1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
67 // Delays in SSP_CLK ticks.
68 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
69 #define DELAY_READER_TO_ARM 8
70 #define DELAY_ARM_TO_READER 0
71 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
72 #define DELAY_ARM_TO_TAG 16
73 #define DELAY_TAG_TO_ARM 32
74 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16
75 #define DELAY_TAG_TO_ARM_SNOOP 32
76 #define DELAY_READER_TO_ARM_SNOOP 32
81 // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
82 bool LogTrace_ISO15693(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
) {
83 uint32_t duration
= timestamp_end
- timestamp_start
;
85 timestamp_end
= timestamp_start
+ duration
;
86 return LogTrace(btBytes
, iLen
, timestamp_start
, timestamp_end
, parity
, readerToTag
);
90 ///////////////////////////////////////////////////////////////////////
91 // ISO 15693 Part 2 - Air Interface
92 // This section basically contains transmission and receiving of bits
93 ///////////////////////////////////////////////////////////////////////
96 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
97 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
98 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
100 // ---------------------------
102 // ---------------------------
104 // prepare data using "1 out of 4" code for later transmission
105 // resulting data rate is 26.48 kbit/s (fc/512)
107 // n ... length of data
108 void CodeIso15693AsReader(uint8_t *cmd
, int n
) {
113 ToSend
[++ToSendMax
] = 0x84; //10000100
116 for (int i
= 0; i
< n
; i
++) {
117 for (int j
= 0; j
< 8; j
+= 2) {
118 int these
= (cmd
[i
] >> j
) & 0x03;
121 ToSend
[++ToSendMax
] = 0x40; //01000000
124 ToSend
[++ToSendMax
] = 0x10; //00010000
127 ToSend
[++ToSendMax
] = 0x04; //00000100
130 ToSend
[++ToSendMax
] = 0x01; //00000001
137 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
142 // encode data using "1 out of 256" scheme
143 // data rate is 1,66 kbit/s (fc/8192)
144 // is designed for more robust communication over longer distances
145 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
150 ToSend
[++ToSendMax
] = 0x81; //10000001
153 for(int i
= 0; i
< n
; i
++) {
154 for (int j
= 0; j
<= 255; j
++) {
166 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
172 // static uint8_t encode4Bits(const uint8_t b) {
173 // uint8_t c = b & 0xF;
174 // // OTA, the least significant bits first
175 // // The columns are
176 // // 1 - Bit value to send
177 // // 2 - Reversed (big-endian)
178 // // 3 - Manchester Encoded
183 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
184 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
185 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
186 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
187 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
188 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
189 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
190 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
191 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
192 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
193 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
194 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
195 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
196 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
197 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
198 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
203 static const uint8_t encode_4bits
[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
205 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
207 * SOF comprises 3 parts;
208 * * An unmodulated time of 56.64 us
209 * * 24 pulses of 423.75 kHz (fc/32)
210 * * A logic 1, which starts with an unmodulated time of 18.88us
211 * followed by 8 pulses of 423.75kHz (fc/32)
213 * EOF comprises 3 parts:
214 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
216 * - 24 pulses of fc/32
217 * - An unmodulated time of 56.64 us
219 * A logic 0 starts with 8 pulses of fc/32
220 * followed by an unmodulated time of 256/fc (~18,88us).
222 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
223 * 8 pulses of fc/32 (also 18.88us)
225 * A bit here becomes 8 pulses of fc/32. Therefore:
226 * The SOF can be written as 00011101 = 0x1D
227 * The EOF can be written as 10111000 = 0xb8
236 ToSend
[++ToSendMax
] = 0x1D; // 00011101
239 for (int i
= 0; i
< len
; i
++) {
240 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] & 0xF];
241 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] >> 4];
245 ToSend
[++ToSendMax
] = 0xB8; // 10111000
251 // Transmit the command (to the tag) that was placed in cmd[].
252 void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t *start_time
) {
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
256 if (*start_time
< DELAY_ARM_TO_TAG
) {
257 *start_time
= DELAY_ARM_TO_TAG
;
260 *start_time
= (*start_time
- DELAY_ARM_TO_TAG
) & 0xfffffff0;
262 if (GetCountSspClk() > *start_time
) { // we may miss the intended time
263 *start_time
= (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
266 while (GetCountSspClk() < *start_time
)
270 for (int c
= 0; c
< len
; c
++) {
271 uint8_t data
= cmd
[c
];
272 for (int i
= 0; i
< 8; i
++) {
273 uint16_t send_word
= (data
& 0x80) ? 0xffff : 0x0000;
274 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
275 AT91C_BASE_SSC
->SSC_THR
= send_word
;
276 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
277 AT91C_BASE_SSC
->SSC_THR
= send_word
;
285 *start_time
= *start_time
+ DELAY_ARM_TO_TAG
;
290 //-----------------------------------------------------------------------------
291 // Transmit the tag response (to the reader) that was placed in cmd[].
292 //-----------------------------------------------------------------------------
293 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t *start_time
, uint32_t slot_time
, bool slow
) {
294 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
295 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
297 uint32_t modulation_start_time
= *start_time
- DELAY_ARM_TO_READER
+ 3 * 8; // no need to transfer the unmodulated start of SOF
299 while (GetCountSspClk() > (modulation_start_time
& 0xfffffff8) + 3) { // we will miss the intended time
301 modulation_start_time
+= slot_time
; // use next available slot
303 modulation_start_time
= (modulation_start_time
& 0xfffffff8) + 8; // next possible time
307 while (GetCountSspClk() < (modulation_start_time
& 0xfffffff8))
310 uint8_t shift_delay
= modulation_start_time
& 0x00000007;
312 *start_time
= modulation_start_time
+ DELAY_ARM_TO_READER
- 3 * 8;
315 uint8_t bits_to_shift
= 0x00;
316 uint8_t bits_to_send
= 0x00;
317 for (size_t c
= 0; c
< len
; c
++) {
318 for (int i
= (c
==0?4:7); i
>= 0; i
--) {
319 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
320 for (int j
= 0; j
< (slow
?4:1); ) {
321 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
322 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
323 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
324 bits_to_shift
= cmd_bits
;
331 // send the remaining bits, padded with 0:
332 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
334 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
335 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
343 //=============================================================================
344 // An ISO 15693 decoder for tag responses (one subcarrier only).
345 // Uses cross correlation to identify each bit and EOF.
346 // This function is called 8 times per bit (every 2 subcarrier cycles).
347 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
348 // i.e. function is called every 4,72us
350 // LED C -> ON once we have received the SOF and are expecting the rest.
351 // LED C -> OFF once we have received EOF or are unsynced
353 // Returns: true if we received a EOF
354 // false if we are still waiting for some more
355 //=============================================================================
357 #define NOISE_THRESHOLD 160 // don't try to correlate noise
358 #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
360 typedef struct DecodeTag
{
363 STATE_TAG_SOF_RISING_EDGE
,
365 STATE_TAG_SOF_HIGH_END
,
366 STATE_TAG_RECEIVING_DATA
,
385 uint16_t previous_amplitude
;
389 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
) {
390 switch(DecodeTag
->state
) {
391 case STATE_TAG_SOF_LOW
:
392 // waiting for a rising edge
393 if (amplitude
> NOISE_THRESHOLD
+ DecodeTag
->previous_amplitude
) {
394 if (DecodeTag
->posCount
> 10) {
395 DecodeTag
->threshold_sof
= amplitude
- DecodeTag
->previous_amplitude
; // to be divided by 2
396 DecodeTag
->threshold_half
= 0;
397 DecodeTag
->state
= STATE_TAG_SOF_RISING_EDGE
;
399 DecodeTag
->posCount
= 0;
402 DecodeTag
->posCount
++;
403 DecodeTag
->previous_amplitude
= amplitude
;
407 case STATE_TAG_SOF_RISING_EDGE
:
408 if (amplitude
> DecodeTag
->threshold_sof
+ DecodeTag
->previous_amplitude
) { // edge still rising
409 if (amplitude
> DecodeTag
->threshold_sof
+ DecodeTag
->threshold_sof
) { // steeper edge, take this as time reference
410 DecodeTag
->posCount
= 1;
412 DecodeTag
->posCount
= 2;
414 DecodeTag
->threshold_sof
= (amplitude
- DecodeTag
->previous_amplitude
) / 2;
416 DecodeTag
->posCount
= 2;
417 DecodeTag
->threshold_sof
= DecodeTag
->threshold_sof
/2;
419 // DecodeTag->posCount = 2;
420 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
423 case STATE_TAG_SOF_HIGH
:
424 // waiting for 10 times high. Take average over the last 8
425 if (amplitude
> DecodeTag
->threshold_sof
) {
426 DecodeTag
->posCount
++;
427 if (DecodeTag
->posCount
> 2) {
428 DecodeTag
->threshold_half
+= amplitude
; // keep track of average high value
430 if (DecodeTag
->posCount
== 10) {
431 DecodeTag
->threshold_half
>>= 2; // (4 times 1/2 average)
432 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
434 } else { // high phase was too short
435 DecodeTag
->posCount
= 1;
436 DecodeTag
->previous_amplitude
= amplitude
;
437 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
441 case STATE_TAG_SOF_HIGH_END
:
442 // check for falling edge
443 if (DecodeTag
->posCount
== 13 && amplitude
< DecodeTag
->threshold_sof
) {
444 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
445 DecodeTag
->shiftReg
= 0;
446 DecodeTag
->bitCount
= 0;
448 DecodeTag
->sum1
= amplitude
;
450 DecodeTag
->posCount
= 2;
451 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
452 // FpgaDisableTracing(); // DEBUGGING
453 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
455 // DecodeTag->threshold_sof,
456 // DecodeTag->threshold_half/4,
457 // DecodeTag->previous_amplitude); // DEBUGGING
460 DecodeTag
->posCount
++;
461 if (DecodeTag
->posCount
> 13) { // high phase too long
462 DecodeTag
->posCount
= 0;
463 DecodeTag
->previous_amplitude
= amplitude
;
464 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
470 case STATE_TAG_RECEIVING_DATA
:
471 // FpgaDisableTracing(); // DEBUGGING
472 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
474 // DecodeTag->threshold_sof,
475 // DecodeTag->threshold_half/4,
476 // DecodeTag->previous_amplitude); // DEBUGGING
477 if (DecodeTag
->posCount
== 1) {
481 if (DecodeTag
->posCount
<= 4) {
482 DecodeTag
->sum1
+= amplitude
;
484 DecodeTag
->sum2
+= amplitude
;
486 if (DecodeTag
->posCount
== 8) {
487 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in both halves
488 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
489 DecodeTag
->state
= STATE_TAG_EOF
;
491 DecodeTag
->posCount
= 0;
492 DecodeTag
->previous_amplitude
= amplitude
;
493 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
496 } else if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in second half
498 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
499 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
501 DecodeTag
->lastBit
= LOGIC1
;
502 DecodeTag
->shiftReg
>>= 1;
503 DecodeTag
->shiftReg
|= 0x80;
504 DecodeTag
->bitCount
++;
505 if (DecodeTag
->bitCount
== 8) {
506 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
508 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
509 if (DecodeTag
->len
> DecodeTag
->max_len
) {
510 // buffer overflow, give up
514 DecodeTag
->bitCount
= 0;
515 DecodeTag
->shiftReg
= 0;
518 } else if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
520 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
521 DecodeTag
->posCount
= 0;
522 DecodeTag
->previous_amplitude
= amplitude
;
523 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
526 DecodeTag
->lastBit
= LOGIC0
;
527 DecodeTag
->shiftReg
>>= 1;
528 DecodeTag
->bitCount
++;
529 if (DecodeTag
->bitCount
== 8) {
530 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
532 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
533 if (DecodeTag
->len
> DecodeTag
->max_len
) {
534 // buffer overflow, give up
535 DecodeTag
->posCount
= 0;
536 DecodeTag
->previous_amplitude
= amplitude
;
537 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
540 DecodeTag
->bitCount
= 0;
541 DecodeTag
->shiftReg
= 0;
544 } else { // no modulation
545 if (DecodeTag
->lastBit
== SOF_PART2
) { // only SOF (this is OK for iClass)
549 DecodeTag
->posCount
= 0;
550 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
554 DecodeTag
->posCount
= 0;
556 DecodeTag
->posCount
++;
560 if (DecodeTag
->posCount
== 1) {
564 if (DecodeTag
->posCount
<= 4) {
565 DecodeTag
->sum1
+= amplitude
;
567 DecodeTag
->sum2
+= amplitude
;
569 if (DecodeTag
->posCount
== 8) {
570 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
571 DecodeTag
->posCount
= 0;
572 DecodeTag
->state
= STATE_TAG_EOF_TAIL
;
574 DecodeTag
->posCount
= 0;
575 DecodeTag
->previous_amplitude
= amplitude
;
576 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
580 DecodeTag
->posCount
++;
583 case STATE_TAG_EOF_TAIL
:
584 if (DecodeTag
->posCount
== 1) {
588 if (DecodeTag
->posCount
<= 4) {
589 DecodeTag
->sum1
+= amplitude
;
591 DecodeTag
->sum2
+= amplitude
;
593 if (DecodeTag
->posCount
== 8) {
594 if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // no modulation in both halves
598 DecodeTag
->posCount
= 0;
599 DecodeTag
->previous_amplitude
= amplitude
;
600 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
604 DecodeTag
->posCount
++;
612 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
) {
613 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
614 DecodeTag
->posCount
= 0;
615 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
616 DecodeTag
->output
= data
;
617 DecodeTag
->max_len
= max_len
;
621 static void DecodeTagReset(DecodeTag_t
*DecodeTag
) {
622 DecodeTag
->posCount
= 0;
623 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
624 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
629 * Receive and decode the tag response, also log to tracebuffer
631 int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, uint16_t timeout
, uint32_t *eof_time
) {
636 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
638 // the Decoder data structure
639 DecodeTag_t DecodeTag
= { 0 };
640 DecodeTagInit(&DecodeTag
, response
, max_len
);
642 // wait for last transfer to complete
643 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
645 // And put the FPGA in the appropriate mode
646 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
648 // Setup and start DMA.
649 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
650 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
651 uint32_t dma_start_time
= 0;
652 uint16_t *upTo
= dmaBuf
;
655 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
657 if (behindBy
== 0) continue;
661 // DMA has transferred the very first data
662 dma_start_time
= GetCountSspClk() & 0xfffffff0;
665 uint16_t tagdata
= *upTo
++;
667 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
668 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
669 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
670 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
675 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
676 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
677 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
680 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
681 *eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM
; // end of EOF
682 if (DecodeTag
.lastBit
== SOF_PART2
) {
683 *eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
685 if (DecodeTag
.len
> DecodeTag
.max_len
) {
686 ret
= -2; // buffer overflow
691 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
700 if (DEBUG
) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
701 samples
, ret
, DecodeTag
.state
, DecodeTag
.lastBit
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
707 uint32_t sof_time
= *eof_time
708 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
709 - 32 * 16 // time for SOF transfer
710 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
712 if (DEBUG
) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time
, *eof_time
);
714 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, *eof_time
*4, NULL
, false);
716 return DecodeTag
.len
;
720 //=============================================================================
721 // An ISO15693 decoder for reader commands.
723 // This function is called 4 times per bit (every 2 subcarrier cycles).
724 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
726 // LED B -> ON once we have received the SOF and are expecting the rest.
727 // LED B -> OFF once we have received EOF or are in error state or unsynced
729 // Returns: true if we received a EOF
730 // false if we are still waiting for some more
731 //=============================================================================
733 typedef struct DecodeReader
{
735 STATE_READER_UNSYNCD
,
736 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
,
737 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
738 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
739 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
740 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
741 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
742 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
758 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
)
760 DecodeReader
->output
= data
;
761 DecodeReader
->byteCountMax
= max_len
;
762 DecodeReader
->state
= STATE_READER_UNSYNCD
;
763 DecodeReader
->byteCount
= 0;
764 DecodeReader
->bitCount
= 0;
765 DecodeReader
->posCount
= 1;
766 DecodeReader
->shiftReg
= 0;
770 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
)
772 DecodeReader
->state
= STATE_READER_UNSYNCD
;
776 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(uint8_t bit
, DecodeReader_t
*restrict DecodeReader
)
778 switch (DecodeReader
->state
) {
779 case STATE_READER_UNSYNCD
:
780 // wait for unmodulated carrier
782 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
786 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
:
788 // we went low, so this could be the beginning of a SOF
789 DecodeReader
->posCount
= 1;
790 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
794 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
795 DecodeReader
->posCount
++;
796 if (bit
) { // detected rising edge
797 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
798 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
800 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
803 if (DecodeReader
->posCount
> 5) { // stayed low for too long
804 DecodeReaderReset(DecodeReader
);
806 // do nothing, keep waiting
811 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
812 DecodeReader
->posCount
++;
813 if (!bit
) { // detected a falling edge
814 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
815 DecodeReaderReset(DecodeReader
);
816 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
817 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
818 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
819 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
820 DecodeReaderReset(DecodeReader
);
821 } else { // SOF for 1 out of 256 coding
822 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
823 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
826 if (DecodeReader
->posCount
> 29) { // stayed high for too long
827 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
829 // do nothing, keep waiting
834 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
835 DecodeReader
->posCount
++;
836 if (bit
) { // detected rising edge
837 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
838 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
839 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
841 DecodeReader
->posCount
= 1;
842 DecodeReader
->bitCount
= 0;
843 DecodeReader
->byteCount
= 0;
844 DecodeReader
->sum1
= 1;
845 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
848 } else { // CODING_1_OUT_OF_4
849 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
850 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
852 DecodeReader
->posCount
= 1;
853 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
857 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
858 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
859 DecodeReaderReset(DecodeReader
);
861 // do nothing, keep waiting
863 } else { // CODING_1_OUT_OF_4
864 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
865 DecodeReaderReset(DecodeReader
);
867 // do nothing, keep waiting
873 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
874 DecodeReader
->posCount
++;
876 if (DecodeReader
->posCount
== 9) {
877 DecodeReader
->posCount
= 1;
878 DecodeReader
->bitCount
= 0;
879 DecodeReader
->byteCount
= 0;
880 DecodeReader
->sum1
= 1;
881 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
884 // do nothing, keep waiting
886 } else { // unexpected falling edge
887 DecodeReaderReset(DecodeReader
);
891 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
893 DecodeReader
->posCount
++;
894 if (DecodeReader
->posCount
== 1) {
895 DecodeReader
->sum1
= bit
;
896 } else if (DecodeReader
->posCount
<= 4) {
897 DecodeReader
->sum1
+= bit
;
898 } else if (DecodeReader
->posCount
== 5) {
899 DecodeReader
->sum2
= bit
;
901 DecodeReader
->sum2
+= bit
;
903 if (DecodeReader
->posCount
== 8) {
904 DecodeReader
->posCount
= 0;
905 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
906 LED_B_OFF(); // Finished receiving
907 DecodeReaderReset(DecodeReader
);
908 if (DecodeReader
->byteCount
!= 0) {
912 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected a 2bit position
913 DecodeReader
->shiftReg
>>= 2;
914 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
916 if (DecodeReader
->bitCount
== 15) { // we have a full byte
917 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
918 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
919 // buffer overflow, give up
921 DecodeReaderReset(DecodeReader
);
923 DecodeReader
->bitCount
= 0;
924 DecodeReader
->shiftReg
= 0;
926 DecodeReader
->bitCount
++;
931 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
933 DecodeReader
->posCount
++;
934 if (DecodeReader
->posCount
== 1) {
935 DecodeReader
->sum1
= bit
;
936 } else if (DecodeReader
->posCount
<= 4) {
937 DecodeReader
->sum1
+= bit
;
938 } else if (DecodeReader
->posCount
== 5) {
939 DecodeReader
->sum2
= bit
;
941 DecodeReader
->sum2
+= bit
;
943 if (DecodeReader
->posCount
== 8) {
944 DecodeReader
->posCount
= 0;
945 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
946 LED_B_OFF(); // Finished receiving
947 DecodeReaderReset(DecodeReader
);
948 if (DecodeReader
->byteCount
!= 0) {
952 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected the bit position
953 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
955 if (DecodeReader
->bitCount
== 255) { // we have a full byte
956 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
957 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
958 // buffer overflow, give up
960 DecodeReaderReset(DecodeReader
);
963 DecodeReader
->bitCount
++;
969 DecodeReaderReset(DecodeReader
);
977 //-----------------------------------------------------------------------------
978 // Receive a command (from the reader to us, where we are the simulated tag),
979 // and store it in the given buffer, up to the given maximum length. Keeps
980 // spinning, waiting for a well-framed command, until either we get one
981 // (returns len) or someone presses the pushbutton on the board (returns -1).
983 // Assume that we're called with the SSC (to the FPGA) and ADC path set
985 //-----------------------------------------------------------------------------
987 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
989 bool gotFrame
= false;
992 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
994 // the decoder data structure
995 DecodeReader_t DecodeReader
= {0};
996 DecodeReaderInit(&DecodeReader
, received
, max_len
);
998 // wait for last transfer to complete
999 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
1002 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1004 // clear receive register and wait for next transfer
1005 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
1007 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
1009 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
1011 // Setup and start DMA.
1012 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1013 uint8_t *upTo
= dmaBuf
;
1016 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1018 if (behindBy
== 0) continue;
1021 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1022 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1023 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1024 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1028 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1029 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1030 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1033 for (int i
= 7; i
>= 0; i
--) {
1034 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
1035 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM
; // end of EOF
1046 if (BUTTON_PRESS()) {
1047 DecodeReader
.byteCount
= -1;
1054 FpgaDisableSscDma();
1056 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1057 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
1059 if (DecodeReader
.byteCount
> 0) {
1060 uint32_t sof_time
= *eof_time
1061 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
1062 - 32 // time for SOF transfer
1063 - 16; // time for EOF transfer
1064 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*32, *eof_time
*32, NULL
, true);
1067 return DecodeReader
.byteCount
;
1071 // Encode (into the ToSend buffers) an identify request, which is the first
1072 // thing that you must send to a tag to get a response.
1073 static void BuildIdentifyRequest(void)
1078 // one sub-carrier, inventory, 1 slot, fast rate
1079 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1080 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1081 // inventory command code
1086 crc
= Iso15693Crc(cmd
, 3);
1087 cmd
[3] = crc
& 0xff;
1090 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1094 //-----------------------------------------------------------------------------
1095 // Start to read an ISO 15693 tag. We send an identify request, then wait
1096 // for the response. The response is not demodulated, just left in the buffer
1097 // so that it can be downloaded to a PC and processed there.
1098 //-----------------------------------------------------------------------------
1099 void AcquireRawAdcSamplesIso15693(void)
1103 uint8_t *dest
= BigBuf_get_addr();
1105 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1106 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1108 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1109 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1111 BuildIdentifyRequest();
1113 // Give the tags time to energize
1116 // Now send the command
1117 uint32_t start_time
= 0;
1118 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1120 // wait for last transfer to complete
1121 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1123 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1125 for(int c
= 0; c
< 4000; ) {
1126 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1127 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1132 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1137 void SnoopIso15693(void) {
1141 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1146 // The DMA buffer, used to stream samples from the FPGA
1147 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
1149 // Count of samples received so far, so that we can include timing
1150 // information in the trace buffer.
1153 DecodeTag_t DecodeTag
= {0};
1154 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1155 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1157 DecodeReader_t DecodeReader
= {0};;
1158 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1159 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
));
1161 // Print some debug information about the buffer sizes
1163 Dbprintf("Snooping buffers initialized:");
1164 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1165 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1166 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1167 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1169 Dbprintf("Snoop started. Press PM3 Button to stop.");
1171 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1173 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1174 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1176 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1178 bool TagIsActive
= false;
1179 bool ReaderIsActive
= false;
1180 bool ExpectTagAnswer
= false;
1181 uint32_t dma_start_time
= 0;
1182 uint16_t *upTo
= dmaBuf
;
1184 // And now we loop, receiving samples.
1186 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1188 if (behindBy
== 0) continue;
1192 // DMA has transferred the very first data
1193 dma_start_time
= GetCountSspClk() & 0xfffffff0;
1196 uint16_t snoopdata
= *upTo
++;
1198 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1199 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1200 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1201 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1204 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1205 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1206 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1208 if (BUTTON_PRESS()) {
1209 DbpString("Snoop stopped.");
1215 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1216 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1217 // FpgaDisableSscDma();
1218 uint32_t eof_time
= dma_start_time
+ samples
*16 + 8 - DELAY_READER_TO_ARM_SNOOP
; // end of EOF
1219 if (DecodeReader
.byteCount
> 0) {
1220 uint32_t sof_time
= eof_time
1221 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128*16:2048*16) // time for byte transfers
1222 - 32*16 // time for SOF transfer
1223 - 16*16; // time for EOF transfer
1224 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*4, eof_time
*4, NULL
, true);
1226 /* And ready to receive another command. */
1227 DecodeReaderReset(&DecodeReader
);
1228 /* And also reset the demod code, which might have been */
1229 /* false-triggered by the commands from the reader. */
1230 DecodeTagReset(&DecodeTag
);
1231 ReaderIsActive
= false;
1232 ExpectTagAnswer
= true;
1235 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1237 } else if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1238 // FpgaDisableSscDma();
1239 uint32_t eof_time
= dma_start_time
+ samples
*16 + 16 - DELAY_READER_TO_ARM_SNOOP
; // end of EOF
1240 if (DecodeReader
.byteCount
> 0) {
1241 uint32_t sof_time
= eof_time
1242 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128*16:2048*16) // time for byte transfers
1243 - 32*16 // time for SOF transfer
1244 - 16*16; // time for EOF transfer
1245 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*4, eof_time
*4, NULL
, true);
1247 /* And ready to receive another command. */
1248 DecodeReaderReset(&DecodeReader
);
1249 /* And also reset the demod code, which might have been */
1250 /* false-triggered by the commands from the reader. */
1251 DecodeTagReset(&DecodeTag
);
1252 ReaderIsActive
= false;
1253 ExpectTagAnswer
= true;
1256 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1259 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
);
1263 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1264 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1265 // FpgaDisableSscDma();
1266 uint32_t eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM_SNOOP
; // end of EOF
1267 if (DecodeTag
.lastBit
== SOF_PART2
) {
1268 eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
1270 uint32_t sof_time
= eof_time
1271 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
1272 - 32 * 16 // time for SOF transfer
1273 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
1274 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, eof_time
*4, NULL
, false);
1275 // And ready to receive another response.
1276 DecodeTagReset(&DecodeTag
);
1277 DecodeReaderReset(&DecodeReader
);
1278 ExpectTagAnswer
= false;
1279 TagIsActive
= false;
1282 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1285 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1291 FpgaDisableSscDma();
1295 DbpString("Snoop statistics:");
1296 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer
);
1297 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1298 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1299 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1300 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1301 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1305 // Initialize the proxmark as iso15k reader
1306 void Iso15693InitReader() {
1307 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1309 // Start from off (no field generated)
1311 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1314 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1315 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1317 // Give the tags time to energize
1319 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1323 ///////////////////////////////////////////////////////////////////////
1324 // ISO 15693 Part 3 - Air Interface
1325 // This section basically contains transmission and receiving of bits
1326 ///////////////////////////////////////////////////////////////////////
1329 // uid is in transmission order (which is reverse of display order)
1330 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1335 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1336 // followed by the block data
1337 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1338 // READ BLOCK command code
1339 cmd
[1] = ISO15693_READBLOCK
;
1340 // UID may be optionally specified here
1349 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1350 // Block number to read
1351 cmd
[10] = blockNumber
;
1353 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1354 cmd
[11] = crc
& 0xff;
1357 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1361 // Now the VICC>VCD responses when we are simulating a tag
1362 static void BuildInventoryResponse(uint8_t *uid
)
1368 cmd
[0] = 0; // No error, no protocol format extension
1369 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1371 cmd
[2] = uid
[7]; //0x32;
1372 cmd
[3] = uid
[6]; //0x4b;
1373 cmd
[4] = uid
[5]; //0x03;
1374 cmd
[5] = uid
[4]; //0x01;
1375 cmd
[6] = uid
[3]; //0x00;
1376 cmd
[7] = uid
[2]; //0x10;
1377 cmd
[8] = uid
[1]; //0x05;
1378 cmd
[9] = uid
[0]; //0xe0;
1380 crc
= Iso15693Crc(cmd
, 10);
1381 cmd
[10] = crc
& 0xff;
1384 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1387 // Universal Method for sending to and recv bytes from a tag
1388 // init ... should we initialize the reader?
1389 // speed ... 0 low speed, 1 hi speed
1390 // *recv will contain the tag's answer
1391 // return: length of received data, or -1 for timeout
1392 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
, uint32_t *eof_time
) {
1395 Iso15693InitReader();
1402 // low speed (1 out of 256)
1403 CodeIso15693AsReader256(send
, sendlen
);
1405 // high speed (1 out of 4)
1406 CodeIso15693AsReader(send
, sendlen
);
1409 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1411 // Now wait for a response
1413 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, ISO15693_READER_TIMEOUT
, eof_time
);
1420 // --------------------------------------------------------------------
1422 // --------------------------------------------------------------------
1424 // Decodes a message from a tag and displays its metadata and content
1425 #define DBD15STATLEN 48
1426 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1427 char status
[DBD15STATLEN
+1]={0};
1431 if (d
[0] & ISO15693_RES_EXT
)
1432 strncat(status
,"ProtExt ", DBD15STATLEN
);
1433 if (d
[0] & ISO15693_RES_ERROR
) {
1435 strncat(status
,"Error ", DBD15STATLEN
);
1438 strncat(status
,"01:notSupp", DBD15STATLEN
);
1441 strncat(status
,"02:notRecog", DBD15STATLEN
);
1444 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1447 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1450 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1453 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1456 strncat(status
,"12:locked", DBD15STATLEN
);
1459 strncat(status
,"13:progErr", DBD15STATLEN
);
1462 strncat(status
,"14:lockErr", DBD15STATLEN
);
1465 strncat(status
,"unknownErr", DBD15STATLEN
);
1467 strncat(status
," ", DBD15STATLEN
);
1469 strncat(status
,"NoErr ", DBD15STATLEN
);
1472 crc
=Iso15693Crc(d
,len
-2);
1473 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1474 strncat(status
,"CrcOK",DBD15STATLEN
);
1476 strncat(status
,"CrcFail!",DBD15STATLEN
);
1478 Dbprintf("%s",status
);
1484 ///////////////////////////////////////////////////////////////////////
1485 // Functions called via USB/Client
1486 ///////////////////////////////////////////////////////////////////////
1488 void SetDebugIso15693(uint32_t debug
) {
1490 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1495 //---------------------------------------------------------------------------------------
1496 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1497 // all demodulation performed in arm rather than host. - greg
1498 //---------------------------------------------------------------------------------------
1499 void ReaderIso15693(uint32_t parameter
) {
1506 uint8_t TagUID
[8] = {0x00};
1508 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1510 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1512 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1514 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1516 // Start from off (no field generated)
1517 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1520 // Give the tags time to energize
1522 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1527 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1528 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1530 // Now send the IDENTIFY command
1531 BuildIdentifyRequest();
1532 uint32_t start_time
= 0;
1533 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1535 // Now wait for a response
1537 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
) ;
1538 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1540 if (answerLen
>=12) // we should do a better check than this
1542 TagUID
[0] = answer
[2];
1543 TagUID
[1] = answer
[3];
1544 TagUID
[2] = answer
[4];
1545 TagUID
[3] = answer
[5];
1546 TagUID
[4] = answer
[6];
1547 TagUID
[5] = answer
[7];
1548 TagUID
[6] = answer
[8]; // IC Manufacturer code
1549 TagUID
[7] = answer
[9]; // always E0
1553 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1554 DbdecodeIso15693Answer(answerLen
, answer
);
1555 Dbhexdump(answerLen
, answer
, false);
1558 if (answerLen
>= 12)
1559 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1560 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1561 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1564 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1565 // DbdecodeIso15693Answer(answerLen2,answer2);
1566 // Dbhexdump(answerLen2,answer2,true);
1568 // Dbprintf("%d octets read from XXX request:", answerLen3);
1569 // DbdecodeIso15693Answer(answerLen3,answer3);
1570 // Dbhexdump(answerLen3,answer3,true);
1573 if (answerLen
>= 12 && DEBUG
) {
1574 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1575 BuildReadBlockRequest(TagUID
, i
);
1576 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1577 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
);
1578 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1579 if (answerLen
> 0) {
1580 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1581 DbdecodeIso15693Answer(answerLen
, answer
);
1582 Dbhexdump(answerLen
, answer
, false);
1583 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1588 // for the time being, switch field off to protect rdv4.0
1589 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1590 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1597 // Simulate an ISO15693 TAG.
1598 // For Inventory command: print command and send Inventory Response with given UID
1599 // TODO: interpret other reader commands and send appropriate response
1600 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
) {
1604 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1605 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1606 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1607 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1611 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1613 // Build a suitable response to the reader INVENTORY command
1614 BuildInventoryResponse(uid
);
1617 while (!BUTTON_PRESS()) {
1618 uint32_t eof_time
= 0, start_time
= 0;
1619 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1621 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1622 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1623 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
;
1624 TransmitTo15693Reader(ToSend
, ToSendMax
, &start_time
, 0, slow
);
1627 Dbprintf("%d bytes read from reader:", cmd_len
);
1628 Dbhexdump(cmd_len
, cmd
, false);
1631 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1637 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1638 // (some manufactures offer a way to read the AFI, though)
1639 void BruteforceIso15693Afi(uint32_t speed
)
1644 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1645 int datalen
= 0, recvlen
= 0;
1648 // first without AFI
1649 // Tags should respond without AFI and with AFI=0 even when AFI is active
1651 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1652 data
[1] = ISO15693_INVENTORY
;
1653 data
[2] = 0; // mask length
1654 datalen
= Iso15693AddCrc(data
,3);
1655 uint32_t start_time
= GetCountSspClk();
1656 recvlen
= SendDataTag(data
, datalen
, true, speed
, recv
, sizeof(recv
), 0, &eof_time
);
1657 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1660 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1665 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1666 data
[1] = ISO15693_INVENTORY
;
1668 data
[3] = 0; // mask length
1670 for (int i
= 0; i
< 256; i
++) {
1672 datalen
= Iso15693AddCrc(data
,4);
1673 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
, &eof_time
);
1674 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1676 if (recvlen
>= 12) {
1677 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1680 Dbprintf("AFI Bruteforcing done.");
1682 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1688 // Allows to directly send commands to the tag via the client
1689 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1694 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1699 Dbhexdump(datalen
, data
, false);
1702 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0, &eof_time
);
1704 // for the time being, switch field off to protect rdv4.0
1705 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1706 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1713 Dbhexdump(recvlen
, recvbuf
, false);
1714 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1717 if (recvlen
> ISO15693_MAX_RESPONSE_LENGTH
) {
1718 recvlen
= ISO15693_MAX_RESPONSE_LENGTH
;
1720 cmd_send(CMD_ACK
, recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1726 //-----------------------------------------------------------------------------
1727 // Work with "magic Chinese" card.
1729 //-----------------------------------------------------------------------------
1731 // Set the UID to the tag (based on Iceman work).
1732 void SetTag15693Uid(uint8_t *uid
) {
1736 uint8_t cmd
[4][9] = {0x00};
1740 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1743 // Command 1 : 02213E00000000
1752 // Command 2 : 02213F69960000
1761 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1770 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1779 for (int i
= 0; i
< 4; i
++) {
1781 crc
= Iso15693Crc(cmd
[i
], 7);
1782 cmd
[i
][7] = crc
& 0xff;
1783 cmd
[i
][8] = crc
>> 8;
1787 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1790 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0, &eof_time
);
1795 Dbhexdump(recvlen
, recvbuf
, false);
1796 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1800 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1808 // --------------------------------------------------------------------
1809 // -- Misc & deprecated functions
1810 // --------------------------------------------------------------------
1814 // do not use; has a fix UID
1815 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1820 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1821 // followed by the block data
1822 // one sub-carrier, inventory, 1 slot, fast rate
1823 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1824 // System Information command code
1826 // UID may be optionally specified here
1835 cmd[9]= 0xe0; // always e0 (not exactly unique)
1837 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1838 cmd[10] = crc & 0xff;
1841 CodeIso15693AsReader(cmd, sizeof(cmd));
1845 // do not use; has a fix UID
1846 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1851 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1852 // followed by the block data
1853 // one sub-carrier, inventory, 1 slot, fast rate
1854 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1855 // READ Multi BLOCK command code
1857 // UID may be optionally specified here
1866 cmd[9]= 0xe0; // always e0 (not exactly unique)
1867 // First Block number to read
1869 // Number of Blocks to read
1870 cmd[11] = 0x2f; // read quite a few
1872 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1873 cmd[12] = crc & 0xff;
1876 CodeIso15693AsReader(cmd, sizeof(cmd));
1879 // do not use; has a fix UID
1880 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1885 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1886 // followed by the block data
1887 // one sub-carrier, inventory, 1 slot, fast rate
1888 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1889 // READ BLOCK command code
1891 // UID may be optionally specified here
1900 cmd[9]= 0xe0; // always e0 (not exactly unique)
1906 // cmd[13] = 0x00; //Now the CRC
1907 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1908 cmd[12] = crc & 0xff;
1911 CodeIso15693AsReader(cmd, sizeof(cmd));
1914 // do not use; has a fix UID
1915 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1920 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1921 // followed by the block data
1922 // one sub-carrier, inventory, 1 slot, fast rate
1923 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1924 // READ BLOCK command code
1926 // UID may be optionally specified here
1935 cmd[9]= 0xe0; // always e0 (not exactly unique)
1937 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1941 // cmd[13] = 0x00; //Now the CRC
1942 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1943 cmd[12] = crc & 0xff;
1946 CodeIso15693AsReader(cmd, sizeof(cmd));