1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
17 #include "iso14443crc.h"
19 #define RECEIVE_SAMPLES_TIMEOUT 2000
20 #define ISO14443B_DMA_BUFFER_SIZE 256
22 //=============================================================================
23 // An ISO 14443 Type B tag. We listen for commands from the reader, using
24 // a UART kind of thing that's implemented in software. When we get a
25 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
26 // If it's good, then we can do something appropriate with it, and send
28 //=============================================================================
30 //-----------------------------------------------------------------------------
31 // Code up a string of octets at layer 2 (including CRC, we don't generate
32 // that here) so that they can be transmitted to the reader. Doesn't transmit
33 // them yet, just leaves them ready to send in ToSend[].
34 //-----------------------------------------------------------------------------
35 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
)
41 // Transmit a burst of ones, as the initial thing that lets the
42 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
43 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
45 for(i
= 0; i
< 20; i
++) {
53 for(i
= 0; i
< 10; i
++) {
59 for(i
= 0; i
< 2; i
++) {
66 for(i
= 0; i
< len
; i
++) {
77 for(j
= 0; j
< 8; j
++) {
100 for(i
= 0; i
< 10; i
++) {
106 for(i
= 0; i
< 2; i
++) {
113 // Convert from last byte pos to length
117 //-----------------------------------------------------------------------------
118 // The software UART that receives commands from the reader, and its state
120 //-----------------------------------------------------------------------------
124 STATE_GOT_FALLING_EDGE_OF_SOF
,
125 STATE_AWAITING_START_BIT
,
136 /* Receive & handle a bit coming from the reader.
138 * This function is called 4 times per bit (every 2 subcarrier cycles).
139 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
142 * LED A -> ON once we have received the SOF and are expecting the rest.
143 * LED A -> OFF once we have received EOF or are in error state or unsynced
145 * Returns: true if we received a EOF
146 * false if we are still waiting for some more
148 static RAMFUNC
int Handle14443bUartBit(uint8_t bit
)
153 // we went low, so this could be the beginning
155 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
161 case STATE_GOT_FALLING_EDGE_OF_SOF
:
163 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
165 if(Uart
.bitCnt
> 9) {
166 // we've seen enough consecutive
167 // zeros that it's a valid SOF
170 Uart
.state
= STATE_AWAITING_START_BIT
;
171 LED_A_ON(); // Indicate we got a valid SOF
173 // didn't stay down long enough
174 // before going high, error
175 Uart
.state
= STATE_UNSYNCD
;
178 // do nothing, keep waiting
182 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
183 if(Uart
.bitCnt
> 12) {
184 // Give up if we see too many zeros without
187 Uart
.state
= STATE_UNSYNCD
;
191 case STATE_AWAITING_START_BIT
:
194 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
195 // stayed high for too long between
197 Uart
.state
= STATE_UNSYNCD
;
200 // falling edge, this starts the data byte
204 Uart
.state
= STATE_RECEIVING_DATA
;
208 case STATE_RECEIVING_DATA
:
210 if(Uart
.posCnt
== 2) {
211 // time to sample a bit
214 Uart
.shiftReg
|= 0x200;
218 if(Uart
.posCnt
>= 4) {
221 if(Uart
.bitCnt
== 10) {
222 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
224 // this is a data byte, with correct
225 // start and stop bits
226 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
229 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
230 // Buffer overflowed, give up
232 Uart
.state
= STATE_UNSYNCD
;
234 // so get the next byte now
236 Uart
.state
= STATE_AWAITING_START_BIT
;
238 } else if (Uart
.shiftReg
== 0x000) {
239 // this is an EOF byte
240 LED_A_OFF(); // Finished receiving
241 Uart
.state
= STATE_UNSYNCD
;
242 if (Uart
.byteCnt
!= 0) {
248 Uart
.state
= STATE_UNSYNCD
;
255 Uart
.state
= STATE_UNSYNCD
;
263 static void UartReset()
265 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
266 Uart
.state
= STATE_UNSYNCD
;
272 static void UartInit(uint8_t *data
)
279 //-----------------------------------------------------------------------------
280 // Receive a command (from the reader to us, where we are the simulated tag),
281 // and store it in the given buffer, up to the given maximum length. Keeps
282 // spinning, waiting for a well-framed command, until either we get one
283 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
285 // Assume that we're called with the SSC (to the FPGA) and ADC path set
287 //-----------------------------------------------------------------------------
288 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
)
290 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
291 // only, since we are receiving, not transmitting).
292 // Signal field is off with the appropriate LED
294 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
296 // Now run a `software UART' on the stream of incoming samples.
302 if(BUTTON_PRESS()) return FALSE
;
304 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
305 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
306 for(uint8_t mask
= 0x80; mask
!= 0x00; mask
>>= 1) {
307 if(Handle14443bUartBit(b
& mask
)) {
318 //-----------------------------------------------------------------------------
319 // Main loop of simulated tag: receive commands from reader, decide what
320 // response to send, and send it.
321 //-----------------------------------------------------------------------------
322 void SimulateIso14443bTag(void)
324 // the only commands we understand is REQB, AFI=0, Select All, N=8:
325 static const uint8_t cmd1
[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // REQB
326 // ... and REQB, AFI=0, Normal Request, N=0:
327 static const uint8_t cmd2
[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
328 // ... and WUPB, AFI=0, N=8:
329 static const uint8_t cmd3
[] = { 0x05, 0x08, 0x08, 0xF9, 0xBD }; // WUPB
331 static const uint8_t cmd4
[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
333 static const uint8_t cmd5
[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
335 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
336 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
337 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
338 static const uint8_t response1
[] = {
339 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
340 0x00, 0x21, 0x85, 0x5e, 0xd7
342 // response to HLTB and ATTRIB
343 static const uint8_t response2
[] = {0x00, 0x78, 0xF0};
346 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
353 uint16_t respLen
, respCodeLen
;
355 // allocate command receive buffer
357 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
360 uint16_t cmdsRecvd
= 0;
362 // prepare the (only one) tag answer:
363 CodeIso14443bAsTag(response1
, sizeof(response1
));
364 uint8_t *resp1Code
= BigBuf_malloc(ToSendMax
);
365 memcpy(resp1Code
, ToSend
, ToSendMax
);
366 uint16_t resp1CodeLen
= ToSendMax
;
368 // prepare the (other) tag answer:
369 CodeIso14443bAsTag(response2
, sizeof(response2
));
370 uint8_t *resp2Code
= BigBuf_malloc(ToSendMax
);
371 memcpy(resp2Code
, ToSend
, ToSendMax
);
372 uint16_t resp2CodeLen
= ToSendMax
;
374 // We need to listen to the high-frequency, peak-detected path.
375 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
382 if(!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
383 Dbprintf("button pressed, received %d commands", cmdsRecvd
);
388 uint8_t parity
[MAX_PARITY_SIZE
];
389 LogTrace(receivedCmd
, len
, 0, 0, parity
, TRUE
);
392 // Good, look at the command now.
393 if ( (len
== sizeof(cmd1
) && memcmp(receivedCmd
, cmd1
, len
) == 0)
394 || (len
== sizeof(cmd2
) && memcmp(receivedCmd
, cmd2
, len
) == 0)
395 || (len
== sizeof(cmd3
) && memcmp(receivedCmd
, cmd3
, len
) == 0) ) {
397 respLen
= sizeof(response1
);
398 respCode
= resp1Code
;
399 respCodeLen
= resp1CodeLen
;
400 } else if ( (len
== sizeof(cmd4
) && receivedCmd
[0] == cmd4
[0])
401 || (len
== sizeof(cmd5
) && receivedCmd
[0] == cmd5
[0]) ) {
403 respLen
= sizeof(response2
);
404 respCode
= resp2Code
;
405 respCodeLen
= resp2CodeLen
;
407 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsRecvd
);
408 // And print whether the CRC fails, just for good measure
410 if (len
>= 3){ // if crc exists
411 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
412 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1]) {
413 // Not so good, try again.
414 DbpString("+++CRC fail");
416 DbpString("CRC passes");
419 //get rid of compiler warning
423 respCode
= resp1Code
;
424 //don't crash at new command just wait and see if reader will send other new cmds.
430 if(cmdsRecvd
> 0x30) {
431 DbpString("many commands later...");
435 if(respCodeLen
<= 0) continue;
438 // Signal field is off with the appropriate LED
440 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
441 AT91C_BASE_SSC
->SSC_THR
= 0xff;
444 // Transmit the response.
447 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
448 uint8_t b
= respCode
[i
];
450 AT91C_BASE_SSC
->SSC_THR
= b
;
453 if(i
> respCodeLen
) {
457 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
458 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
463 // trace the response:
465 uint8_t parity
[MAX_PARITY_SIZE
];
466 LogTrace(resp
, respLen
, 0, 0, parity
, FALSE
);
472 //=============================================================================
473 // An ISO 14443 Type B reader. We take layer two commands, code them
474 // appropriately, and then send them to the tag. We then listen for the
475 // tag's response, which we leave in the buffer to be demodulated on the
477 //=============================================================================
482 DEMOD_PHASE_REF_TRAINING
,
483 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
484 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
485 DEMOD_AWAITING_START_BIT
,
491 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
503 * Handles reception of a bit from the tag
505 * This function is called 2 times per bit (every 4 subcarrier cycles).
506 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
509 * LED C -> ON once we have received the SOF and are expecting the rest.
510 * LED C -> OFF once we have received EOF or are unsynced
512 * Returns: true if we received a EOF
513 * false if we are still waiting for some more
516 static RAMFUNC
int Handle14443bSamplesDemod(int ci
, int cq
)
520 // The soft decision on the bit uses an estimate of just the
521 // quadrant of the reference angle, not the exact angle.
522 #define MAKE_SOFT_DECISION() { \
523 if(Demod.sumI > 0) { \
528 if(Demod.sumQ > 0) { \
535 #define SUBCARRIER_DETECT_THRESHOLD 8
537 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
538 /* #define CHECK_FOR_SUBCARRIER() { \
548 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
549 #define CHECK_FOR_SUBCARRIER() { \
551 if(cq < 0) { /* ci < 0, cq < 0 */ \
553 v = -cq - (ci >> 1); \
555 v = -ci - (cq >> 1); \
557 } else { /* ci < 0, cq >= 0 */ \
559 v = -ci + (cq >> 1); \
561 v = cq - (ci >> 1); \
565 if(cq < 0) { /* ci >= 0, cq < 0 */ \
567 v = ci - (cq >> 1); \
569 v = -cq + (ci >> 1); \
571 } else { /* ci >= 0, cq >= 0 */ \
573 v = ci + (cq >> 1); \
575 v = cq + (ci >> 1); \
581 switch(Demod
.state
) {
583 CHECK_FOR_SUBCARRIER();
584 if(v
> SUBCARRIER_DETECT_THRESHOLD
) { // subcarrier detected
585 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
592 case DEMOD_PHASE_REF_TRAINING
:
593 if(Demod
.posCount
< 8) {
594 CHECK_FOR_SUBCARRIER();
595 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
596 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
597 // note: synchronization time > 80 1/fs
601 } else { // subcarrier lost
602 Demod
.state
= DEMOD_UNSYNCD
;
605 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
609 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
610 MAKE_SOFT_DECISION();
611 if(v
< 0) { // logic '0' detected
612 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
613 Demod
.posCount
= 0; // start of SOF sequence
615 if(Demod
.posCount
> 200/4) { // maximum length of TR1 = 200 1/fs
616 Demod
.state
= DEMOD_UNSYNCD
;
622 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
624 MAKE_SOFT_DECISION();
626 if(Demod
.posCount
< 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
627 Demod
.state
= DEMOD_UNSYNCD
;
629 LED_C_ON(); // Got SOF
630 Demod
.state
= DEMOD_AWAITING_START_BIT
;
633 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
639 if(Demod
.posCount
> 12*2) { // low phase of SOF too long (> 12 etu)
640 Demod
.state
= DEMOD_UNSYNCD
;
646 case DEMOD_AWAITING_START_BIT
:
648 MAKE_SOFT_DECISION();
650 if(Demod
.posCount
> 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
651 Demod
.state
= DEMOD_UNSYNCD
;
654 } else { // start bit detected
656 Demod
.posCount
= 1; // this was the first half
659 Demod
.state
= DEMOD_RECEIVING_DATA
;
663 case DEMOD_RECEIVING_DATA
:
664 MAKE_SOFT_DECISION();
665 if(Demod
.posCount
== 0) { // first half of bit
668 } else { // second half of bit
671 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
672 if(Demod.thisBit > 0) {
673 Demod.metric += Demod.thisBit;
675 Demod.metric -= Demod.thisBit;
680 Demod
.shiftReg
>>= 1;
681 if(Demod
.thisBit
> 0) { // logic '1'
682 Demod
.shiftReg
|= 0x200;
686 if(Demod
.bitCount
== 10) {
687 uint16_t s
= Demod
.shiftReg
;
688 if((s
& 0x200) && !(s
& 0x001)) { // stop bit == '1', start bit == '0'
689 uint8_t b
= (s
>> 1);
690 Demod
.output
[Demod
.len
] = b
;
692 Demod
.state
= DEMOD_AWAITING_START_BIT
;
694 Demod
.state
= DEMOD_UNSYNCD
;
697 // This is EOF (start, stop and all data bits == '0'
707 Demod
.state
= DEMOD_UNSYNCD
;
716 static void DemodReset()
718 // Clear out the state of the "UART" that receives from the tag.
720 Demod
.state
= DEMOD_UNSYNCD
;
722 memset(Demod
.output
, 0x00, MAX_FRAME_SIZE
);
726 static void DemodInit(uint8_t *data
)
734 * Demodulate the samples we received from the tag, also log to tracebuffer
735 * quiet: set to 'TRUE' to disable debug output
737 static void GetSamplesFor14443bDemod(int n
, bool quiet
)
740 bool gotFrame
= FALSE
;
741 int lastRxCounter
, ci
, cq
, samples
= 0;
743 // Allocate memory from BigBuf for some buffers
744 // free all previous allocations first
747 // The response (tag -> reader) that we're receiving.
748 uint8_t *receivedResponse
= BigBuf_malloc(MAX_FRAME_SIZE
);
750 // The DMA buffer, used to stream samples from the FPGA
751 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
753 // Set up the demodulator for tag -> reader responses.
754 DemodInit(receivedResponse
);
756 // Setup and start DMA.
757 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
759 int8_t *upTo
= dmaBuf
;
760 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
762 // Signal field is ON with the appropriate LED:
764 // And put the FPGA in the appropriate mode
765 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
768 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
769 if(behindBy
> max
) max
= behindBy
;
771 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1)) > 2) {
775 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
777 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
778 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
781 if(lastRxCounter
<= 0) {
782 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
787 if(Handle14443bSamplesDemod(ci
, cq
)) {
793 if(samples
> n
|| gotFrame
) {
798 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
800 if (!quiet
) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max
, samples
, gotFrame
, Demod
.len
, Demod
.sumI
, Demod
.sumQ
);
802 if (tracing
&& Demod
.len
> 0) {
803 uint8_t parity
[MAX_PARITY_SIZE
];
804 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
);
809 //-----------------------------------------------------------------------------
810 // Transmit the command (to the tag) that was placed in ToSend[].
811 //-----------------------------------------------------------------------------
812 static void TransmitFor14443b(void)
818 while(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
819 AT91C_BASE_SSC
->SSC_THR
= 0xff;
822 // Signal field is ON with the appropriate Red LED
824 // Signal we are transmitting with the Green LED
826 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
828 for(c
= 0; c
< 10;) {
829 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
830 AT91C_BASE_SSC
->SSC_THR
= 0xff;
833 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
834 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
842 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
843 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
];
849 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
850 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
855 LED_B_OFF(); // Finished sending
859 //-----------------------------------------------------------------------------
860 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
861 // so that it is ready to transmit to the tag using TransmitFor14443b().
862 //-----------------------------------------------------------------------------
863 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
870 // Establish initial reference level
871 for(i
= 0; i
< 40; i
++) {
875 for(i
= 0; i
< 10; i
++) {
879 for(i
= 0; i
< len
; i
++) {
887 for(j
= 0; j
< 8; j
++) {
898 for(i
= 0; i
< 10; i
++) {
901 for(i
= 0; i
< 8; i
++) {
905 // And then a little more, to make sure that the last character makes
906 // it out before we switch to rx mode.
907 for(i
= 0; i
< 24; i
++) {
911 // Convert from last character reference to length
917 Convenience function to encode, transmit and trace iso 14443b comms
919 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
)
921 CodeIso14443bAsReader(cmd
, len
);
924 uint8_t parity
[MAX_PARITY_SIZE
];
925 LogTrace(cmd
,len
, 0, 0, parity
, TRUE
);
930 //-----------------------------------------------------------------------------
931 // Read a SRI512 ISO 14443B tag.
933 // SRI512 tags are just simple memory tags, here we're looking at making a dump
934 // of the contents of the memory. No anticollision algorithm is done, we assume
935 // we have a single tag in the field.
937 // I tried to be systematic and check every answer of the tag, every CRC, etc...
938 //-----------------------------------------------------------------------------
939 void ReadSTMemoryIso14443b(uint32_t dwLast
)
943 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
944 // Make sure that we start from off, since the tags are stateful;
945 // confusing things will happen if we don't reset them between reads.
947 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
950 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
953 // Now give it time to spin up.
954 // Signal field is on with the appropriate LED
956 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
962 // First command: wake up the tag using the INITIATE command
963 uint8_t cmd1
[] = {0x06, 0x00, 0x97, 0x5b};
964 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
965 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
967 if (Demod
.len
== 0) {
968 DbpString("No response from tag");
971 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
972 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
975 // There is a response, SELECT the uid
976 DbpString("Now SELECT tag:");
977 cmd1
[0] = 0x0E; // 0x0E is SELECT
978 cmd1
[1] = Demod
.output
[0];
979 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
980 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
981 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
982 if (Demod
.len
!= 3) {
983 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
986 // Check the CRC of the answer:
987 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
988 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
989 DbpString("CRC Error reading select response.");
992 // Check response from the tag: should be the same UID as the command we just sent:
993 if (cmd1
[1] != Demod
.output
[0]) {
994 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
998 // Tag is now selected,
999 // First get the tag's UID:
1001 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1002 CodeAndTransmit14443bAsReader(cmd1
, 3); // Only first three bytes for this one
1003 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1004 if (Demod
.len
!= 10) {
1005 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1008 // The check the CRC of the answer (use cmd1 as temporary variable):
1009 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1010 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1011 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1012 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1013 // Do not return;, let's go on... (we should retry, maybe ?)
1015 Dbprintf("Tag UID (64 bits): %08x %08x",
1016 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1017 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1019 // Now loop to read all 16 blocks, address from 0 to last block
1020 Dbprintf("Tag memory dump, block 0 to %d", dwLast
);
1026 DbpString("System area block (0xff):");
1030 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1031 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
));
1032 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1033 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
1034 DbpString("Expected 6 bytes from tag, got less...");
1037 // The check the CRC of the answer (use cmd1 as temporary variable):
1038 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1039 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1040 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1041 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1042 // Do not return;, let's go on... (we should retry, maybe ?)
1044 // Now print out the memory location:
1045 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1046 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1047 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1056 //=============================================================================
1057 // Finally, the `sniffer' combines elements from both the reader and
1058 // simulated tag, to show both sides of the conversation.
1059 //=============================================================================
1061 //-----------------------------------------------------------------------------
1062 // Record the sequence of commands sent by the reader to the tag, with
1063 // triggering so that we start recording at the point that the tag is moved
1065 //-----------------------------------------------------------------------------
1067 * Memory usage for this function, (within BigBuf)
1068 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1069 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1070 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1071 * Demodulated samples received - all the rest
1073 void RAMFUNC
SnoopIso14443b(void)
1075 // We won't start recording the frames that we acquire until we trigger;
1076 // a good trigger condition to get started is probably when we see a
1077 // response from the tag.
1078 int triggered
= TRUE
; // TODO: set and evaluate trigger condition
1080 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1086 // The DMA buffer, used to stream samples from the FPGA
1087 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
1091 int maxBehindBy
= 0;
1093 // Count of samples received so far, so that we can include timing
1094 // information in the trace buffer.
1097 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1098 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1100 // Print some debug information about the buffer sizes
1101 Dbprintf("Snooping buffers initialized:");
1102 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1103 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1104 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1105 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1107 // Signal field is off, no reader signal, no tag signal
1110 // And put the FPGA in the appropriate mode
1111 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
1112 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1114 // Setup for the DMA.
1117 lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1118 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
);
1119 uint8_t parity
[MAX_PARITY_SIZE
];
1121 bool TagIsActive
= FALSE
;
1122 bool ReaderIsActive
= FALSE
;
1124 // And now we loop, receiving samples.
1126 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
1127 (ISO14443B_DMA_BUFFER_SIZE
-1);
1128 if(behindBy
> maxBehindBy
) {
1129 maxBehindBy
= behindBy
;
1132 if(behindBy
< 2) continue;
1138 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
1140 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1141 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
1142 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
1144 if(behindBy
> (9*ISO14443B_DMA_BUFFER_SIZE
/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1145 Dbprintf("blew circular buffer! behindBy=%d", behindBy
);
1149 DbpString("Reached trace limit");
1152 if(BUTTON_PRESS()) {
1153 DbpString("cancelled");
1160 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1161 if(Handle14443bUartBit(ci
& 0x01)) {
1162 if(triggered
&& tracing
) {
1163 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1165 /* And ready to receive another command. */
1167 /* And also reset the demod code, which might have been */
1168 /* false-triggered by the commands from the reader. */
1171 if(Handle14443bUartBit(cq
& 0x01)) {
1172 if(triggered
&& tracing
) {
1173 LogTrace(Uart
.output
, Uart
.byteCnt
, samples
, samples
, parity
, TRUE
);
1175 /* And ready to receive another command. */
1177 /* And also reset the demod code, which might have been */
1178 /* false-triggered by the commands from the reader. */
1181 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1184 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1185 if(Handle14443bSamplesDemod(ci
| 0x01, cq
| 0x01)) {
1187 //Use samples as a time measurement
1190 uint8_t parity
[MAX_PARITY_SIZE
];
1191 LogTrace(Demod
.output
, Demod
.len
, samples
, samples
, parity
, FALSE
);
1195 // And ready to receive another response.
1198 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1203 FpgaDisableSscDma();
1205 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
1206 DbpString("Snoop statistics:");
1207 Dbprintf(" Max behind by: %i", maxBehindBy
);
1208 Dbprintf(" Uart State: %x", Uart
.state
);
1209 Dbprintf(" Uart ByteCnt: %i", Uart
.byteCnt
);
1210 Dbprintf(" Uart ByteCntMax: %i", Uart
.byteCntMax
);
1211 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1216 * Send raw command to tag ISO14443B
1218 * datalen len of buffer data
1219 * recv bool when true wait for data from tag and send to client
1220 * powerfield bool leave the field on when true
1221 * data buffer with byte to send
1227 void SendRawCommand14443B(uint32_t datalen
, uint32_t recv
, uint8_t powerfield
, uint8_t data
[])
1229 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1230 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1236 CodeAndTransmit14443bAsReader(data
, datalen
);
1239 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT
, TRUE
);
1240 uint16_t iLen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1241 cmd_send(CMD_ACK
, iLen
, 0, 0, Demod
.output
, iLen
);
1246 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);