1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  18 #include "lfsampling.h" 
  22  * Function to do a modulation and then get samples. 
  28 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
  31     int divisor_used 
= 95; // 125 KHz 
  32     // see if 'h' was specified 
  34     if (command
[strlen((char *) command
) - 1] == 'h') 
  35         divisor_used 
= 88; // 134.8 KHz 
  37         sample_config sc 
= { 0,0,1, divisor_used
, 0}; 
  38         setSamplingConfig(&sc
); 
  40         /* Make sure the tag is reset */ 
  41         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  42         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  45         LFSetupFPGAForADC(sc
.divisor
, 1); 
  47         // And a little more time for the tag to fully power up 
  50     // now modulate the reader field 
  51     while(*command 
!= '\0' && *command 
!= ' ') { 
  52         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  54         SpinDelayUs(delay_off
); 
  55                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  57         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  59         if(*(command
++) == '0') 
  60             SpinDelayUs(period_0
); 
  62             SpinDelayUs(period_1
); 
  64     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  66     SpinDelayUs(delay_off
); 
  67         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  69     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  72         DoAcquisition_config(false); 
  77 /* blank r/w tag data stream 
  78 ...0000000000000000 01111111 
  79 1010101010101010101010101010101010101010101010101010101010101010 
  82 101010101010101[0]000... 
  84 [5555fe852c5555555555555555fe0000] 
  88     // some hardcoded initial params 
  89     // when we read a TI tag we sample the zerocross line at 2Mhz 
  90     // TI tags modulate a 1 as 16 cycles of 123.2Khz 
  91     // TI tags modulate a 0 as 16 cycles of 134.2Khz 
  92  #define FSAMPLE 2000000 
  96     signed char *dest 
= (signed char *)BigBuf_get_addr(); 
  97     uint16_t n 
= BigBuf_max_traceLen(); 
  98     // 128 bit shift register [shift3:shift2:shift1:shift0] 
  99     uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 101     int i
, cycles
=0, samples
=0; 
 102     // how many sample points fit in 16 cycles of each frequency 
 103     uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 104     // when to tell if we're close enough to one freq or another 
 105     uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 107     // TI tags charge at 134.2Khz 
 108     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 109     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 111     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 112     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 113     // whether we're modulating the antenna (high) 
 114     // or listening to the antenna (low) 
 115     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 117     // get TI tag data into the buffer 
 120     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 122     for (i
=0; i
<n
-1; i
++) { 
 123         // count cycles by looking for lo to hi zero crossings 
 124         if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 126             // after 16 cycles, measure the frequency 
 129                 samples
=i
-samples
; // number of samples in these 16 cycles 
 131                 // TI bits are coming to us lsb first so shift them 
 132                 // right through our 128 bit right shift register 
 133                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 134                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 135                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 138                 // check if the cycles fall close to the number 
 139                 // expected for either the low or high frequency 
 140                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 141                     // low frequency represents a 1 
 143                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 144                     // high frequency represents a 0 
 146                     // probably detected a gay waveform or noise 
 147                     // use this as gaydar or discard shift register and start again 
 148                     shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 152                 // for each bit we receive, test if we've detected a valid tag 
 154                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 155                 // remember the bits are backwards 
 156                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 157                     // if start and end bytes match, we have a tag so break out of the loop 
 158                     if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 159                         cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 167     // if flag is set we have a tag 
 169         DbpString("Info: No valid tag detected."); 
 171         // put 64 bit data into shift1 and shift0 
 172         shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 173         shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 175         // align 16 bit crc into lower half of shift2 
 176         shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 178         // if r/w tag, check ident match 
 179                 if (shift3 
& (1<<15) ) { 
 180             DbpString("Info: TI tag is rewriteable"); 
 181             // only 15 bits compare, last bit of ident is not valid 
 182                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 183                 DbpString("Error: Ident mismatch!"); 
 185                 DbpString("Info: TI tag ident is valid"); 
 188             DbpString("Info: TI tag is readonly"); 
 191         // WARNING the order of the bytes in which we calc crc below needs checking 
 192         // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 193         // bytes in reverse or something 
 197         crc 
= update_crc16(crc
, (shift0
)&0xff); 
 198         crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 199         crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 200         crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 201         crc 
= update_crc16(crc
, (shift1
)&0xff); 
 202         crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 203         crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 204         crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 206         Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 207                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 208         if (crc 
!= (shift2
&0xffff)) { 
 209             Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 211             DbpString("Info: CRC is good"); 
 216 void WriteTIbyte(uint8_t b
) 
 220     // modulate 8 bits out to the antenna 
 224             // stop modulating antenna 
 231             // stop modulating antenna 
 241 void AcquireTiType(void) 
 244     // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 245     // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 246  #define TIBUFLEN 1250 
 249         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 250     memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t)); 
 252     // Set up the synchronous serial port 
 253     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 254     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 256     // steal this pin from the SSP and use it to control the modulation 
 257     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 258     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 260     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 261     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 263     // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 264     // 48/2 = 24 MHz clock must be divided by 12 
 265     AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 267     AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 268     AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 269     AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 270     AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 277     // Charge TI tag for 50ms. 
 280     // stop modulating antenna and listen 
 287         if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 288             BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;        // store 32 bit values in buffer 
 289             i
++; if(i 
>= TIBUFLEN
) break; 
 294     // return stolen pin to SSP 
 295     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 296     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 298     char *dest 
= (char *)BigBuf_get_addr(); 
 301     for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 302         for (j
=0; j
<32; j
++) { 
 303             if(BigBuf
[i
] & (1 << j
)) { 
 312 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 313 // if crc provided, it will be written with the data verbatim (even if bogus) 
 314 // if not provided a valid crc will be computed from the data and written. 
 315 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 317     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 319         crc 
= update_crc16(crc
, (idlo
)&0xff); 
 320         crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 321         crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 322         crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 323         crc 
= update_crc16(crc
, (idhi
)&0xff); 
 324         crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 325         crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 326         crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 328     Dbprintf("Writing to tag: %x%08x, crc=%x", 
 329              (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 331     // TI tags charge at 134.2Khz 
 332     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 333     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 334     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 335     // whether we're modulating the antenna (high) 
 336     // or listening to the antenna (low) 
 337     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 340     // steal this pin from the SSP and use it to control the modulation 
 341     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 342     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 344     // writing algorithm: 
 345     // a high bit consists of a field off for 1ms and field on for 1ms 
 346     // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 347     // initiate a charge time of 50ms (field on) then immediately start writing bits 
 348     // start by writing 0xBB (keyword) and 0xEB (password) 
 349     // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 350     // finally end with 0x0300 (write frame) 
 351     // all data is sent lsb firts 
 352     // finish with 15ms programming time 
 356     SpinDelay(50);      // charge time 
 358     WriteTIbyte(0xbb); // keyword 
 359     WriteTIbyte(0xeb); // password 
 360     WriteTIbyte( (idlo    
)&0xff ); 
 361     WriteTIbyte( (idlo
>>8 )&0xff ); 
 362     WriteTIbyte( (idlo
>>16)&0xff ); 
 363     WriteTIbyte( (idlo
>>24)&0xff ); 
 364     WriteTIbyte( (idhi    
)&0xff ); 
 365     WriteTIbyte( (idhi
>>8 )&0xff ); 
 366     WriteTIbyte( (idhi
>>16)&0xff ); 
 367     WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 368     WriteTIbyte( (crc     
)&0xff ); // crc lo 
 369     WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 370     WriteTIbyte(0x00); // write frame lo 
 371     WriteTIbyte(0x03); // write frame hi 
 373     SpinDelay(50);      // programming time 
 377     // get TI tag data into the buffer 
 380     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 381     DbpString("Now use tiread to check"); 
 384 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 387     uint8_t *tab 
= BigBuf_get_addr(); 
 389     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 390     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 392     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 394     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 395     AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 397  #define SHORT_COIL()   LOW(GPIO_SSC_DOUT) 
 398  #define OPEN_COIL()            HIGH(GPIO_SSC_DOUT) 
 402         while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 404                 DbpString("Stopped"); 
 420         //wait for next sample time 
 421         while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 423                 DbpString("Stopped"); 
 440 #define DEBUG_FRAME_CONTENTS 1 
 441 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 445 // compose fc/8 fc/10 waveform (FSK2) 
 446 static void fc(int c
, int *n
) 
 448     uint8_t *dest 
= BigBuf_get_addr(); 
 451     // for when we want an fc8 pattern every 4 logical bits 
 463     //  an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples 
 465         for (idx
=0; idx
<6; idx
++) { 
 477     //  an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples 
 479         for (idx
=0; idx
<5; idx
++) { 
 493 // compose fc/X fc/Y waveform (FSKx) 
 494 static void fcAll(uint8_t c
, int *n
, uint8_t clock
)  
 496     uint8_t *dest 
= BigBuf_get_addr(); 
 499     // c = count of field clock for this bit 
 502     // loop through clock - step field clock 
 503     for (idx
=0; idx 
< (uint8_t) clock
/c
; idx
++){ 
 504         // loop through field clock length - put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) 
 505         for (fcCnt
=0; fcCnt 
< c
; fcCnt
++){ 
 513     Dbprintf("mod: %d",mod
); 
 514     if (mod
>0){ //for FC counts that don't add up to a full clock cycle padd with extra wave 
 515         for (idx
=0; idx 
< mod
; idx
++){ 
 525 // prepare a waveform pattern in the buffer based on the ID given then 
 526 // simulate a HID tag until the button is pressed 
 527 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 531      HID tag bitstream format 
 532      The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 533      A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 534      A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 535      A fc8 is inserted before every 4 bits 
 536      A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 537      nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 541         DbpString("Tags can only have 44 bits."); 
 545     // special start of frame marker containing invalid bit sequences 
 546     fc(8,  &n
); fc(8,  &n
);     // invalid 
 547     fc(8,  &n
); fc(10, &n
); // logical 0 
 548     fc(10, &n
); fc(10, &n
); // invalid 
 549     fc(8,  &n
); fc(10, &n
); // logical 0 
 552     // manchester encode bits 43 to 32 
 553     for (i
=11; i
>=0; i
--) { 
 554         if ((i%4
)==3) fc(0,&n
); 
 556             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 558             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 563     // manchester encode bits 31 to 0 
 564     for (i
=31; i
>=0; i
--) { 
 565         if ((i%4
)==3) fc(0,&n
); 
 567             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 569             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 575     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 581 // prepare a waveform pattern in the buffer based on the ID given then 
 582 // simulate a FSK tag until the button is pressed 
 583 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock 
 584 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 588     uint8_t fcHigh 
= arg1 
>> 8; 
 589     uint8_t fcLow 
= arg1 
& 0xFF; 
 591     uint8_t clk 
= arg2 
& 0xFF; 
 592     uint8_t invert 
= (arg2 
>> 8) & 1; 
 596     for (i
=0; i
<size
; i
++){ 
 597         //if ((i%4==3) fcAll(0,&n)); 
 598         if (BitStream
[i
] == invert
){ 
 599             fcAll(fcLow
, &n
, clk
); 
 601             fcAll(fcHigh
, &n
, clk
); 
 604     Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
); 
 605     //Dbprintf("First 64:"); 
 606     //uint8_t *dest = BigBuf_get_addr(); 
 608     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 610     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 612     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 614     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 618     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 624 // compose ask waveform for one bit(ASK) 
 625 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)  
 627     uint8_t *dest 
= BigBuf_get_addr(); 
 629     // c = current bit 1 or 0 
 631     // for when we want a separator 
 632     if (c
==2) { //separator 
 633         for (i
=0; i
<clock
/2; i
++){ 
 638             for (idx
=0; idx 
< (uint8_t) clock
/2; idx
++){ 
 641             for (idx
=0; idx 
< (uint8_t) clock
/2; idx
++){ 
 645             for (idx
=0; idx 
< (uint8_t) clock
; idx
++){ 
 652 // args clock, ask/man or askraw, invert, transmission separator 
 653 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 657     uint8_t clk 
= (arg1 
>> 8) & 0xFF; 
 658     uint8_t manchester 
= arg1 
& 1; 
 659     uint8_t separator 
= arg2 
& 1; 
 660     uint8_t invert 
= (arg2 
>> 8) & 1; 
 662     for (i
=0; i
<size
; i
++){ 
 663         askSimBit(BitStream
[i
]^invert
, &n
, clk
, manchester
); 
 665     if (separator
==1) Dbprintf("sorry but separator option not yet available"); //askSimBit(2, &n, clk, manchester); 
 667     Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk
, invert
, manchester
, separator
, n
); 
 669     //Dbprintf("First 64:"); 
 670     //uint8_t *dest = BigBuf_get_addr(); 
 672     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 674     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 676     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 678     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 683     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 689 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 690 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 692     uint8_t *dest 
= BigBuf_get_addr(); 
 693     const size_t sizeOfBigBuff 
= BigBuf_max_traceLen(); 
 695     uint32_t hi2
=0, hi
=0, lo
=0; 
 697     // Configure to go in 125Khz listen mode 
 698     LFSetupFPGAForADC(95, true); 
 700     while(!BUTTON_PRESS()) { 
 703         if (ledcontrol
) LED_A_ON(); 
 705                 DoAcquisition_default(-1,true); 
 707         size 
= sizeOfBigBuff
;  //variable size will change after demod so re initialize it before use 
 708                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 711             // final loop, go over previously decoded manchester data and decode into usable tag ID 
 712             // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 713             if (hi2 
!= 0){ //extra large HID tags 
 714                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 715                          (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 716             }else {  //standard HID tags <38 bits 
 717                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 720                 uint32_t cardnum 
= 0; 
 721                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 723                     lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 725                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 733                         cardnum 
= (lo
>>1)&0xFFFF; 
 737                         cardnum 
= (lo
>>1)&0x7FFFF; 
 738                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 741                         cardnum 
= (lo
>>1)&0xFFFF; 
 742                         fc
= ((hi
&1)<<15)|(lo
>>17); 
 745                         cardnum 
= (lo
>>1)&0xFFFFF; 
 746                         fc 
= ((hi
&1)<<11)|(lo
>>21); 
 749                 else { //if bit 38 is not set then 37 bit format is used 
 754                         cardnum 
= (lo
>>1)&0x7FFFF; 
 755                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 758                 //Dbprintf("TAG ID: %x%08x (%d)", 
 759                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 760                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 761                          (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 762                          (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 765                 if (ledcontrol
) LED_A_OFF(); 
 775     DbpString("Stopped"); 
 776     if (ledcontrol
) LED_A_OFF(); 
 779 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 781     uint8_t *dest 
= BigBuf_get_addr(); 
 783         size_t size
=0, idx
=0; 
 784     int clk
=0, invert
=0, errCnt
=0, maxErr
=20; 
 786     // Configure to go in 125Khz listen mode 
 787     LFSetupFPGAForADC(95, true); 
 789     while(!BUTTON_PRESS()) { 
 792         if (ledcontrol
) LED_A_ON(); 
 794                 DoAcquisition_default(-1,true); 
 795                 size  
= BigBuf_max_traceLen(); 
 796         //Dbprintf("DEBUG: Buffer got"); 
 797                 //askdemod and manchester decode 
 798                 errCnt 
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
); 
 799         //Dbprintf("DEBUG: ASK Got"); 
 803                         lo 
= Em410xDecode(dest
, &size
, &idx
); 
 804             //Dbprintf("DEBUG: EM GOT"); 
 806                                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 809                                     (uint32_t)(lo
&0xFFFF), 
 810                                     (uint32_t)((lo
>>16LL) & 0xFF), 
 811                                     (uint32_t)(lo 
& 0xFFFFFF)); 
 814                 if (ledcontrol
) LED_A_OFF(); 
 816                 *low
=lo 
& 0xFFFFFFFF; 
 820             //Dbprintf("DEBUG: No Tag"); 
 829     DbpString("Stopped"); 
 830     if (ledcontrol
) LED_A_OFF(); 
 833 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 835     uint8_t *dest 
= BigBuf_get_addr(); 
 837     uint32_t code
=0, code2
=0; 
 839     uint8_t facilitycode
=0; 
 841     // Configure to go in 125Khz listen mode 
 842     LFSetupFPGAForADC(95, true); 
 844     while(!BUTTON_PRESS()) { 
 846         if (ledcontrol
) LED_A_ON(); 
 847                 DoAcquisition_default(-1,true); 
 848                 //fskdemod and get start index 
 850         idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
 855             //0           10          20          30          40          50          60 
 857             //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 858             //----------------------------------------------------------------------------- 
 859             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
 861             //XSF(version)facility:codeone+codetwo 
 863             if(findone
){ //only print binary if we are doing one 
 864                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
 865                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
 866                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
 867                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
 868                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
 869                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
 870                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 872             code 
= bytebits_to_byte(dest
+idx
,32); 
 873             code2 
= bytebits_to_byte(dest
+idx
+32,32); 
 874             version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
 875             facilitycode 
= bytebits_to_byte(dest
+idx
+18,8) ; 
 876             number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
 878             Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
); 
 879             // if we're only looking for one tag 
 881                 if (ledcontrol
) LED_A_OFF(); 
 888             version
=facilitycode
=0; 
 894     DbpString("Stopped"); 
 895     if (ledcontrol
) LED_A_OFF(); 
 898 /*------------------------------ 
 899  * T5555/T5557/T5567 routines 
 900  *------------------------------ 
 903 /* T55x7 configuration register definitions */ 
 904 #define T55x7_POR_DELAY                 0x00000001 
 905 #define T55x7_ST_TERMINATOR             0x00000008 
 906 #define T55x7_PWD                       0x00000010 
 907 #define T55x7_MAXBLOCK_SHIFT            5 
 908 #define T55x7_AOR                       0x00000200 
 909 #define T55x7_PSKCF_RF_2                0 
 910 #define T55x7_PSKCF_RF_4                0x00000400 
 911 #define T55x7_PSKCF_RF_8                0x00000800 
 912 #define T55x7_MODULATION_DIRECT         0 
 913 #define T55x7_MODULATION_PSK1           0x00001000 
 914 #define T55x7_MODULATION_PSK2           0x00002000 
 915 #define T55x7_MODULATION_PSK3           0x00003000 
 916 #define T55x7_MODULATION_FSK1           0x00004000 
 917 #define T55x7_MODULATION_FSK2           0x00005000 
 918 #define T55x7_MODULATION_FSK1a          0x00006000 
 919 #define T55x7_MODULATION_FSK2a          0x00007000 
 920 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 921 #define T55x7_MODULATION_BIPHASE        0x00010000 
 922 #define T55x7_BITRATE_RF_8              0 
 923 #define T55x7_BITRATE_RF_16             0x00040000 
 924 #define T55x7_BITRATE_RF_32             0x00080000 
 925 #define T55x7_BITRATE_RF_40             0x000C0000 
 926 #define T55x7_BITRATE_RF_50             0x00100000 
 927 #define T55x7_BITRATE_RF_64             0x00140000 
 928 #define T55x7_BITRATE_RF_100            0x00180000 
 929 #define T55x7_BITRATE_RF_128            0x001C0000 
 931 /* T5555 (Q5) configuration register definitions */ 
 932 #define T5555_ST_TERMINATOR             0x00000001 
 933 #define T5555_MAXBLOCK_SHIFT            0x00000001 
 934 #define T5555_MODULATION_MANCHESTER     0 
 935 #define T5555_MODULATION_PSK1           0x00000010 
 936 #define T5555_MODULATION_PSK2           0x00000020 
 937 #define T5555_MODULATION_PSK3           0x00000030 
 938 #define T5555_MODULATION_FSK1           0x00000040 
 939 #define T5555_MODULATION_FSK2           0x00000050 
 940 #define T5555_MODULATION_BIPHASE        0x00000060 
 941 #define T5555_MODULATION_DIRECT         0x00000070 
 942 #define T5555_INVERT_OUTPUT             0x00000080 
 943 #define T5555_PSK_RF_2                  0 
 944 #define T5555_PSK_RF_4                  0x00000100 
 945 #define T5555_PSK_RF_8                  0x00000200 
 946 #define T5555_USE_PWD                   0x00000400 
 947 #define T5555_USE_AOR                   0x00000800 
 948 #define T5555_BITRATE_SHIFT             12 
 949 #define T5555_FAST_WRITE                0x00004000 
 950 #define T5555_PAGE_SELECT               0x00008000 
 953  * Relevant times in microsecond 
 954  * To compensate antenna falling times shorten the write times 
 955  * and enlarge the gap ones. 
 957 #define START_GAP 250 
 958 #define WRITE_GAP 160 
 959 #define WRITE_0   144 // 192 
 960 #define WRITE_1   400 // 432 for T55x7; 448 for E5550 
 962 // Write one bit to card 
 963 void T55xxWriteBit(int bit
) 
 965     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 966     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 967     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 969         SpinDelayUs(WRITE_0
); 
 971         SpinDelayUs(WRITE_1
); 
 972     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 973     SpinDelayUs(WRITE_GAP
); 
 976 // Write one card block in page 0, no lock 
 977 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
 979     //unsigned int i;  //enio adjustment 12/10/14 
 982     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 983     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
 984     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
 986     // Give it a bit of time for the resonant antenna to settle. 
 987     // And for the tag to fully power up 
 990     // Now start writting 
 991     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 992     SpinDelayUs(START_GAP
); 
 996     T55xxWriteBit(0); //Page 0 
 999         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1000             T55xxWriteBit(Pwd 
& i
); 
1006     for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1007         T55xxWriteBit(Data 
& i
); 
1010     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1011         T55xxWriteBit(Block 
& i
); 
1013     // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1014     // so wait a little more) 
1015     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1016     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1018     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1021 // Read one card block in page 0 
1022 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1024     uint8_t *dest 
= BigBuf_get_addr(); 
1025     //int m=0, i=0; //enio adjustment 12/10/14 
1027     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1028     m 
= BigBuf_max_traceLen(); 
1029     // Clear destination buffer before sending the command 
1030     memset(dest
, 128, m
); 
1031     // Connect the A/D to the peak-detected low-frequency path. 
1032     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1033     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1037     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1038     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1040     // Give it a bit of time for the resonant antenna to settle. 
1041     // And for the tag to fully power up 
1044     // Now start writting 
1045     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1046     SpinDelayUs(START_GAP
); 
1050     T55xxWriteBit(0); //Page 0 
1053         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1054             T55xxWriteBit(Pwd 
& i
); 
1059     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1060         T55xxWriteBit(Block 
& i
); 
1062     // Turn field on to read the response 
1063     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1064     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1066     // Now do the acquisition 
1069         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1070             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1072         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1073             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1074             // we don't care about actual value, only if it's more or less than a 
1075             // threshold essentially we capture zero crossings for later analysis 
1076             //                  if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; 
1082     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1087 // Read card traceability data (page 1) 
1088 void T55xxReadTrace(void){ 
1089     uint8_t *dest 
= BigBuf_get_addr(); 
1092     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1093     m 
= BigBuf_max_traceLen(); 
1094     // Clear destination buffer before sending the command 
1095     memset(dest
, 128, m
); 
1096     // Connect the A/D to the peak-detected low-frequency path. 
1097     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1098     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1102     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1103     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1105     // Give it a bit of time for the resonant antenna to settle. 
1106     // And for the tag to fully power up 
1109     // Now start writting 
1110     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1111     SpinDelayUs(START_GAP
); 
1115     T55xxWriteBit(1); //Page 1 
1117     // Turn field on to read the response 
1118     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1119     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1121     // Now do the acquisition 
1124         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1125             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1127         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1128             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1134     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1139 /*-------------- Cloning routines -----------*/ 
1140 // Copy HID id to card and setup block 0 config 
1141 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1143     int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1147         // Ensure no more than 84 bits supplied 
1149             DbpString("Tags can only have 84 bits."); 
1152         // Build the 6 data blocks for supplied 84bit ID 
1154         data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1155         for (int i
=0;i
<4;i
++) { 
1156             if (hi2 
& (1<<(19-i
))) 
1157                 data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1159                 data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1163         for (int i
=0;i
<16;i
++) { 
1164             if (hi2 
& (1<<(15-i
))) 
1165                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1167                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1171         for (int i
=0;i
<16;i
++) { 
1172             if (hi 
& (1<<(31-i
))) 
1173                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1175                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1179         for (int i
=0;i
<16;i
++) { 
1180             if (hi 
& (1<<(15-i
))) 
1181                 data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1183                 data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1187         for (int i
=0;i
<16;i
++) { 
1188             if (lo 
& (1<<(31-i
))) 
1189                 data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1191                 data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1195         for (int i
=0;i
<16;i
++) { 
1196             if (lo 
& (1<<(15-i
))) 
1197                 data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1199                 data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1203         // Ensure no more than 44 bits supplied 
1205             DbpString("Tags can only have 44 bits."); 
1209         // Build the 3 data blocks for supplied 44bit ID 
1212         data1 
= 0x1D000000; // load preamble 
1214         for (int i
=0;i
<12;i
++) { 
1215             if (hi 
& (1<<(11-i
))) 
1216                 data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1218                 data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1222         for (int i
=0;i
<16;i
++) { 
1223             if (lo 
& (1<<(31-i
))) 
1224                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1226                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1230         for (int i
=0;i
<16;i
++) { 
1231             if (lo 
& (1<<(15-i
))) 
1232                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1234                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1239     // Program the data blocks for supplied ID 
1240     // and the block 0 for HID format 
1241     T55xxWriteBlock(data1
,1,0,0); 
1242     T55xxWriteBlock(data2
,2,0,0); 
1243     T55xxWriteBlock(data3
,3,0,0); 
1245     if (longFMT
) { // if long format there are 6 blocks 
1246         T55xxWriteBlock(data4
,4,0,0); 
1247         T55xxWriteBlock(data5
,5,0,0); 
1248         T55xxWriteBlock(data6
,6,0,0); 
1251     // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1252     T55xxWriteBlock(T55x7_BITRATE_RF_50    
| 
1253                     T55x7_MODULATION_FSK2a 
| 
1254                     last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1262 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1264     int data1
=0, data2
=0; //up to six blocks for long format 
1266     data1 
= hi
;  // load preamble 
1270     // Program the data blocks for supplied ID 
1271     // and the block 0 for HID format 
1272     T55xxWriteBlock(data1
,1,0,0); 
1273     T55xxWriteBlock(data2
,2,0,0); 
1276     T55xxWriteBlock(0x00147040,0,0,0); 
1282 // Define 9bit header for EM410x tags 
1283 #define EM410X_HEADER           0x1FF 
1284 #define EM410X_ID_LENGTH        40 
1286 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1289     uint64_t id 
= EM410X_HEADER
; 
1290     uint64_t rev_id 
= 0;        // reversed ID 
1291     int c_parity
[4];    // column parity 
1292     int r_parity 
= 0;   // row parity 
1295     // Reverse ID bits given as parameter (for simpler operations) 
1296     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1298             rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1301             rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1306     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1307         id_bit 
= rev_id 
& 1; 
1310             // Don't write row parity bit at start of parsing 
1312                 id 
= (id 
<< 1) | r_parity
; 
1313             // Start counting parity for new row 
1320         // First elements in column? 
1322             // Fill out first elements 
1323             c_parity
[i
] = id_bit
; 
1325             // Count column parity 
1326             c_parity
[i 
% 4] ^= id_bit
; 
1329         id 
= (id 
<< 1) | id_bit
; 
1333     // Insert parity bit of last row 
1334     id 
= (id 
<< 1) | r_parity
; 
1336     // Fill out column parity at the end of tag 
1337     for (i 
= 0; i 
< 4; ++i
) 
1338         id 
= (id 
<< 1) | c_parity
[i
]; 
1343     Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1347     T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1348     T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1350     // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1352         // Clock rate is stored in bits 8-15 of the card value 
1353         clock 
= (card 
& 0xFF00) >> 8; 
1354         Dbprintf("Clock rate: %d", clock
); 
1358             clock 
= T55x7_BITRATE_RF_32
; 
1361             clock 
= T55x7_BITRATE_RF_16
; 
1364             // A value of 0 is assumed to be 64 for backwards-compatibility 
1367             clock 
= T55x7_BITRATE_RF_64
; 
1370             Dbprintf("Invalid clock rate: %d", clock
); 
1374         // Writing configuration for T55x7 tag 
1375         T55xxWriteBlock(clock       
| 
1376                         T55x7_MODULATION_MANCHESTER 
| 
1377                         2 << T55x7_MAXBLOCK_SHIFT
, 
1381         // Writing configuration for T5555(Q5) tag 
1382         T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1383                         T5555_MODULATION_MANCHESTER   
| 
1384                         2 << T5555_MAXBLOCK_SHIFT
, 
1388     Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1389              (uint32_t)(id 
>> 32), (uint32_t)id
); 
1392 // Clone Indala 64-bit tag by UID to T55x7 
1393 void CopyIndala64toT55x7(int hi
, int lo
) 
1396     //Program the 2 data blocks for supplied 64bit UID 
1397     // and the block 0 for Indala64 format 
1398     T55xxWriteBlock(hi
,1,0,0); 
1399     T55xxWriteBlock(lo
,2,0,0); 
1400     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1401     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1402                     T55x7_MODULATION_PSK1 
| 
1403                     2 << T55x7_MAXBLOCK_SHIFT
, 
1405     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1406     //  T5567WriteBlock(0x603E1042,0); 
1412 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1415     //Program the 7 data blocks for supplied 224bit UID 
1416     // and the block 0 for Indala224 format 
1417     T55xxWriteBlock(uid1
,1,0,0); 
1418     T55xxWriteBlock(uid2
,2,0,0); 
1419     T55xxWriteBlock(uid3
,3,0,0); 
1420     T55xxWriteBlock(uid4
,4,0,0); 
1421     T55xxWriteBlock(uid5
,5,0,0); 
1422     T55xxWriteBlock(uid6
,6,0,0); 
1423     T55xxWriteBlock(uid7
,7,0,0); 
1424     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1425     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1426                     T55x7_MODULATION_PSK1 
| 
1427                     7 << T55x7_MAXBLOCK_SHIFT
, 
1429     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1430     //  T5567WriteBlock(0x603E10E2,0); 
1437 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1438 #define max(x,y) ( x<y ? y:x) 
1440 int DemodPCF7931(uint8_t **outBlocks
) { 
1441     uint8_t BitStream
[256]; 
1442     uint8_t Blocks
[8][16]; 
1443     uint8_t *GraphBuffer 
= BigBuf_get_addr(); 
1444     int GraphTraceLen 
= BigBuf_max_traceLen(); 
1445     int i
, j
, lastval
, bitidx
, half_switch
; 
1447     int tolerance 
= clock 
/ 8; 
1448     int pmc
, block_done
; 
1449     int lc
, warnings 
= 0; 
1451     int lmin
=128, lmax
=128; 
1454         LFSetupFPGAForADC(95, true); 
1455         DoAcquisition_default(0, 0); 
1463     /* Find first local max/min */ 
1464     if(GraphBuffer
[1] > GraphBuffer
[0]) { 
1465         while(i 
< GraphTraceLen
) { 
1466             if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
) 
1473         while(i 
< GraphTraceLen
) { 
1474             if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
) 
1486     for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1488         if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir 
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir 
== 0 && GraphBuffer
[i
] < lmin
)) 
1493             // Switch depending on lc length: 
1494             // Tolerance is 1/8 of clock rate (arbitrary) 
1495             if (abs(lc
-clock
/4) < tolerance
) { 
1497                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1499                     i 
+= (128+127+16+32+33+16)-1; 
1507             } else if (abs(lc
-clock
/2) < tolerance
) { 
1509                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1511                     i 
+= (128+127+16+32+33)-1; 
1516                 else if(half_switch 
== 1) { 
1517                     BitStream
[bitidx
++] = 0; 
1522             } else if (abs(lc
-clock
) < tolerance
) { 
1524                 BitStream
[bitidx
++] = 1; 
1530                     Dbprintf("Error: too many detection errors, aborting."); 
1535             if(block_done 
== 1) { 
1537                     for(j
=0; j
<16; j
++) { 
1538                         Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1539                                 64*BitStream
[j
*8+6]+ 
1540                                 32*BitStream
[j
*8+5]+ 
1541                                 16*BitStream
[j
*8+4]+ 
1553             if(i 
< GraphTraceLen
) 
1555                 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0; 
1562         if(num_blocks 
== 4) break; 
1564     memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1568 int IsBlock0PCF7931(uint8_t *Block
) { 
1569     // Assume RFU means 0 :) 
1570     if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1572     if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1577 int IsBlock1PCF7931(uint8_t *Block
) { 
1578     // Assume RFU means 0 :) 
1579     if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1580         if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1588 void ReadPCF7931() { 
1589     uint8_t Blocks
[8][17]; 
1590     uint8_t tmpBlocks
[4][16]; 
1591     int i
, j
, ind
, ind2
, n
; 
1598     memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1601         memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1602         n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1605         if(error
==10 && num_blocks 
== 0) { 
1606             Dbprintf("Error, no tag or bad tag"); 
1609         else if (tries
==20 || error
==10) { 
1610             Dbprintf("Error reading the tag"); 
1611             Dbprintf("Here is the partial content"); 
1616             Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1617                      tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1618                     tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1620             for(i
=0; i
<n
; i
++) { 
1621                 if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1623                     if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1627                         memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1628                         Blocks
[0][ALLOC
] = 1; 
1629                         memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1630                         Blocks
[1][ALLOC
] = 1; 
1631                         max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1633                         Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1635                         // Handle following blocks 
1636                         for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1639                             memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1640                             Blocks
[ind2
][ALLOC
] = 1; 
1648             for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1649                 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1650                     for(j
=0; j
<max_blocks
; j
++) { 
1651                         if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1652                             // Found an identical block 
1653                             for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1656                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1657                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1658                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1659                                     Blocks
[ind2
][ALLOC
] = 1; 
1661                                     if(num_blocks 
== max_blocks
) goto end
; 
1664                             for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1665                                 if(ind2 
> max_blocks
) 
1667                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1668                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1669                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1670                                     Blocks
[ind2
][ALLOC
] = 1; 
1672                                     if(num_blocks 
== max_blocks
) goto end
; 
1681         if (BUTTON_PRESS()) return; 
1682     } while (num_blocks 
!= max_blocks
); 
1684     Dbprintf("-----------------------------------------"); 
1685     Dbprintf("Memory content:"); 
1686     Dbprintf("-----------------------------------------"); 
1687     for(i
=0; i
<max_blocks
; i
++) { 
1688         if(Blocks
[i
][ALLOC
]==1) 
1689             Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1690                      Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1691                     Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1693             Dbprintf("<missing block %d>", i
); 
1695     Dbprintf("-----------------------------------------"); 
1701 //----------------------------------- 
1702 // EM4469 / EM4305 routines 
1703 //----------------------------------- 
1704 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1705 #define FWD_CMD_WRITE 0xA 
1706 #define FWD_CMD_READ 0x9 
1707 #define FWD_CMD_DISABLE 0x5 
1710 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1711 uint8_t * forward_ptr
; //ptr for forward message preparation 
1712 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1713 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1715 //==================================================================== 
1716 // prepares command bits 
1718 //==================================================================== 
1719 //-------------------------------------------------------------------- 
1720 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1721     //-------------------------------------------------------------------- 
1723     *forward_ptr
++ = 0; //start bit 
1724     *forward_ptr
++ = 0; //second pause for 4050 code 
1726     *forward_ptr
++ = cmd
; 
1728     *forward_ptr
++ = cmd
; 
1730     *forward_ptr
++ = cmd
; 
1732     *forward_ptr
++ = cmd
; 
1734     return 6; //return number of emited bits 
1737 //==================================================================== 
1738 // prepares address bits 
1740 //==================================================================== 
1742 //-------------------------------------------------------------------- 
1743 uint8_t Prepare_Addr( uint8_t addr 
) { 
1744     //-------------------------------------------------------------------- 
1746     register uint8_t line_parity
; 
1751         *forward_ptr
++ = addr
; 
1752         line_parity 
^= addr
; 
1756     *forward_ptr
++ = (line_parity 
& 1); 
1758     return 7; //return number of emited bits 
1761 //==================================================================== 
1762 // prepares data bits intreleaved with parity bits 
1764 //==================================================================== 
1766 //-------------------------------------------------------------------- 
1767 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1768     //-------------------------------------------------------------------- 
1770     register uint8_t line_parity
; 
1771     register uint8_t column_parity
; 
1772     register uint8_t i
, j
; 
1773     register uint16_t data
; 
1778     for(i
=0; i
<4; i
++) { 
1780         for(j
=0; j
<8; j
++) { 
1781             line_parity 
^= data
; 
1782             column_parity 
^= (data 
& 1) << j
; 
1783             *forward_ptr
++ = data
; 
1786         *forward_ptr
++ = line_parity
; 
1791     for(j
=0; j
<8; j
++) { 
1792         *forward_ptr
++ = column_parity
; 
1793         column_parity 
>>= 1; 
1797     return 45; //return number of emited bits 
1800 //==================================================================== 
1801 // Forward Link send function 
1802 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1803 // fwd_bit_count set with number of bits to be sent 
1804 //==================================================================== 
1805 void SendForward(uint8_t fwd_bit_count
) { 
1807     fwd_write_ptr 
= forwardLink_data
; 
1808     fwd_bit_sz 
= fwd_bit_count
; 
1813     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1814     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1815     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1817     // Give it a bit of time for the resonant antenna to settle. 
1818     // And for the tag to fully power up 
1821     // force 1st mod pulse (start gap must be longer for 4305) 
1822     fwd_bit_sz
--; //prepare next bit modulation 
1824     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1825     SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1826     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1827     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1828     SpinDelayUs(16*8); //16 cycles on (8us each) 
1830     // now start writting 
1831     while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1832         if(((*fwd_write_ptr
++) & 1) == 1) 
1833             SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1835             //These timings work for 4469/4269/4305 (with the 55*8 above) 
1836             FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1837             SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1838             FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1839             FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1840             SpinDelayUs(9*8); //16 cycles on (8us each) 
1845 void EM4xLogin(uint32_t Password
) { 
1847     uint8_t fwd_bit_count
; 
1849     forward_ptr 
= forwardLink_data
; 
1850     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1851     fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1853     SendForward(fwd_bit_count
); 
1855     //Wait for command to complete 
1860 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1862     uint8_t fwd_bit_count
; 
1863     uint8_t *dest 
= BigBuf_get_addr(); 
1866     //If password mode do login 
1867     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1869     forward_ptr 
= forwardLink_data
; 
1870     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1871     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1873     m 
= BigBuf_max_traceLen(); 
1874     // Clear destination buffer before sending the command 
1875     memset(dest
, 128, m
); 
1876     // Connect the A/D to the peak-detected low-frequency path. 
1877     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1878     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1881     SendForward(fwd_bit_count
); 
1883     // Now do the acquisition 
1886         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1887             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1889         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1890             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1895     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1899 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1901     uint8_t fwd_bit_count
; 
1903     //If password mode do login 
1904     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1906     forward_ptr 
= forwardLink_data
; 
1907     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1908     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1909     fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1911     SendForward(fwd_bit_count
); 
1913     //Wait for write to complete 
1915     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off