1 //----------------------------------------------------------------------------- 
   2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> 
   4 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   5 // at your option, any later version. See the LICENSE.txt file for the text of 
   7 //----------------------------------------------------------------------------- 
   8 // LEGIC RF simulation code 
   9 //----------------------------------------------------------------------------- 
  12 static struct legic_frame 
{ 
  23 static crc_t    legic_crc
; 
  24 static int      legic_read_count
; 
  25 static uint32_t legic_prng_bc
; 
  26 static uint32_t legic_prng_iv
; 
  28 static int      legic_phase_drift
; 
  29 static int      legic_frame_drift
; 
  30 static int      legic_reqresp_drift
; 
  36 static void setup_timer(void) { 
  37         // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging 
  38         // this it won't be terribly accurate but should be good enough. 
  40         AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); 
  41         timer = AT91C_BASE_TC1; 
  42         timer->TC_CCR = AT91C_TC_CLKDIS; 
  43         timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; 
  44         timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
  47     // Set up Timer 2 to use for measuring time between frames in  
  48     // tag simulation mode. Runs 4x faster as Timer 1 
  50     AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); 
  51     prng_timer = AT91C_BASE_TC2; 
  52     prng_timer->TC_CCR = AT91C_TC_CLKDIS; 
  53         prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; 
  54     prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
  57         AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); 
  58         AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; 
  61         AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable 
  62         AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks 
  63                                                                 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | 
  64                                                                 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; 
  65         AT91C_BASE_TC0->TC_RA = 1; 
  66         AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 
  70 // At TIMER_CLOCK3 (MCK/32) 
  71 // testing calculating in (us) microseconds. 
  72 #define RWD_TIME_1 120          // READER_TIME_PAUSE 20us off, 80us on = 100us  80 * 1.5 == 120ticks 
  73 #define RWD_TIME_0 60           // READER_TIME_PAUSE 20us off, 40us on = 60us   40 * 1.5 == 60ticks  
  74 #define RWD_TIME_PAUSE 30       // 20us == 20 * 1.5 == 30ticks */ 
  75 #define TAG_BIT_PERIOD 142      // 100us == 100 * 1.5 == 150ticks 
  76 #define TAG_FRAME_WAIT 495  // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495 
  78 #define RWD_TIME_FUZZ 20   // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit 
  80 #define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */ 
  81 #define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */ 
  83 #define OFFSET_LOG 1024 
  85 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) 
  88 # define SHORT_COIL     LOW(GPIO_SSC_DOUT); 
  91 # define OPEN_COIL      HIGH(GPIO_SSC_DOUT); 
  94 // Pause pulse,  off in 20us / 30ticks, 
  95 // ONE / ZERO bit pulse,   
  96 //    one == 80us / 120ticks 
  97 //    zero == 40us / 60ticks 
  99 # define COIL_PULSE(x) \ 
 102                 WaitTicks( (RWD_TIME_PAUSE) ); \ 
 108 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.  
 109 // Historically it used to be FREE_BUFFER_SIZE, which was 2744. 
 110 #define LEGIC_CARD_MEMSIZE 1024 
 111 static uint8_t* cardmem
; 
 113 static void frame_append_bit(struct legic_frame 
* const f
, uint8_t bit
) { 
 114         // Overflow, won't happen 
 115    if (f
->bits 
>= 31) return; 
 117    f
->data 
|= (bit 
<< f
->bits
); 
 121 static void frame_clean(struct legic_frame 
* const f
) { 
 126 // Prng works when waiting in 99.1us cycles. 
 127 // and while sending/receiving in bit frames (100, 60) 
 128 /*static void CalibratePrng( uint32_t time){ 
 129         // Calculate Cycles based on timer 100us 
 130         uint32_t i =  (time - sendFrameStop) / 100 ; 
 132         // substract cycles of finished frames 
 133         int k =  i - legic_prng_count()+1;  
 135         // substract current frame length, rewind to beginning 
 137                 legic_prng_forward(k); 
 141 /* Generate Keystream */ 
 142 uint32_t get_key_stream(int skip
, int count
) { 
 146         // Use int to enlarge timer tc to 32bit 
 147         legic_prng_bc 
+= prng_timer
->TC_CV
; 
 149         // reset the prng timer. 
 150         ResetTimer(prng_timer
); 
 152         /* If skip == -1, forward prng time based */ 
 154                 i  
= (legic_prng_bc 
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */ 
 155                 i 
-= legic_prng_count(); /* substract cycles of finished frames */ 
 156                 i 
-= count
; /* substract current frame length, rewind to beginning */ 
 157                 legic_prng_forward(i
); 
 159                 legic_prng_forward(skip
); 
 162         i 
= (count 
== 6) ? -1 : legic_read_count
; 
 164         /* Write Time Data into LOG */ 
 165         // uint8_t *BigBuf = BigBuf_get_addr(); 
 166         // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); 
 167         // BigBuf[OFFSET_LOG+256+i*4]   = (legic_prng_bc >> 0) & 0xff; 
 168         // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; 
 169         // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; 
 170         // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; 
 171         // BigBuf[OFFSET_LOG+384+i] = count; 
 173         /* Generate KeyStream */ 
 174         for(i
=0; i
<count
; i
++) { 
 175                 key 
|= legic_prng_get_bit() << i
; 
 176                 legic_prng_forward(1); 
 181 /* Send a frame in tag mode, the FPGA must have been set up by 
 184 void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) { 
 185         /* Bitbang the response */ 
 187         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 188         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 190         /* Use time to crypt frame */ 
 192                 legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */ 
 193                 response 
^= legic_prng_get_bits(bits
); 
 196         /* Wait for the frame start */ 
 197         WaitUS( TAG_FRAME_WAIT 
); 
 200         for(int i 
= 0; i 
< bits
; i
++) { 
 215 /* Send a frame in reader mode, the FPGA must have been set up by 
 218 void frame_sendAsReader(uint32_t data
, uint8_t bits
){ 
 220         uint32_t starttime 
= GET_TICKS
, send 
= 0; 
 223         // xor lsfr onto data. 
 224         send 
= data 
^ legic_prng_get_bits(bits
); 
 226         for (; mask 
< BITMASK(bits
); mask 
<<= 1) {       
 228                         COIL_PULSE(RWD_TIME_1
); 
 230                         COIL_PULSE(RWD_TIME_0
); 
 233         // Final pause to mark the end of the frame 
 237         uint8_t cmdbytes
[] = {bits
,     BYTEx(data
, 0), BYTEx(data
, 1), BYTEx(send
, 0), BYTEx(send
, 1)}; 
 238         LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, TRUE
); 
 241 /* Receive a frame from the card in reader emulation mode, the FPGA and 
 242  * timer must have been set up by LegicRfReader and frame_sendAsReader. 
 244  * The LEGIC RF protocol from card to reader does not include explicit 
 245  * frame start/stop information or length information. The reader must 
 246  * know beforehand how many bits it wants to receive. (Notably: a card 
 247  * sending a stream of 0-bits is indistinguishable from no card present.) 
 249  * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but 
 250  * I'm not smart enough to use it. Instead I have patched hi_read_tx to output 
 251  * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look 
 252  * for edges. Count the edges in each bit interval. If they are approximately 
 253  * 0 this was a 0-bit, if they are approximately equal to the number of edges 
 254  * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the 
 255  * timer that's still running from frame_sendAsReader in order to get a synchronization 
 256  * with the frame that we just sent. 
 258  * FIXME: Because we're relying on the hysteresis to just do the right thing 
 259  * the range is severely reduced (and you'll probably also need a good antenna). 
 260  * So this should be fixed some time in the future for a proper receiver. 
 262 static void frame_receiveAsReader(struct legic_frame 
* const f
, uint8_t bits
) { 
 264         if ( bits 
> 32 ) return; 
 266         uint8_t i 
= bits
, edges 
= 0;     
 267         uint32_t the_bit 
= 1, next_bit_at 
= 0, data 
= 0; 
 268         uint32_t old_level 
= 0; 
 269         volatile uint32_t level 
= 0; 
 273         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 274         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 276         // calibrate the prng. 
 277         legic_prng_forward(2); 
 278         data 
= legic_prng_get_bits(bits
); 
 280         //FIXED time between sending frame and now listening frame. 330us 
 281         uint32_t starttime 
= GET_TICKS
; 
 282         // its about 9+9 ticks delay from end-send to here. 
 285         next_bit_at 
= GET_TICKS 
+ TAG_BIT_PERIOD
; 
 289                 while  ( GET_TICKS 
< next_bit_at
) { 
 291                         level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 293                         if (level 
!= old_level
) 
 299                 next_bit_at 
+= TAG_BIT_PERIOD
; 
 301                 // We expect 42 edges (ONE) 
 313         uint8_t cmdbytes
[] = {bits
,     BYTEx(data
, 0), BYTEx(data
, 1)}; 
 314         LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, FALSE
); 
 317 // Setup pm3 as a Legic Reader 
 318 static uint32_t setup_phase_reader(uint8_t iv
) { 
 320         // Switch on carrier and let the tag charge for 1ms 
 330         frame_sendAsReader(iv
, 7); 
 332         // Now both tag and reader has same IV. Prng can start. 
 335         frame_receiveAsReader(¤t_frame
, 6); 
 337         // 292us (438t) - fixed delay before sending ack. 
 338         // minus log and stuff 100tick? 
 340         legic_prng_forward(3);  
 342         // Send obsfuscated acknowledgment frame. 
 343         // 0x19 = 0x18 MIM22, 0x01 LSB READCMD  
 344         // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD  
 345         switch ( current_frame
.data  
) { 
 346                 case 0x0D: frame_sendAsReader(0x19, 6); break; 
 348                 case 0x3D: frame_sendAsReader(0x39, 6); break; 
 352         legic_prng_forward(2); 
 353         return current_frame
.data
; 
 356 static void LegicCommonInit(void) { 
 358         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 359         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
); 
 360         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 362         /* Bitbang the transmitter */ 
 364         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 365         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 367         // reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier. 
 368         cardmem 
= BigBuf_get_EM_addr(); 
 369         memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
); 
 373         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 378 // Switch off carrier, make sure tag is reset 
 379 static void switch_off_tag_rwd(void) { 
 385 // calculate crc4 for a legic READ command  
 386 static uint32_t legic4Crc(uint8_t cmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) { 
 387         crc_clear(&legic_crc
);   
 388         uint32_t temp 
=  (value 
<< cmd_sz
) | (byte_index 
<< 1) | cmd
; 
 389         crc_update(&legic_crc
, temp
, cmd_sz 
+ 8 ); 
 390         return crc_finish(&legic_crc
); 
 393 int legic_read_byte( uint16_t index
, uint8_t cmd_sz
) { 
 395         uint8_t byte
, crc
, calcCrc 
= 0; 
 396         uint32_t cmd 
= (index 
<< 1) | LEGIC_READ
; 
 398         // 90ticks = 60us (should be 100us but crc calc takes time.) 
 399         //WaitTicks(330); // 330ticks prng(4) - works 
 400         WaitTicks(240); // 240ticks prng(3) - works 
 402         frame_sendAsReader(cmd
, cmd_sz
); 
 403         frame_receiveAsReader(¤t_frame
, 12); 
 406         byte 
= BYTEx(current_frame
.data
, 0); 
 407         crc 
= BYTEx(current_frame
.data
, 1); 
 408         calcCrc 
= legic4Crc(LEGIC_READ
, index
, byte
, cmd_sz
); 
 410         if( calcCrc 
!= crc 
) { 
 411                 Dbprintf("!!! crc mismatch: expected %x but got %x !!!",  calcCrc
, crc
); 
 415         legic_prng_forward(3); 
 420  * - assemble a write_cmd_frame with crc and send it 
 421  * - wait until the tag sends back an ACK ('1' bit unencrypted) 
 422  * - forward the prng based on the timing 
 424 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { 
 425 int legic_write_byte(uint8_t byte
, uint16_t addr
, uint8_t addr_sz
) { 
 427     //do not write UID, CRC at offset 0-4. 
 428         if (addr 
<= 4) return 0; 
 431         crc_clear(&legic_crc
); 
 432         crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */ 
 433         crc_update(&legic_crc
, addr
, addr_sz
); 
 434         crc_update(&legic_crc
, byte
, 8); 
 435         uint32_t crc 
= crc_finish(&legic_crc
); 
 436         uint32_t crc2 
= legic4Crc(LEGIC_WRITE
, addr
, byte
, addr_sz
+1); 
 438                 Dbprintf("crc is missmatch"); 
 441         // send write command 
 442         uint32_t cmd 
= ((crc     
<<(addr_sz
+1+8)) //CRC 
 443                    |(byte    
<<(addr_sz
+1))   //Data 
 444                    |(addr    
<<1)             //Address 
 445                    | LEGIC_WRITE
);             //CMD = Write 
 447     uint32_t cmd_sz 
= addr_sz
+1+8+4;          //crc+data+cmd 
 449     legic_prng_forward(2); /* we wait anyways */ 
 453         frame_sendAsReader(cmd
, cmd_sz
); 
 455         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 456         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 459     int t
, old_level 
= 0, edges 
= 0; 
 462         WaitUS(TAG_FRAME_WAIT
); 
 464     for( t 
= 0; t 
< 80; ++t
) { 
 466                 next_bit_at 
+= TAG_BIT_PERIOD
; 
 467         while(timer
->TC_CV 
< next_bit_at
) { 
 468             volatile uint32_t level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 469             if(level 
!= old_level
) 
 474         if(edges 
> 20 ) { /* expected are 42 edges */ 
 475                         int t 
= timer
->TC_CV
; 
 476                         int c 
= t 
/ TAG_BIT_PERIOD
; 
 479                         legic_prng_forward(c
); 
 488 int LegicRfReader(uint16_t offset
, uint16_t len
, uint8_t iv
) { 
 492         legic_card_select_t card
; 
 496         if ( legic_select_card_iv(&card
, iv
) ) { 
 501         switch_off_tag_rwd(); 
 503         if (len 
+ offset 
>= card
.cardsize
) 
 504                 len 
= card
.cardsize 
- offset
; 
 506         setup_phase_reader(iv
); 
 510                 int r 
= legic_read_byte(offset 
+ i
, card
.cmdsize
); 
 512                 if (r 
== -1 || BUTTON_PRESS()) {                         
 513                 if ( MF_DBGLEVEL 
>= 2) DbpString("operation aborted"); 
 523         switch_off_tag_rwd(); 
 525         cmd_send(CMD_ACK
, isOK
, len
, 0, cardmem
, len
); 
 529 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { 
 533         setup_phase_reader(iv); 
 534     //legic_prng_forward(2); 
 535         while(byte_index < bytes) { 
 538                 //check if the DCF should be changed 
 539                 if ( (offset == 0x05) && (bytes == 0x02) ) { 
 540                         //write DCF in reverse order (addr 0x06 before 0x05) 
 541                         r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 542                         //legic_prng_forward(1); 
 545                                 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 547                         //legic_prng_forward(1); 
 550                         r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); 
 552                 if((r != 0) || BUTTON_PRESS()) { 
 553                         Dbprintf("operation aborted @ 0x%03.3x", byte_index); 
 554         switch_off_tag_rwd(); 
 562         if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); 
 566     DbpString("write successful"); 
 570 void LegicRfWriter(uint16_t offset
, uint16_t bytes
, uint8_t iv
) { 
 574         legic_card_select_t card
; 
 578         if ( legic_select_card_iv(&card
, iv
) ) { 
 583         switch_off_tag_rwd(); 
 585         switch(card
.tagtype
) { 
 587                         if(offset
+bytes 
> 22) { 
 588                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset 
+ bytes
); 
 591                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset 
+ bytes
); 
 594                         if(offset
+bytes 
> 0x100) { 
 595                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset 
+ bytes
); 
 598                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset 
+ bytes
); 
 601                         if(offset
+bytes 
> 0x400) { 
 602                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset 
+ bytes
); 
 605                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset 
+ bytes
); 
 612         setup_phase_reader(iv
); 
 615         while(byte_index 
< bytes
) { 
 617                 //check if the DCF should be changed 
 618                 if ( ((byte_index
+offset
) == 0x05) && (bytes 
>= 0x02) ) { 
 619                         //write DCF in reverse order (addr 0x06 before 0x05) 
 620                         r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), card
.addrsize
); 
 622                         // write second byte on success 
 625                                 r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), card
.addrsize
); 
 629                         r 
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, card
.addrsize
); 
 632                 if ((r 
!= 0) || BUTTON_PRESS()) { 
 633                         Dbprintf("operation aborted @ 0x%03.3x", byte_index
); 
 643         cmd_send(CMD_ACK
, isOK
, 0,0,0,0); 
 644         switch_off_tag_rwd(); 
 648 void LegicRfRawWriter(int address
, int byte
, uint8_t iv
) { 
 650         int byte_index 
= 0, addr_sz 
= 0; 
 654         if ( MF_DBGLEVEL 
>= 2) DbpString("setting up legic card"); 
 656         uint32_t tag_type 
= setup_phase_reader(iv
); 
 658         switch_off_tag_rwd(); 
 663                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
); 
 667                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 670                         if(address 
> 0x100) { 
 671                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
); 
 675                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 678                         if(address 
> 0x400) { 
 679                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
); 
 683                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
); 
 686                         Dbprintf("No or unknown card found, aborting"); 
 690         Dbprintf("integer value: %d address: %d  addr_sz: %d", byte
, address
, addr_sz
); 
 693         setup_phase_reader(iv
); 
 695         int r 
= legic_write_byte(byte
, address
, addr_sz
); 
 697         if((r 
!= 0) || BUTTON_PRESS()) { 
 698                 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
); 
 699                 switch_off_tag_rwd(); 
 705     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 708 int legic_select_card_iv(legic_card_select_t 
*p_card
, uint8_t iv
){ 
 710         if ( p_card 
== NULL 
) return 1; 
 712         p_card
->tagtype 
= setup_phase_reader(iv
); 
 714         switch(p_card
->tagtype
) { 
 717                         p_card
->addrsize 
= 5; 
 718                         p_card
->cardsize 
= 22; 
 722                         p_card
->addrsize 
= 8; 
 723                         p_card
->cardsize 
= 256; 
 726             p_card
->cmdsize 
= 11; 
 727                         p_card
->addrsize 
= 10; 
 728                         p_card
->cardsize 
= 1024; 
 732                         p_card
->addrsize 
= 0; 
 733                         p_card
->cardsize 
= 0; 
 738 int legic_select_card(legic_card_select_t 
*p_card
){ 
 739         return legic_select_card_iv(p_card
, 0x01); 
 742 void LegicRfInfo(void){ 
 744         uint8_t buf
[sizeof(legic_card_select_t
)] = {0x00}; 
 745         legic_card_select_t 
*card 
= (legic_card_select_t
*) buf
; 
 749         if ( legic_select_card(card
) ) { 
 750                 cmd_send(CMD_ACK
,0,0,0,0,0); 
 755         for ( uint8_t i 
= 0; i 
< sizeof(card
->uid
); ++i
) { 
 756                 int r 
= legic_read_byte(i
, card
->cmdsize
); 
 758                         cmd_send(CMD_ACK
,0,0,0,0,0); 
 761                 card
->uid
[i
] = r 
& 0xFF; 
 764         cmd_send(CMD_ACK
, 1, 0, 0, buf
, sizeof(legic_card_select_t
)); 
 767         switch_off_tag_rwd(); 
 771 /* Handle (whether to respond) a frame in tag mode 
 772  * Only called when simulating a tag. 
 774 static void frame_handle_tag(struct legic_frame 
const * const f
) 
 776         uint8_t *BigBuf 
= BigBuf_get_addr(); 
 778    /* First Part of Handshake (IV) */ 
 784                 ResetTimer(prng_timer
); 
 786         legic_prng_init(f
->data
); 
 787         frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ 
 788         legic_state 
= STATE_IV
; 
 789         legic_read_count 
= 0; 
 791         legic_prng_iv 
= f
->data
; 
 800    if(legic_state 
== STATE_IV
) { 
 801       int local_key 
= get_key_stream(3, 6); 
 802       int xored 
= 0x39 ^ local_key
; 
 803       if((f
->bits 
== 6) && (f
->data 
== xored
)) { 
 804          legic_state 
= STATE_CON
; 
 811          legic_state 
= STATE_DISCON
; 
 813          Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
); 
 820       if(legic_state 
== STATE_CON
) { 
 821          int key   
= get_key_stream(2, 11); //legic_phase_drift, 11); 
 822          int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; 
 823          int data 
= BigBuf
[addr
]; 
 824          int hash 
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8; 
 825          BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
; 
 828          //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); 
 829          legic_prng_forward(legic_reqresp_drift
); 
 831          frame_send_tag(hash 
| data
, 12, 1); 
 834          legic_prng_forward(2); 
 842       int key   
= get_key_stream(-1, 23); //legic_frame_drift, 23); 
 843       int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; addr 
= addr 
& 0x3ff; 
 844       int data  
= f
->data 
^ key
; data 
= data 
>> 11; data 
= data 
& 0xff; 
 847       legic_state 
= STATE_DISCON
; 
 849       Dbprintf("write - addr: %x, data: %x", addr
, data
); 
 853    if(legic_state 
!= STATE_DISCON
) { 
 854       Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
); 
 856       Dbprintf("IV: %03.3x", legic_prng_iv
); 
 857       for(i 
= 0; i
<legic_read_count
; i
++) { 
 858          Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]); 
 861       for(i 
= -1; i
<legic_read_count
; i
++) { 
 863          t  
= BigBuf
[OFFSET_LOG
+256+i
*4]; 
 864          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8; 
 865          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16; 
 866          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24; 
 868          Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",  
 869             BigBuf
[OFFSET_LOG
+128+i
], 
 870             BigBuf
[OFFSET_LOG
+384+i
], 
 874    legic_state 
= STATE_DISCON
;  
 875    legic_read_count 
= 0; 
 881 /* Read bit by bit untill full frame is received 
 882  * Call to process frame end answer 
 884 static void emit(int bit
) { 
 888                         frame_append_bit(¤t_frame
, 1); 
 891                         frame_append_bit(¤t_frame
, 0); 
 894                         if(current_frame
.bits 
<= 4) { 
 895                                 frame_clean(¤t_frame
); 
 897                                 frame_handle_tag(¤t_frame
); 
 898                                 frame_clean(¤t_frame
); 
 905 void LegicRfSimulate(int phase
, int frame
, int reqresp
) 
 907   /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,  
 908    * modulation mode set to 212kHz subcarrier. We are getting the incoming raw 
 909    * envelope waveform on DIN and should send our response on DOUT. 
 911    * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll 
 912    * measure the time between two rising edges on DIN, and no encoding on the 
 913    * subcarrier from card to reader, so we'll just shift out our verbatim data 
 914    * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, 
 915    * seems to be 300us-ish. 
 918         legic_phase_drift 
= phase
; 
 919         legic_frame_drift 
= frame
; 
 920         legic_reqresp_drift 
= reqresp
; 
 922         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 923         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 925         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR 
| FPGA_HF_SIMULATOR_MODULATE_212K
); 
 927         /* Bitbang the receiver */ 
 928         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 929         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 932         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 936         legic_state 
= STATE_DISCON
; 
 939         DbpString("Starting Legic emulator, press button to end"); 
 941         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 942                 int level 
= !!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 943                 int time 
= timer
->TC_CV
; 
 945                 if(level 
!= old_level
) { 
 947                                 timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 949                                 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) { 
 954                                 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) { 
 969                 if(time 
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) { 
 975                 if(time 
>= (20*RWD_TIME_1
) && (timer
->TC_SR 
& AT91C_TC_CLKSTA
)) { 
 976                         timer
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 982         if ( MF_DBGLEVEL 
>= 1) DbpString("Stopped"); 
 986 //----------------------------------------------------------------------------- 
 987 // Code up a string of octets at layer 2 (including CRC, we don't generate 
 988 // that here) so that they can be transmitted to the reader. Doesn't transmit 
 989 // them yet, just leaves them ready to send in ToSend[]. 
 990 //----------------------------------------------------------------------------- 
 991 // static void CodeLegicAsTag(const uint8_t *cmd, int len) 
 997         // // Transmit a burst of ones, as the initial thing that lets the 
 998         // // reader get phase sync. This (TR1) must be > 80/fs, per spec, 
 999         // // but tag that I've tried (a Paypass) exceeds that by a fair bit, 
1000         // // so I will too. 
1001         // for(i = 0; i < 20; i++) { 
1002                 // ToSendStuffBit(1); 
1003                 // ToSendStuffBit(1); 
1004                 // ToSendStuffBit(1); 
1005                 // ToSendStuffBit(1); 
1009         // for(i = 0; i < 10; i++) { 
1010                 // ToSendStuffBit(0); 
1011                 // ToSendStuffBit(0); 
1012                 // ToSendStuffBit(0); 
1013                 // ToSendStuffBit(0); 
1015         // for(i = 0; i < 2; i++) { 
1016                 // ToSendStuffBit(1); 
1017                 // ToSendStuffBit(1); 
1018                 // ToSendStuffBit(1); 
1019                 // ToSendStuffBit(1); 
1022         // for(i = 0; i < len; i++) { 
1024                 // uint8_t b = cmd[i]; 
1027                 // ToSendStuffBit(0); 
1028                 // ToSendStuffBit(0); 
1029                 // ToSendStuffBit(0); 
1030                 // ToSendStuffBit(0); 
1033                 // for(j = 0; j < 8; j++) { 
1035                                 // ToSendStuffBit(1); 
1036                                 // ToSendStuffBit(1); 
1037                                 // ToSendStuffBit(1); 
1038                                 // ToSendStuffBit(1); 
1040                                 // ToSendStuffBit(0); 
1041                                 // ToSendStuffBit(0); 
1042                                 // ToSendStuffBit(0); 
1043                                 // ToSendStuffBit(0); 
1049                 // ToSendStuffBit(1); 
1050                 // ToSendStuffBit(1); 
1051                 // ToSendStuffBit(1); 
1052                 // ToSendStuffBit(1); 
1056         // for(i = 0; i < 10; i++) { 
1057                 // ToSendStuffBit(0); 
1058                 // ToSendStuffBit(0); 
1059                 // ToSendStuffBit(0); 
1060                 // ToSendStuffBit(0); 
1062         // for(i = 0; i < 2; i++) { 
1063                 // ToSendStuffBit(1); 
1064                 // ToSendStuffBit(1); 
1065                 // ToSendStuffBit(1); 
1066                 // ToSendStuffBit(1); 
1069         // // Convert from last byte pos to length 
1073 //----------------------------------------------------------------------------- 
1074 // The software UART that receives commands from the reader, and its state 
1076 //----------------------------------------------------------------------------- 
1081                 STATE_GOT_FALLING_EDGE_OF_SOF, 
1082                 STATE_AWAITING_START_BIT, 
1083                 STATE_RECEIVING_DATA 
1093 /* Receive & handle a bit coming from the reader. 
1095  * This function is called 4 times per bit (every 2 subcarrier cycles). 
1096  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1099  * LED A -> ON once we have received the SOF and are expecting the rest. 
1100  * LED A -> OFF once we have received EOF or are in error state or unsynced 
1102  * Returns: true if we received a EOF 
1103  *          false if we are still waiting for some more 
1105 // static RAMFUNC int HandleLegicUartBit(uint8_t bit) 
1107         // switch(Uart.state) { 
1108                 // case STATE_UNSYNCD: 
1110                                 // // we went low, so this could be the beginning of an SOF 
1111                                 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; 
1117                 // case STATE_GOT_FALLING_EDGE_OF_SOF: 
1119                         // if(Uart.posCnt == 2) {       // sample every 4 1/fs in the middle of a bit 
1121                                         // if(Uart.bitCnt > 9) { 
1122                                                 // // we've seen enough consecutive 
1123                                                 // // zeros that it's a valid SOF 
1125                                                 // Uart.byteCnt = 0; 
1126                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1127                                                 // LED_A_ON(); // Indicate we got a valid SOF 
1129                                                 // // didn't stay down long enough 
1130                                                 // // before going high, error 
1131                                                 // Uart.state = STATE_UNSYNCD; 
1134                                         // // do nothing, keep waiting 
1138                         // if(Uart.posCnt >= 4) Uart.posCnt = 0; 
1139                         // if(Uart.bitCnt > 12) { 
1140                                 // // Give up if we see too many zeros without 
1143                                 // Uart.state = STATE_UNSYNCD; 
1147                 // case STATE_AWAITING_START_BIT: 
1150                                 // if(Uart.posCnt > 50/2) {     // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs 
1151                                         // // stayed high for too long between 
1152                                         // // characters, error 
1153                                         // Uart.state = STATE_UNSYNCD; 
1156                                 // // falling edge, this starts the data byte 
1159                                 // Uart.shiftReg = 0; 
1160                                 // Uart.state = STATE_RECEIVING_DATA; 
1164                 // case STATE_RECEIVING_DATA: 
1166                         // if(Uart.posCnt == 2) { 
1167                                 // // time to sample a bit 
1168                                 // Uart.shiftReg >>= 1; 
1170                                         // Uart.shiftReg |= 0x200; 
1174                         // if(Uart.posCnt >= 4) { 
1177                         // if(Uart.bitCnt == 10) { 
1178                                 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) 
1180                                         // // this is a data byte, with correct 
1181                                         // // start and stop bits 
1182                                         // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; 
1185                                         // if(Uart.byteCnt >= Uart.byteCntMax) { 
1186                                                 // // Buffer overflowed, give up 
1188                                                 // Uart.state = STATE_UNSYNCD; 
1190                                                 // // so get the next byte now 
1192                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1194                                 // } else if (Uart.shiftReg == 0x000) { 
1195                                         // // this is an EOF byte 
1196                                         // LED_A_OFF(); // Finished receiving 
1197                                         // Uart.state = STATE_UNSYNCD; 
1198                                         // if (Uart.byteCnt != 0) { 
1202                                         // // this is an error 
1204                                         // Uart.state = STATE_UNSYNCD; 
1211                         // Uart.state = STATE_UNSYNCD; 
1219 static void UartReset() { 
1220         Uart.byteCntMax = 3; 
1221         Uart.state = STATE_UNSYNCD; 
1225         memset(Uart.output, 0x00, 3); 
1228 // static void UartInit(uint8_t *data) { 
1229         // Uart.output = data; 
1233 //============================================================================= 
1234 // An LEGIC reader. We take layer two commands, code them 
1235 // appropriately, and then send them to the tag. We then listen for the 
1236 // tag's response, which we leave in the buffer to be demodulated on the 
1238 //============================================================================= 
1243                 DEMOD_PHASE_REF_TRAINING, 
1244                 DEMOD_AWAITING_FALLING_EDGE_OF_SOF, 
1245                 DEMOD_GOT_FALLING_EDGE_OF_SOF, 
1246                 DEMOD_AWAITING_START_BIT, 
1247                 DEMOD_RECEIVING_DATA 
1260  * Handles reception of a bit from the tag 
1262  * This function is called 2 times per bit (every 4 subcarrier cycles). 
1263  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1266  * LED C -> ON once we have received the SOF and are expecting the rest. 
1267  * LED C -> OFF once we have received EOF or are unsynced 
1269  * Returns: true if we received a EOF 
1270  *          false if we are still waiting for some more 
1275 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq) 
1280         int halfci = (ai >> 1); 
1281         int halfcq = (aq >> 1); 
1283         switch(Demod.state) { 
1286                         CHECK_FOR_SUBCARRIER() 
1288                         if(v > SUBCARRIER_DETECT_THRESHOLD) {   // subcarrier detected 
1289                                 Demod.state = DEMOD_PHASE_REF_TRAINING; 
1296                 case DEMOD_PHASE_REF_TRAINING: 
1297                         if(Demod.posCount < 8) { 
1299                                 CHECK_FOR_SUBCARRIER() 
1301                                 if (v > SUBCARRIER_DETECT_THRESHOLD) { 
1302                                         // set the reference phase (will code a logic '1') by averaging over 32 1/fs. 
1303                                         // note: synchronization time > 80 1/fs 
1309                                         Demod.state = DEMOD_UNSYNCD; 
1312                                 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF; 
1316                 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF: 
1318                         MAKE_SOFT_DECISION() 
1320                         //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); 
1321                         // logic '0' detected 
1324                                 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF; 
1326                                 // start of SOF sequence 
1329                                 // maximum length of TR1 = 200 1/fs 
1330                                 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD; 
1335                 case DEMOD_GOT_FALLING_EDGE_OF_SOF: 
1338                         MAKE_SOFT_DECISION() 
1341                                 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges 
1342                                 if(Demod.posCount < 10*2) {  
1343                                         Demod.state = DEMOD_UNSYNCD; 
1345                                         LED_C_ON(); // Got SOF 
1346                                         Demod.state = DEMOD_AWAITING_START_BIT; 
1351                                 // low phase of SOF too long (> 12 etu) 
1352                                 if(Demod.posCount > 13*2) {  
1353                                         Demod.state = DEMOD_UNSYNCD; 
1359                 case DEMOD_AWAITING_START_BIT: 
1362                         MAKE_SOFT_DECISION() 
1365                                 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs 
1366                                 if(Demod.posCount > 3*2) {  
1367                                         Demod.state = DEMOD_UNSYNCD; 
1371                                 // start bit detected 
1373                                 Demod.posCount = 1;                             // this was the first half 
1376                                 Demod.state = DEMOD_RECEIVING_DATA; 
1380                 case DEMOD_RECEIVING_DATA: 
1382                         MAKE_SOFT_DECISION() 
1384                         if(Demod.posCount == 0) { 
1385                                 // first half of bit 
1389                                 // second half of bit 
1391                                 Demod.shiftReg >>= 1; 
1393                                 if(Demod.thisBit > 0)  
1394                                         Demod.shiftReg |= 0x200; 
1398                                 if(Demod.bitCount == 10) { 
1400                                         uint16_t s = Demod.shiftReg; 
1402                                         if((s & 0x200) && !(s & 0x001)) {  
1403                                                 // stop bit == '1', start bit == '0' 
1404                                                 uint8_t b = (s >> 1); 
1405                                                 Demod.output[Demod.len] = b; 
1407                                                 Demod.state = DEMOD_AWAITING_START_BIT; 
1409                                                 Demod.state = DEMOD_UNSYNCD; 
1413                                                         // This is EOF (start, stop and all data bits == '0' 
1423                         Demod.state = DEMOD_UNSYNCD; 
1431 // Clear out the state of the "UART" that receives from the tag. 
1432 static void DemodReset() { 
1434         Demod.state = DEMOD_UNSYNCD; 
1441         memset(Demod.output, 0x00, 3); 
1444 static void DemodInit(uint8_t *data) { 
1445         Demod.output = data; 
1451  *  Demodulate the samples we received from the tag, also log to tracebuffer 
1452  *  quiet: set to 'TRUE' to disable debug output 
1456  #define LEGIC_DMA_BUFFER_SIZE 256 
1458  static void GetSamplesForLegicDemod(int n, bool quiet) 
1461         bool gotFrame = FALSE; 
1462         int lastRxCounter = LEGIC_DMA_BUFFER_SIZE; 
1463         int     ci, cq, samples = 0; 
1467         // And put the FPGA in the appropriate mode 
1468         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); 
1470         // The response (tag -> reader) that we're receiving. 
1471         // Set up the demodulator for tag -> reader responses. 
1472         DemodInit(BigBuf_malloc(MAX_FRAME_SIZE)); 
1474         // The DMA buffer, used to stream samples from the FPGA 
1475         int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE); 
1476         int8_t *upTo = dmaBuf; 
1478         // Setup and start DMA. 
1479         if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){ 
1480                 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");  
1484         // Signal field is ON with the appropriate LED: 
1487                 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR; 
1488                 if(behindBy > max) max = behindBy; 
1490                 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) { 
1494                         if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) { 
1496                                 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; 
1497                                 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE; 
1500                         if(lastRxCounter <= 0) 
1501                                 lastRxCounter = LEGIC_DMA_BUFFER_SIZE; 
1505                         gotFrame = HandleLegicSamplesDemod(ci , cq ); 
1510                 if(samples > n || gotFrame) 
1514         FpgaDisableSscDma(); 
1516         if (!quiet && Demod.len == 0) { 
1517                 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", 
1528         if (Demod.len > 0) { 
1529                 uint8_t parity[MAX_PARITY_SIZE] = {0x00}; 
1530                 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE); 
1536 //----------------------------------------------------------------------------- 
1537 // Transmit the command (to the tag) that was placed in ToSend[]. 
1538 //----------------------------------------------------------------------------- 
1540 static void TransmitForLegic(void) 
1546         while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) 
1547                 AT91C_BASE_SSC->SSC_THR = 0xff; 
1549         // Signal field is ON with the appropriate Red LED 
1552         // Signal we are transmitting with the Green LED 
1554         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); 
1556         for(c = 0; c < 10;) { 
1557                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { 
1558                         AT91C_BASE_SSC->SSC_THR = 0xff; 
1561                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { 
1562                         volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; 
1570                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { 
1571                         AT91C_BASE_SSC->SSC_THR = ToSend[c]; 
1572                         legic_prng_forward(1); // forward the lfsr  
1574                         if(c >= ToSendMax) { 
1578                 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { 
1579                         volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; 
1588 //----------------------------------------------------------------------------- 
1589 // Code a layer 2 command (string of octets, including CRC) into ToSend[], 
1590 // so that it is ready to transmit to the tag using TransmitForLegic(). 
1591 //----------------------------------------------------------------------------- 
1593 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) 
1601         for(i = 0; i < 7; i++) 
1605         for(i = 0; i < cmdlen; i++) { 
1611                 for(j = 0; j < bits; j++) { 
1621         // Convert from last character reference to length 
1626   Convenience function to encode, transmit and trace Legic comms 
1629   static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits) 
1631         CodeLegicBitsAsReader(cmd, cmdlen, bits); 
1634                 uint8_t parity[1] = {0x00}; 
1635                 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE); 
1640 // Set up LEGIC communication 
1642 void ice_legic_setup() { 
1645         FpgaDownloadAndGo(FPGA_BITSTREAM_HF); 
1646         BigBuf_free(); BigBuf_Clear_ext(false); 
1652         // Set up the synchronous serial port 
1655         // connect Demodulated Signal to ADC: 
1656         SetAdcMuxFor(GPIO_MUXSEL_HIPKD); 
1658         // Signal field is on with the appropriate LED 
1660         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD); 
1663         //StartCountSspClk(); 
1666         crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);