
495
496 // Check for 0->1 transition
497 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
498 preLastSample = LastSample;
499 LastSample = currSample;
500 currSample = idx-last_transition;
501 if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3)
502 //do nothing with extra garbage
503 } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5
504 if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){
505 dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves
506 }
507 dest[numBits++]=1;
508
509 } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage
510 //do nothing with beginning garbage
511 } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
512 dest[numBits++]=1;
513 } else { //9+ = 10 sample waves
514 dest[numBits++]=0;
515 }
516 last_transition = idx;
517 }
518 }
519 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
520 }
521
522 //translate 11111100000 to 10
523 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
524 uint8_t invert, uint8_t fchigh, uint8_t fclow)
525 {
526 uint8_t lastval=dest[0];
527 size_t idx=0;
528 size_t numBits=0;
529 uint32_t n=1;
530 for( idx=1; idx < size; idx++) {
531 n++;
532 if (dest[idx]==lastval) continue;
533
534 //if lastval was 1, we have a 1->0 crossing
535 if (dest[idx-1]==1) {
536 n = (n * fclow + rfLen/2) / rfLen;
537 } else {// 0->1 crossing
538 n = (n * fchigh + rfLen/2) / rfLen;
539 }
540 if (n == 0) n = 1;
541
542 memset(dest+numBits, dest[idx-1]^invert , n);
543 numBits += n;
544 n=0;
545 lastval=dest[idx];
546 }//end for
547 // if valid extra bits at the end were all the same frequency - add them in
548 if (n > rfLen/fchigh) {
549 if (dest[idx-2]==1) {
550 n = (n * fclow + rfLen/2) / rfLen;
551 } else {
552 n = (n * fchigh + rfLen/2) / rfLen;
553 }
554 memset(dest+numBits, dest[idx-1]^invert , n);
555 numBits += n;
556 }
557 return numBits;
558 }
559
560 //by marshmellow (from holiman's base)
561 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
562 int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
563 {
564 // FSK demodulator
565 size = fsk_wave_demod(dest, size, fchigh, fclow);
566 size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
567 return size;
568 }
569
570 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
571 int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
572 {
573 if (justNoise(dest, *size)) return -1;
574
575 size_t numStart=0, size2=*size, startIdx=0;
576 // FSK demodulator
577 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
578 if (*size < 96*2) return -2;
579 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
580 uint8_t preamble[] = {0,0,0,1,1,1,0,1};
581 // find bitstring in array
582 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
583 if (errChk == 0) return -3; //preamble not found
584
585 numStart = startIdx + sizeof(preamble);
586 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
587 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
588 if (dest[idx] == dest[idx+1]){
589 return -4; //not manchester data
590 }
591 *hi2 = (*hi2<<1)|(*hi>>31);
592 *hi = (*hi<<1)|(*lo>>31);
593 //Then, shift in a 0 or one into low
594 if (dest[idx] && !dest[idx+1]) // 1 0
595 *lo=(*lo<<1)|1;
596 else // 0 1
597 *lo=(*lo<<1)|0;
598 }
599 return (int)startIdx;
600 }
601
602 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
603 int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
604 {
605 if (justNoise(dest, *size)) return -1;
606
607 size_t numStart=0, size2=*size, startIdx=0;
608 // FSK demodulator
609 *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
610 if (*size < 96) return -2;
611
612 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
613 uint8_t preamble[] = {0,0,0,0,1,1,1,1};
614
615 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
616 if (errChk == 0) return -3; //preamble not found
617
618 numStart = startIdx + sizeof(preamble);
619 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
620 for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
621 if (dest[idx] == dest[idx+1])
622 return -4; //not manchester data
623 *hi2 = (*hi2<<1)|(*hi>>31);
624 *hi = (*hi<<1)|(*lo>>31);
625 //Then, shift in a 0 or one into low
626 if (dest[idx] && !dest[idx+1]) // 1 0
627 *lo=(*lo<<1)|1;
628 else // 0 1
629 *lo=(*lo<<1)|0;
630 }
631 return (int)startIdx;
632 }
633
634 int IOdemodFSK(uint8_t *dest, size_t size)
635 {
636 if (justNoise(dest, size)) return -1;
637 //make sure buffer has data
638 if (size < 66*64) return -2;
639 // FSK demodulator
640 size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
641 if (size < 65) return -3; //did we get a good demod?
642 //Index map
643 //0 10 20 30 40 50 60
644 //| | | | | | |
645 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
646 //-----------------------------------------------------------------------------
647 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
648 //
649 //XSF(version)facility:codeone+codetwo
650 //Handle the data
651 size_t startIdx = 0;
652 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
653 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
654 if (errChk == 0) return -4; //preamble not found
655
656 if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
657 //confirmed proper separator bits found
658 //return start position
659 return (int) startIdx;
660 }
661 return -5;
662 }
663
664 // by marshmellow
665 // find viking preamble 0xF200 in already demoded data
666 int VikingDemod_AM(uint8_t *dest, size_t *size) {
667 //make sure buffer has data
668 if (*size < 64*2) return -2;
669
670 size_t startIdx = 0;
671 uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
672 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
673 if (errChk == 0) return -4; //preamble not found
674 uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
675 ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8)
676 ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
677 if ( checkCalc != 0xA8 ) return -5;
678 if (*size != 64) return -6;
679 //return start position
680 return (int) startIdx;
681 }
682
683 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
684 // BitStream must contain previously askrawdemod and biphasedemoded data
685 int FDXBdemodBI(uint8_t *dest, size_t *size)
686 {
687 //make sure buffer has enough data
688 if (*size < 128) return -1;
689
690 size_t startIdx = 0;
691 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
692
693 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
694 if (errChk == 0) return -2; //preamble not found
695 return (int)startIdx;
696 }
697
698 // by marshmellow
699 // FSK Demod then try to locate an AWID ID
700 int AWIDdemodFSK(uint8_t *dest, size_t *size)
701 {
702 //make sure buffer has enough data
703 if (*size < 96*50) return -1;
704
705 if (justNoise(dest, *size)) return -2;
706
707 // FSK demodulator
708 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
709 if (*size < 96) return -3; //did we get a good demod?
710
711 uint8_t preamble[] = {0,0,0,0,0,0,0,1};
712 size_t startIdx = 0;
713 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
714 if (errChk == 0) return -4; //preamble not found
715 if (*size != 96) return -5;
716 return (int)startIdx;
717 }
718
719 // by marshmellow
720 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
721 int PyramiddemodFSK(uint8_t *dest, size_t *size)
722 {
723 //make sure buffer has data
724 if (*size < 128*50) return -5;
725
726 //test samples are not just noise
727 if (justNoise(dest, *size)) return -1;
728
729 // FSK demodulator
730 *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
731 if (*size < 128) return -2; //did we get a good demod?
732
733 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
734 size_t startIdx = 0;
735 uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
736 if (errChk == 0) return -4; //preamble not found
737 if (*size != 128) return -3;
738 return (int)startIdx;
739 }
740
741 // by marshmellow
742 // to detect a wave that has heavily clipped (clean) samples
743 uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
744 {
745 bool allArePeaks = true;
746 uint16_t cntPeaks=0;
747 size_t loopEnd = 512+160;
748 if (loopEnd > size) loopEnd = size;
749 for (size_t i=160; i<loopEnd; i++){
750 if (dest[i]>low && dest[i]<high)
751 allArePeaks = false;
752 else
753 cntPeaks++;
754 }
755 if (!allArePeaks){
756 if (cntPeaks > 300) return true;
757 }
758 return allArePeaks;
759 }
760 // by marshmellow
761 // to help detect clocks on heavily clipped samples
762 // based on count of low to low
763 int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
764 {
765 uint8_t fndClk[] = {8,16,32,40,50,64,128};
766 size_t startwave;
767 size_t i = 100;
768 size_t minClk = 255;
769 // get to first full low to prime loop and skip incomplete first pulse
770 while ((dest[i] < high) && (i < size))
771 ++i;
772 while ((dest[i] > low) && (i < size))
773 ++i;
774
775 // loop through all samples
776 while (i < size) {
777 // measure from low to low
778 while ((dest[i] > low) && (i < size))
779 ++i;
780 startwave= i;
781 while ((dest[i] < high) && (i < size))
782 ++i;
783 while ((dest[i] > low) && (i < size))
784 ++i;
785 //get minimum measured distance
786 if (i-startwave < minClk && i < size)
787 minClk = i - startwave;
788 }
789 // set clock
790 if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
791 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
792 if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
793 return fndClk[clkCnt];
794 }
795 return 0;
796 }
797
798 // by marshmellow
799 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
800 // maybe somehow adjust peak trimming value based on samples to fix?
801 // return start index of best starting position for that clock and return clock (by reference)
802 int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
803 {
804 size_t i=1;
805 uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
806 uint8_t clkEnd = 9;
807 uint8_t loopCnt = 255; //don't need to loop through entire array...
808 if (size <= loopCnt+60) return -1; //not enough samples
809 size -= 60; //sometimes there is a strange end wave - filter out this....
810 //if we already have a valid clock
811 uint8_t clockFnd=0;
812 for (;i<clkEnd;++i)
813 if (clk[i] == *clock) clockFnd = i;
814 //clock found but continue to find best startpos
815
816 //get high and low peak
817 int peak, low;
818 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
819
820 //test for large clean peaks
821 if (!clockFnd){
822 if (DetectCleanAskWave(dest, size, peak, low)==1){
823 int ans = DetectStrongAskClock(dest, size, peak, low);
824 if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
825 for (i=clkEnd-1; i>0; i--){
826 if (clk[i] == ans) {
827 *clock = ans;
828 //clockFnd = i;
829 return 0; // for strong waves i don't use the 'best start position' yet...
830 //break; //clock found but continue to find best startpos [not yet]
831 }
832 }
833 }
834 }
835 uint8_t ii;
836 uint8_t clkCnt, tol = 0;
837 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
838 uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
839 size_t errCnt = 0;
840 size_t arrLoc, loopEnd;
841
842 if (clockFnd>0) {
843 clkCnt = clockFnd;
844 clkEnd = clockFnd+1;
845 }
846 else clkCnt=1;
847
848 //test each valid clock from smallest to greatest to see which lines up
849 for(; clkCnt < clkEnd; clkCnt++){
850 if (clk[clkCnt] <= 32){
851 tol=1;
852 }else{
853 tol=0;
854 }
855 //if no errors allowed - keep start within the first clock
856 if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
857 bestErr[clkCnt]=1000;
858 //try lining up the peaks by moving starting point (try first few clocks)
859 for (ii=0; ii < loopCnt; ii++){
860 if (dest[ii] < peak && dest[ii] > low) continue;
861
862 errCnt=0;
863 // now that we have the first one lined up test rest of wave array
864 loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
865 for (i=0; i < loopEnd; ++i){
866 arrLoc = ii + (i * clk[clkCnt]);
867 if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
868 }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
869 }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
870 }else{ //error no peak detected
871 errCnt++;
872 }
873 }
874 //if we found no errors then we can stop here and a low clock (common clocks)
875 // this is correct one - return this clock
876 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
877 if(errCnt==0 && clkCnt<7) {
878 if (!clockFnd) *clock = clk[clkCnt];
879 return ii;
880 }
881 //if we found errors see if it is lowest so far and save it as best run
882 if(errCnt<bestErr[clkCnt]){
883 bestErr[clkCnt]=errCnt;
884 bestStart[clkCnt]=ii;
885 }
886 }
887 }
888 uint8_t iii;
889 uint8_t best=0;
890 for (iii=1; iii<clkEnd; ++iii){
891 if (bestErr[iii] < bestErr[best]){
892 if (bestErr[iii] == 0) bestErr[iii]=1;
893 // current best bit to error ratio vs new bit to error ratio
894 if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
895 best = iii;
896 }
897 }
898 if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
899 }
900 if (!clockFnd) *clock = clk[best];
901 return bestStart[best];
902 }
903
904 //by marshmellow
905 //detect psk clock by reading each phase shift
906 // a phase shift is determined by measuring the sample length of each wave
907 int DetectPSKClock(uint8_t dest[], size_t size, int clock)
908 {
909 uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
910 uint16_t loopCnt = 4096; //don't need to loop through entire array...
911 if (size == 0) return 0;
912 if (size<loopCnt) loopCnt = size-20;
913
914 //if we already have a valid clock quit
915 size_t i=1;
916 for (; i < 8; ++i)
917 if (clk[i] == clock) return clock;
918
919 size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
920 uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
921 uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
922 uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
923 uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
924 fc = countFC(dest, size, 0);
925 if (fc!=2 && fc!=4 && fc!=8) return -1;
926 if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
927
928 //find first full wave
929 for (i=160; i<loopCnt; i++){
930 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
931 if (waveStart == 0) {
932 waveStart = i+1;
933 //prnt("DEBUG: waveStart: %d",waveStart);
934 } else {
935 waveEnd = i+1;
936 //prnt("DEBUG: waveEnd: %d",waveEnd);
937 waveLenCnt = waveEnd-waveStart;
938 if (waveLenCnt > fc){
939 firstFullWave = waveStart;
940 fullWaveLen=waveLenCnt;
941 break;
942 }
943 waveStart=0;
944 }
945 }
946 }
947 if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
948
949 //test each valid clock from greatest to smallest to see which lines up
950 for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
951 lastClkBit = firstFullWave; //set end of wave as clock align
952 waveStart = 0;
953 errCnt=0;
954 peakcnt=0;
955 if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
956
957 for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
958 //top edge of wave = start of new wave
959 if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
960 if (waveStart == 0) {
961 waveStart = i+1;
962 waveLenCnt=0;
963 } else { //waveEnd
964 waveEnd = i+1;
965 waveLenCnt = waveEnd-waveStart;
966 if (waveLenCnt > fc){
967 //if this wave is a phase shift
968 if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
969 if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
970 peakcnt++;
971 lastClkBit+=clk[clkCnt];
972 } else if (i<lastClkBit+8){
973 //noise after a phase shift - ignore
974 } else { //phase shift before supposed to based on clock
975 errCnt++;
976 }
977 } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
978 lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
979 }
980 waveStart=i+1;
981 }
982 }
983 }
984 if (errCnt == 0){
985 return clk[clkCnt];
986 }
987 if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
988 if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
989 }
990 //all tested with errors
991 //return the highest clk with the most peaks found
992 uint8_t best=7;
993 for (i=7; i>=1; i--){
994 if (peaksdet[i] > peaksdet[best]) {
995 best = i;
996 }
997 if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
998 }
999 return clk[best];
1000 }
1001
1002 int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
1003 //find shortest transition from high to low
1004 size_t i = 0;
1005 size_t transition1 = 0;
1006 int lowestTransition = 255;
1007 bool lastWasHigh = false;
1008
1009 //find first valid beginning of a high or low wave
1010 while ((dest[i] >= peak || dest[i] <= low) && (i < size))
1011 ++i;
1012 while ((dest[i] < peak && dest[i] > low) && (i < size))
1013 ++i;
1014 lastWasHigh = (dest[i] >= peak);
1015
1016 if (i==size) return 0;
1017 transition1 = i;
1018
1019 for (;i < size; i++) {
1020 if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
1021 lastWasHigh = (dest[i] >= peak);
1022 if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
1023 transition1 = i;
1024 }
1025 }
1026 if (lowestTransition == 255) lowestTransition = 0;
1027 if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
1028 return lowestTransition;
1029 }
1030
1031 //by marshmellow
1032 //detect nrz clock by reading #peaks vs no peaks(or errors)
1033 int DetectNRZClock(uint8_t dest[], size_t size, int clock)
1034 {
1035 size_t i=0;
1036 uint8_t clk[]={8,16,32,40,50,64,100,128,255};
1037 size_t loopCnt = 4096; //don't need to loop through entire array...
1038 if (size == 0) return 0;
1039 if (size<loopCnt) loopCnt = size-20;
1040 //if we already have a valid clock quit
1041 for (; i < 8; ++i)
1042 if (clk[i] == clock) return clock;
1043
1044 //get high and low peak
1045 int peak, low;
1046 if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
1047
1048 int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low);
1049 size_t ii;
1050 uint8_t clkCnt;
1051 uint8_t tol = 0;
1052 uint16_t smplCnt = 0;
1053 int16_t peakcnt = 0;
1054 int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
1055 uint16_t maxPeak = 255;
1056 bool firstpeak = false;
1057 //test for large clipped waves
1058 for (i=0; i<loopCnt; i++){
1059 if (dest[i] >= peak || dest[i] <= low){
1060 if (!firstpeak) continue;
1061 smplCnt++;
1062 } else {
1063 firstpeak=true;
1064 if (smplCnt > 6 ){
1065 if (maxPeak > smplCnt){
1066 maxPeak = smplCnt;
1067 //prnt("maxPk: %d",maxPeak);
1068 }
1069 peakcnt++;
1070 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1071 smplCnt=0;
1072 }
1073 }
1074 }
1075 bool errBitHigh = 0;
1076 bool bitHigh = 0;
1077 uint8_t ignoreCnt = 0;
1078 uint8_t ignoreWindow = 4;
1079 bool lastPeakHigh = 0;
1080 int lastBit = 0;
1081 peakcnt=0;
1082 //test each valid clock from smallest to greatest to see which lines up
1083 for(clkCnt=0; clkCnt < 8; ++clkCnt){
1084 //ignore clocks smaller than smallest peak
1085 if (clk[clkCnt] < maxPeak - (clk[clkCnt]/4)) continue;
1086 //try lining up the peaks by moving starting point (try first 256)
1087 for (ii=20; ii < loopCnt; ++ii){
1088 if ((dest[ii] >= peak) || (dest[ii] <= low)){
1089 peakcnt = 0;
1090 bitHigh = false;
1091 ignoreCnt = 0;
1092 lastBit = ii-clk[clkCnt];
1093 //loop through to see if this start location works
1094 for (i = ii; i < size-20; ++i) {
1095 //if we are at a clock bit
1096 if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
1097 //test high/low
1098 if (dest[i] >= peak || dest[i] <= low) {
1099 //if same peak don't count it
1100 if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
1101 peakcnt++;
1102 }
1103 lastPeakHigh = (dest[i] >= peak);
1104 bitHigh = true;
1105 errBitHigh = false;
1106 ignoreCnt = ignoreWindow;
1107 lastBit += clk[clkCnt];
1108 } else if (i == lastBit + clk[clkCnt] + tol) {
1109 lastBit += clk[clkCnt];
1110 }
1111 //else if not a clock bit and no peaks
1112 } else if (dest[i] < peak && dest[i] > low){
1113 if (ignoreCnt==0){
1114 bitHigh=false;
1115 if (errBitHigh==true) peakcnt--;
1116 errBitHigh=false;
1117 } else {
1118 ignoreCnt--;
1119 }
1120 // else if not a clock bit but we have a peak
1121 } else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
1122 //error bar found no clock...
1123 errBitHigh=true;
1124 }
1125 }
1126 if(peakcnt>peaksdet[clkCnt]) {
1127 peaksdet[clkCnt]=peakcnt;
1128 }
1129 }
1130 }
1131 }
1132 int iii=7;
1133 uint8_t best=0;
1134 for (iii=7; iii > 0; iii--){
1135 if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
1136 if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
1137 best = iii;
1138 }
1139 } else if (peaksdet[iii] > peaksdet[best]){
1140 best = iii;
1141 }
1142 if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
1143 }
1144
1145 return clk[best];
1146 }
1147
1148 // by marshmellow
1149 // convert psk1 demod to psk2 demod
1150 // only transition waves are 1s
1151 void psk1TOpsk2(uint8_t *BitStream, size_t size)
1152 {
1153 size_t i=1;
1154 uint8_t lastBit=BitStream[0];
1155 for (; i<size; i++){
1156 if (BitStream[i]==7){
1157 //ignore errors
1158 } else if (lastBit!=BitStream[i]){
1159 lastBit=BitStream[i];
1160 BitStream[i]=1;
1161 } else {
1162 BitStream[i]=0;
1163 }
1164 }
1165 return;
1166 }
1167
1168 // by marshmellow
1169 // convert psk2 demod to psk1 demod
1170 // from only transition waves are 1s to phase shifts change bit
1171 void psk2TOpsk1(uint8_t *BitStream, size_t size)
1172 {
1173 uint8_t phase=0;
1174 for (size_t i=0; i<size; i++){
1175 if (BitStream[i]==1){
1176 phase ^=1;
1177 }
1178 BitStream[i]=phase;
1179 }
1180 return;
1181 }
1182
1183 // redesigned by marshmellow adjusted from existing decode functions
1184 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1185 int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
1186 {
1187 //26 bit 40134 format (don't know other formats)
1188 uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
1189 uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
1190 size_t startidx = 0;
1191 if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
1192 // if didn't find preamble try again inverting
1193 if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
1194 *invert ^= 1;
1195 }
1196 if (*size != 64 && *size != 224) return -2;
1197 if (*invert==1)
1198 for (size_t i = startidx; i < *size; i++)
1199 bitStream[i] ^= 1;
1200
1201 return (int) startidx;
1202 }
1203
1204 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1205 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1206 int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert){
1207 if (justNoise(dest, *size)) return -1;
1208 *clk = DetectNRZClock(dest, *size, *clk);
1209 if (*clk==0) return -2;
1210 size_t i, gLen = 4096;
1211 if (gLen>*size) gLen = *size-20;
1212 int high, low;
1213 if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1214
1215 uint8_t bit=0;
1216 //convert wave samples to 1's and 0's
1217 for(i=20; i < *size-20; i++){
1218 if (dest[i] >= high) bit = 1;
1219 if (dest[i] <= low) bit = 0;
1220 dest[i] = bit;
1221 }
1222 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1223 size_t lastBit = 0;
1224 size_t numBits = 0;
1225 for(i=21; i < *size-20; i++) {
1226 //if transition detected or large number of same bits - store the passed bits
1227 if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
1228 memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
1229 numBits += (i - lastBit + (*clk/4)) / *clk;
1230 lastBit = i-1;
1231 }
1232 }
1233 *size = numBits;
1234 return 0;
1235 }
1236
1237 //by marshmellow
1238 //detects the bit clock for FSK given the high and low Field Clocks
1239 uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
1240 {
1241 uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
1242 uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1243 uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1244 uint8_t rfLensFnd = 0;
1245 uint8_t lastFCcnt = 0;
1246 uint16_t fcCounter = 0;
1247 uint16_t rfCounter = 0;
1248 uint8_t firstBitFnd = 0;
1249 size_t i;
1250 if (size == 0) return 0;
1251
1252 uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1253 rfLensFnd=0;
1254 fcCounter=0;
1255 rfCounter=0;
1256 firstBitFnd=0;
1257 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1258 // prime i to first peak / up transition
1259 for (i = 160; i < size-20; i++)
1260 if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
1261 break;
1262
1263 for (; i < size-20; i++){
1264 fcCounter++;
1265 rfCounter++;
1266
1267 if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
1268 continue;
1269 // else new peak
1270 // if we got less than the small fc + tolerance then set it to the small fc
1271 if (fcCounter < fcLow+fcTol)
1272 fcCounter = fcLow;
1273 else //set it to the large fc
1274 fcCounter = fcHigh;
1275
1276 //look for bit clock (rf/xx)
1277 if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
1278 //not the same size as the last wave - start of new bit sequence
1279 if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
1280 for (int ii=0; ii<15; ii++){
1281 if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
1282 rfCnts[ii]++;
1283 rfCounter = 0;
1284 break;
1285 }
1286 }
1287 if (rfCounter > 0 && rfLensFnd < 15){
1288 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1289 rfCnts[rfLensFnd]++;
1290 rfLens[rfLensFnd++] = rfCounter;
1291 }
1292 } else {
1293 firstBitFnd++;
1294 }
1295 rfCounter=0;
1296 lastFCcnt=fcCounter;
1297 }
1298 fcCounter=0;
1299 }
1300 uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
1301
1302 for (i=0; i<15; i++){
1303 //get highest 2 RF values (might need to get more values to compare or compare all?)
1304 if (rfCnts[i]>rfCnts[rfHighest]){
1305 rfHighest3=rfHighest2;
1306 rfHighest2=rfHighest;
1307 rfHighest=i;
1308 } else if(rfCnts[i]>rfCnts[rfHighest2]){
1309 rfHighest3=rfHighest2;
1310 rfHighest2=i;
1311 } else if(rfCnts[i]>rfCnts[rfHighest3]){
1312 rfHighest3=i;
1313 }
1314 if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1315 }
1316 // set allowed clock remainder tolerance to be 1 large field clock length+1
1317 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1318 uint8_t tol1 = fcHigh+1;
1319
1320 if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1321
1322 // loop to find the highest clock that has a remainder less than the tolerance
1323 // compare samples counted divided by
1324 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1325 int ii=7;
1326 for (; ii>=2; ii--){
1327 if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
1328 if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
1329 if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
1330 if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
1331 break;
1332 }
1333 }
1334 }
1335 }
1336
1337 if (ii<0) return 0; // oops we went too far
1338
1339 return clk[ii];
1340 }
1341
1342 //by marshmellow
1343 //countFC is to detect the field clock lengths.
1344 //counts and returns the 2 most common wave lengths
1345 //mainly used for FSK field clock detection
1346 uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
1347 {
1348 uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1349 uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1350 uint8_t fcLensFnd = 0;
1351 uint8_t lastFCcnt=0;
1352 uint8_t fcCounter = 0;
1353 size_t i;
1354 if (size == 0) return 0;
1355
1356 // prime i to first up transition
1357 for (i = 160; i < size-20; i++)
1358 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
1359 break;
1360
1361 for (; i < size-20; i++){
1362 if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
1363 // new up transition
1364 fcCounter++;
1365 if (fskAdj){
1366 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1367 if (lastFCcnt==5 && fcCounter==9) fcCounter--;
1368 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1369 if ((fcCounter==9) || fcCounter==4) fcCounter++;
1370 // save last field clock count (fc/xx)
1371 lastFCcnt = fcCounter;
1372 }
1373 // find which fcLens to save it to:
1374 for (int ii=0; ii<15; ii++){
1375 if (fcLens[ii]==fcCounter){
1376 fcCnts[ii]++;
1377 fcCounter=0;
1378 break;
1379 }
1380 }
1381 if (fcCounter>0 && fcLensFnd<15){
1382 //add new fc length
1383 fcCnts[fcLensFnd]++;
1384 fcLens[fcLensFnd++]=fcCounter;
1385 }
1386 fcCounter=0;
1387 } else {
1388 // count sample
1389 fcCounter++;
1390 }
1391 }
1392
1393 uint8_t best1=14, best2=14, best3=14;
1394 uint16_t maxCnt1=0;
1395 // go through fclens and find which ones are bigest 2
1396 for (i=0; i<15; i++){
1397 // get the 3 best FC values
1398 if (fcCnts[i]>maxCnt1) {
1399 best3=best2;
1400 best2=best1;
1401 maxCnt1=fcCnts[i];
1402 best1=i;
1403 } else if(fcCnts[i]>fcCnts[best2]){
1404 best3=best2;
1405 best2=i;
1406 } else if(fcCnts[i]>fcCnts[best3]){
1407 best3=i;
1408 }
1409 if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
1410 }
1411 if (fcLens[best1]==0) return 0;
1412 uint8_t fcH=0, fcL=0;
1413 if (fcLens[best1]>fcLens[best2]){
1414 fcH=fcLens[best1];
1415 fcL=fcLens[best2];
1416 } else{
1417 fcH=fcLens[best2];
1418 fcL=fcLens[best1];
1419 }
1420 if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
1421 if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
1422 return 0; //lots of waves not psk or fsk
1423 }
1424 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1425
1426 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
1427 if (fskAdj) return fcs;
1428 return fcLens[best1];
1429 }
1430
1431 //by marshmellow - demodulate PSK1 wave
1432 //uses wave lengths (# Samples)
1433 int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
1434 {
1435 if (size == 0) return -1;
1436 uint16_t loopCnt = 4096; //don't need to loop through entire array...
1437 if (*size<loopCnt) loopCnt = *size;
1438
1439 size_t numBits=0;
1440 uint8_t curPhase = *invert;
1441 size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
1442 uint8_t fc=0, fullWaveLen=0, tol=1;
1443 uint16_t errCnt=0, waveLenCnt=0;
1444 fc = countFC(dest, *size, 0);
1445 if (fc!=2 && fc!=4 && fc!=8) return -1;
1446 //PrintAndLog("DEBUG: FC: %d",fc);
1447 *clock = DetectPSKClock(dest, *size, *clock);
1448 if (*clock == 0) return -1;
1449 int avgWaveVal=0, lastAvgWaveVal=0;
1450 //find first phase shift
1451 for (i=0; i<loopCnt; i++){
1452 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1453 waveEnd = i+1;
1454 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1455 waveLenCnt = waveEnd-waveStart;
1456 if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack
1457 lastAvgWaveVal = avgWaveVal/(waveLenCnt);
1458 firstFullWave = waveStart;
1459 fullWaveLen=waveLenCnt;
1460 //if average wave value is > graph 0 then it is an up wave or a 1
1461 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
1462 break;
1463 }
1464 waveStart = i+1;
1465 avgWaveVal = 0;
1466 }
1467 avgWaveVal += dest[i+2];
1468 }
1469 if (firstFullWave == 0) {
1470 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1471 // so skip a little to ensure we are past any Start Signal
1472 firstFullWave = 160;
1473 memset(dest, curPhase, firstFullWave / *clock);
1474 } else {
1475 memset(dest, curPhase^1, firstFullWave / *clock);
1476 }
1477 //advance bits
1478 numBits += (firstFullWave / *clock);
1479 //set start of wave as clock align
1480 lastClkBit = firstFullWave;
1481 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1482 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1483 waveStart = 0;
1484 dest[numBits++] = curPhase; //set first read bit
1485 for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
1486 //top edge of wave = start of new wave
1487 if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
1488 if (waveStart == 0) {
1489 waveStart = i+1;
1490 waveLenCnt = 0;
1491 avgWaveVal = dest[i+1];
1492 } else { //waveEnd
1493 waveEnd = i+1;
1494 waveLenCnt = waveEnd-waveStart;
1495 lastAvgWaveVal = avgWaveVal/waveLenCnt;
1496 if (waveLenCnt > fc){
1497 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1498 //this wave is a phase shift
1499 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1500 if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
1501 curPhase ^= 1;
1502 dest[numBits++] = curPhase;
1503 lastClkBit += *clock;
1504 } else if (i < lastClkBit+10+fc){
1505 //noise after a phase shift - ignore
1506 } else { //phase shift before supposed to based on clock
1507 errCnt++;
1508 dest[numBits++] = 7;
1509 }
1510 } else if (i+1 > lastClkBit + *clock + tol + fc){
1511 lastClkBit += *clock; //no phase shift but clock bit
1512 dest[numBits++] = curPhase;
1513 }
1514 avgWaveVal = 0;
1515 waveStart = i+1;
1516 }
1517 }
1518 avgWaveVal += dest[i+1];
1519 }
1520 *size = numBits;
1521 return errCnt;
1522 }
1523
1524 //by marshmellow
1525 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1526 bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
1527 size_t bufsize = *size;
1528 //need to loop through all samples and identify our clock, look for the ST pattern
1529 uint8_t fndClk[] = {8,16,32,40,50,64,128};
1530 int clk = 0;
1531 int tol = 0;
1532 int i, j, skip, start, end, low, high, minClk, waveStart;
1533 bool complete = false;
1534 int tmpbuff[bufsize / 64];
1535 int waveLen[bufsize / 64];
1536 size_t testsize = (bufsize < 512) ? bufsize : 512;
1537 int phaseoff = 0;
1538 high = low = 128;
1539 memset(tmpbuff, 0, sizeof(tmpbuff));
1540
1541 if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) {
1542 if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
1543 return false; //just noise
1544 }
1545 i = 0;
1546 j = 0;
1547 minClk = 255;
1548 // get to first full low to prime loop and skip incomplete first pulse
1549 while ((buffer[i] < high) && (i < bufsize))
1550 ++i;
1551 while ((buffer[i] > low) && (i < bufsize))
1552 ++i;
1553 skip = i;
1554
1555 // populate tmpbuff buffer with pulse lengths
1556 while (i < bufsize) {
1557 // measure from low to low
1558 while ((buffer[i] > low) && (i < bufsize))
1559 ++i;
1560 start= i;
1561 while ((buffer[i] < high) && (i < bufsize))
1562 ++i;
1563 //first high point for this wave
1564 waveStart = i;
1565 while ((buffer[i] > low) && (i < bufsize))
1566 ++i;
1567 if (j >= (bufsize/64)) {
1568 break;
1569 }
1570 waveLen[j] = i - waveStart; //first high to first low
1571 tmpbuff[j++] = i - start;
1572 if (i-start < minClk && i < bufsize) {
1573 minClk = i - start;
1574 }
1575 }
1576 // set clock - might be able to get this externally and remove this work...
1577 if (!clk) {
1578 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
1579 tol = fndClk[clkCnt]/8;
1580 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
1581 clk=fndClk[clkCnt];
1582 break;
1583 }
1584 }
1585 // clock not found - ERROR
1586 if (!clk) {
1587 if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
1588 return false;
1589 }
1590 } else tol = clk/8;
1591
1592 *foundclock = clk;
1593
1594 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1595 start = -1;
1596 for (i = 0; i < j - 4; ++i) {
1597 skip += tmpbuff[i];
1598 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior
1599 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1600 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1601 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1602 start = i + 3;
1603 break;
1604 }
1605 }
1606 }
1607 }
1608 }
1609 // first ST not found - ERROR
1610 if (start < 0) {
1611 if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
1612 return false;
1613 }
1614 if (waveLen[i+2] > clk*1+tol)
1615 phaseoff = 0;
1616 else
1617 phaseoff = clk/2;
1618
1619 // skip over the remainder of ST
1620 skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1621
1622 // now do it again to find the end
1623 end = skip;
1624 for (i += 3; i < j - 4; ++i) {
1625 end += tmpbuff[i];
1626 if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol) { //1 to 2 clocks depending on 2 bits prior
1627 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2
1628 if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
1629 if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
1630 complete = true;
1631 break;
1632 }
1633 }
1634 }
1635 }
1636 }
1637 end -= phaseoff;
1638 //didn't find second ST - ERROR
1639 if (!complete) {
1640 if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
1641 return false;
1642 }
1643 if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
1644 //now begin to trim out ST so we can use normal demod cmds
1645 start = skip;
1646 size_t datalen = end - start;
1647 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1648 if (datalen % clk > clk/8) {
1649 if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
1650 return false;
1651 } else {
1652 // padd the amount off - could be problematic... but shouldn't happen often
1653 datalen += datalen % clk;
1654 }
1655 // if datalen is less than one t55xx block - ERROR
1656 if (datalen/clk < 8*4) {
1657 if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");
1658 return false;
1659 }
1660 size_t dataloc = start;
1661 size_t newloc = 0;
1662 i=0;
1663 // warning - overwriting buffer given with raw wave data with ST removed...
1664 while ( dataloc < bufsize-(clk/2) ) {
1665 //compensate for long high at end of ST not being high... (we cut out the high part)
1666 if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+3]<high && buffer[dataloc+3]>low) {
1667 for(i=0; i < clk/2-tol; ++i) {
1668 buffer[dataloc+i] = high+5;
1669 }
1670 }
1671 for (i=0; i<datalen; ++i) {
1672 if (i+newloc < bufsize) {
1673 if (i+newloc < dataloc)
1674 buffer[i+newloc] = buffer[dataloc];
1675
1676 dataloc++;
1677 }
1678 }
1679 newloc += i;
1680 //skip next ST
1681 dataloc += clk*4;
1682 }
1683 *size = newloc;
1684 return true;
1685 }
Impressum, Datenschutz