1 /***************************************************************************** 
   4  * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.  
   6  * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL  
   7  * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,  
   8  * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.  
  10  * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.  
  12  ***************************************************************************** 
  14  * This file is part of loclass. It is a reconstructon of the cipher engine 
  15  * used in iClass, and RFID techology. 
  17  * The implementation is based on the work performed by 
  18  * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and 
  19  * Milosch Meriac in the paper "Dismantling IClass". 
  21  * Copyright (C) 2014 Martin Holst Swende 
  23  * This is free software: you can redistribute it and/or modify 
  24  * it under the terms of the GNU General Public License version 2 as published 
  25  * by the Free Software Foundation. 
  27  * This file is distributed in the hope that it will be useful, 
  28  * but WITHOUT ANY WARRANTY; without even the implied warranty of 
  29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
  30  * GNU General Public License for more details. 
  32  * You should have received a copy of the GNU General Public License 
  33  * along with loclass.  If not, see <http://www.gnu.org/licenses/>. 
  37  ****************************************************************************/ 
  41 #include "cipherutils.h" 
  47 #include "fileutils.h" 
  52 * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 
  53 * consisting of the following four components: 
  54 *       1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; 
  55 *       2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; 
  56 *       3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . 
  57 *       4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . 
  67 *       Definition 2. The feedback function for the top register T : F 16/2 → F 2 
  69 *       T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 . 
  73         bool x0 
= state
.t 
& 0x8000; 
  74         bool x1 
= state
.t 
& 0x4000; 
  75         bool x5 
= state
.t 
& 0x0400; 
  76         bool x7 
= state
.t 
& 0x0100; 
  77         bool x10 
= state
.t 
& 0x0020; 
  78         bool x11 
= state
.t 
& 0x0010; 
  79         bool x14 
= state
.t 
& 0x0002; 
  80         bool x15 
= state
.t 
& 0x0001; 
  81         return x0 
^ x1 
^ x5 
^ x7 
^ x10 
^ x11 
^ x14 
^ x15
; 
  84 *       Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as 
  85 *       B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 . 
  89         bool x1 
= state
.b 
& 0x40; 
  90         bool x2 
= state
.b 
& 0x20; 
  91         bool x3 
= state
.b 
& 0x10; 
  92         bool x7 
= state
.b 
& 0x01; 
  94         return x1 
^ x2 
^ x3 
^ x7
; 
 100 *       Definition 3 (Selection function). The selection function select : F 2 × F 2 × 
 101 *       F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where 
 102 *       z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 ) 
 103 *       z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y 
 104 *       z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x 
 106 uint8_t _select(bool x
, bool y
, uint8_t r
) 
 108         bool r0 
= r 
>> 7 & 0x1; 
 109         bool r1 
= r 
>> 6 & 0x1; 
 110         bool r2 
= r 
>> 5 & 0x1; 
 111         bool r3 
= r 
>> 4 & 0x1; 
 112         bool r4 
= r 
>> 3 & 0x1; 
 113         bool r5 
= r 
>> 2 & 0x1; 
 114         bool r6 
= r 
>> 1 & 0x1; 
 117         bool z0 
= (r0 
& r2
) ^ (r1 
& ~r3
) ^ (r2 
| r4
); 
 118         bool z1 
= (r0 
| r2
) ^ ( r5 
| r7
) ^ r1 
^ r6 
^ x 
^ y
; 
 119         bool z2 
= (r3 
& ~r5
) ^ (r4 
& r6 
) ^ r7 
^ x
; 
 121         // The three bitz z0.. z1 are packed into a uint8_t: 
 123         //Return value is a uint8_t 
 125         retval 
|= (z0 
<< 2) & 4; 
 126         retval 
|= (z1 
<< 1) & 2; 
 129         // Return value 0 <= retval <= 7 
 134 *       Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8 
 135 *       be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ = 
 136 *       l ′ , r ′ , t ′ , b ′ is defined as 
 137 *       t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r 
 138 *       b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l 
 141 * @param k - array containing 8 bytes 
 143 State 
successor(uint8_t* k
, State s
, bool y
) 
 145         bool r0 
= s
.r 
>> 7 & 0x1; 
 146         bool r4 
= s
.r 
>> 3 & 0x1; 
 149         State successor 
= {0,0,0,0}; 
 151         successor
.t 
= s
.t 
>> 1; 
 152         successor
.t 
|= (T(s
) ^ r0 
^ r4
) << 15; 
 154         successor
.b 
= s
.b 
>> 1; 
 155         successor
.b 
|= (B(s
) ^ r7
) << 7; 
 159         successor
.l 
= ((k
[_select(Tt
,y
,s
.r
)] ^ successor
.b
) + s
.l
+s
.r 
) & 0xFF; 
 160         successor
.r 
= ((k
[_select(Tt
,y
,s
.r
)] ^ successor
.b
) + s
.l 
) & 0xFF; 
 165 *       We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and 
 166 *       an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc 
 167 *       to multiple bit input x ∈ F n 2 which we define as 
 168 * @param k - array containing 8 bytes 
 170 State 
suc(uint8_t* k
,State s
, BitstreamIn 
*bitstream
) 
 172         if(bitsLeft(bitstream
) == 0) 
 176         bool lastbit 
= tailBit(bitstream
); 
 177         return successor(k
,suc(k
,s
,bitstream
), lastbit
); 
 181 *       Definition 5 (Output). Define the function output which takes an internal 
 182 *       state s =< l, r, t, b > and returns the bit r 5 . We also define the function output 
 183 *       on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as 
 184 *       output(k, s, ǫ) = ǫ 
 185 *       output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n ) 
 186 *       where s ′ = suc(k, s, x 0 ). 
 188 void output(uint8_t* k
,State s
, BitstreamIn
* in
,  BitstreamOut
* out
) 
 190         if(bitsLeft(in
) == 0) 
 194         pushBit(out
,(s
.r 
>> 2) & 1); 
 196         uint8_t x0 
= headBit(in
); 
 197         State ss 
= successor(k
,s
,x0
); 
 198         output(k
,ss
,in
, out
); 
 202 * Definition 6 (Initial state). Define the function init which takes as input a 
 203 * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b > 
 206 State 
init(uint8_t* k
) 
 209         ((k
[0] ^ 0x4c) + 0xEC) & 0xFF,// l 
 210         ((k
[0] ^ 0x4c) + 0x21) & 0xFF,// r 
 216 void MAC(uint8_t* k
, BitstreamIn input
, BitstreamOut out
) 
 218         uint8_t zeroes_32
[] = {0,0,0,0}; 
 219         BitstreamIn input_32_zeroes 
= {zeroes_32
,sizeof(zeroes_32
)*8,0}; 
 220         State initState 
= suc(k
,init(k
),&input
); 
 221         output(k
,initState
,&input_32_zeroes
,&out
); 
 224 void doMAC(uint8_t *cc_nr_p
, uint8_t *div_key_p
, uint8_t mac
[4]) 
 226         uint8_t cc_nr
[13] = { 0 }; 
 228         //cc_nr=(uint8_t*)malloc(length+1); 
 230         memcpy(cc_nr
,cc_nr_p
,12); 
 231     memcpy(div_key
,div_key_p
,8); 
 233         reverse_arraybytes(cc_nr
,12); 
 234         BitstreamIn bitstream 
= {cc_nr
,12 * 8,0}; 
 235     uint8_t dest 
[]= {0,0,0,0,0,0,0,0}; 
 236     BitstreamOut out 
= { dest
, sizeof(dest
)*8, 0 }; 
 237     MAC(div_key
,bitstream
, out
); 
 238     //The output MAC must also be reversed 
 239     reverse_arraybytes(dest
, sizeof(dest
)); 
 240     memcpy(mac
, dest
, 4); 
 247         prnlog("[+] Testing MAC calculation..."); 
 249         //From the "dismantling.IClass" paper: 
 250         uint8_t cc_nr
[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0}; 
 252         uint8_t div_key
[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9}; 
 253         uint8_t correct_MAC
[4] = {0x1d,0x49,0xC9,0xDA}; 
 255         uint8_t calculated_mac
[4] = {0}; 
 256         doMAC(cc_nr
,div_key
, calculated_mac
); 
 258         if(memcmp(calculated_mac
, correct_MAC
,4) == 0) 
 260                 prnlog("[+] MAC calculation OK!"); 
 264                 prnlog("[+] FAILED: MAC calculation failed:"); 
 265                 printarr("    Calculated_MAC", calculated_mac
, 4); 
 266                 printarr("    Correct_MAC   ", correct_MAC
, 4);