1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" //test
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
83 101010101010101[0]000...
85 [5555fe852c5555555555555555fe0000]
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
97 signed char *dest
= (signed char *)BigBuf_get_addr();
98 uint16_t n
= BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
102 int i
, cycles
=0, samples
=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
118 // get TI tag data into the buffer
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 for (i
=0; i
<n
-1; i
++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
127 // after 16 cycles, measure the frequency
130 samples
=i
-samples
; // number of samples in these 16 cycles
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0
= (shift0
>>1) | (shift1
<< 31);
135 shift1
= (shift1
>>1) | (shift2
<< 31);
136 shift2
= (shift2
>>1) | (shift3
<< 31);
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
142 // low frequency represents a 1
144 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
145 // high frequency represents a 0
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3
= shift2
= shift1
= shift0
= 0;
153 // for each bit we receive, test if we've detected a valid tag
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
160 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
168 // if flag is set we have a tag
170 DbpString("Info: No valid tag detected.");
172 // put 64 bit data into shift1 and shift0
173 shift0
= (shift0
>>24) | (shift1
<< 8);
174 shift1
= (shift1
>>24) | (shift2
<< 8);
176 // align 16 bit crc into lower half of shift2
177 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
179 // if r/w tag, check ident match
180 if (shift3
& (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
186 DbpString("Info: TI tag ident is valid");
189 DbpString("Info: TI tag is readonly");
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
198 crc
= update_crc16(crc
, (shift0
)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
201 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
202 crc
= update_crc16(crc
, (shift1
)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
205 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
209 if (crc
!= (shift2
&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
212 DbpString("Info: CRC is good");
219 void WriteTIbyte(uint8_t b
)
223 // modulate 8 bits out to the antenna
227 // stop modulating antenna
234 // stop modulating antenna
244 void AcquireTiType(void)
247 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
248 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
249 #define TIBUFLEN 1250
252 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
253 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
255 // Set up the synchronous serial port
256 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
257 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
259 // steal this pin from the SSP and use it to control the modulation
260 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
261 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
263 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
264 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
266 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
267 // 48/2 = 24 MHz clock must be divided by 12
268 AT91C_BASE_SSC
->SSC_CMR
= 12;
270 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
271 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
272 AT91C_BASE_SSC
->SSC_TCMR
= 0;
273 AT91C_BASE_SSC
->SSC_TFMR
= 0;
280 // Charge TI tag for 50ms.
283 // stop modulating antenna and listen
290 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
291 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
292 i
++; if(i
>= TIBUFLEN
) break;
297 // return stolen pin to SSP
298 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
299 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
301 char *dest
= (char *)BigBuf_get_addr();
304 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
305 for (j
=0; j
<32; j
++) {
306 if(BigBuf
[i
] & (1 << j
)) {
318 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
319 // if crc provided, it will be written with the data verbatim (even if bogus)
320 // if not provided a valid crc will be computed from the data and written.
321 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
325 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
327 crc
= update_crc16(crc
, (idlo
)&0xff);
328 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
329 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
330 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
331 crc
= update_crc16(crc
, (idhi
)&0xff);
332 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
333 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
334 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
336 Dbprintf("Writing to tag: %x%08x, crc=%x",
337 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
339 // TI tags charge at 134.2Khz
340 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
341 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
342 // connects to SSP_DIN and the SSP_DOUT logic level controls
343 // whether we're modulating the antenna (high)
344 // or listening to the antenna (low)
345 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
348 // steal this pin from the SSP and use it to control the modulation
349 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
350 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
352 // writing algorithm:
353 // a high bit consists of a field off for 1ms and field on for 1ms
354 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
355 // initiate a charge time of 50ms (field on) then immediately start writing bits
356 // start by writing 0xBB (keyword) and 0xEB (password)
357 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
358 // finally end with 0x0300 (write frame)
359 // all data is sent lsb firts
360 // finish with 15ms programming time
364 SpinDelay(50); // charge time
366 WriteTIbyte(0xbb); // keyword
367 WriteTIbyte(0xeb); // password
368 WriteTIbyte( (idlo
)&0xff );
369 WriteTIbyte( (idlo
>>8 )&0xff );
370 WriteTIbyte( (idlo
>>16)&0xff );
371 WriteTIbyte( (idlo
>>24)&0xff );
372 WriteTIbyte( (idhi
)&0xff );
373 WriteTIbyte( (idhi
>>8 )&0xff );
374 WriteTIbyte( (idhi
>>16)&0xff );
375 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
376 WriteTIbyte( (crc
)&0xff ); // crc lo
377 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
378 WriteTIbyte(0x00); // write frame lo
379 WriteTIbyte(0x03); // write frame hi
381 SpinDelay(50); // programming time
385 // get TI tag data into the buffer
388 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
389 DbpString("Now use tiread to check");
392 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
395 uint8_t *tab
= BigBuf_get_addr();
397 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
398 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
400 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
402 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
403 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
405 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
406 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
410 //wait until SSC_CLK goes HIGH
411 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
412 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
413 DbpString("Stopped");
428 //wait until SSC_CLK goes LOW
429 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
431 DbpString("Stopped");
449 #define DEBUG_FRAME_CONTENTS 1
450 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
454 // compose fc/8 fc/10 waveform (FSK2)
455 static void fc(int c
, int *n
)
457 uint8_t *dest
= BigBuf_get_addr();
460 // for when we want an fc8 pattern every 4 logical bits
472 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
474 for (idx
=0; idx
<6; idx
++) {
486 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
488 for (idx
=0; idx
<5; idx
++) {
502 // compose fc/X fc/Y waveform (FSKx)
503 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
505 uint8_t *dest
= BigBuf_get_addr();
506 uint8_t halfFC
= fc
/2;
507 uint8_t wavesPerClock
= clock
/fc
;
508 uint8_t mod
= clock
% fc
; //modifier
509 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
510 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
511 // loop through clock - step field clock
512 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
513 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
514 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
515 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
518 if (mod
>0) (*modCnt
)++;
519 if ((mod
>0) && modAdjOk
){ //fsk2
520 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
521 memset(dest
+(*n
), 0, fc
-halfFC
);
522 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
526 if (mod
>0 && !modAdjOk
){ //fsk1
527 memset(dest
+(*n
), 0, mod
-(mod
/2));
528 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
533 // prepare a waveform pattern in the buffer based on the ID given then
534 // simulate a HID tag until the button is pressed
535 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
539 HID tag bitstream format
540 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
541 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
542 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
543 A fc8 is inserted before every 4 bits
544 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
545 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
549 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
553 // special start of frame marker containing invalid bit sequences
554 fc(8, &n
); fc(8, &n
); // invalid
555 fc(8, &n
); fc(10, &n
); // logical 0
556 fc(10, &n
); fc(10, &n
); // invalid
557 fc(8, &n
); fc(10, &n
); // logical 0
560 // manchester encode bits 43 to 32
561 for (i
=11; i
>=0; i
--) {
562 if ((i
%4)==3) fc(0,&n
);
564 fc(10, &n
); fc(8, &n
); // low-high transition
566 fc(8, &n
); fc(10, &n
); // high-low transition
571 // manchester encode bits 31 to 0
572 for (i
=31; i
>=0; i
--) {
573 if ((i
%4)==3) fc(0,&n
);
575 fc(10, &n
); fc(8, &n
); // low-high transition
577 fc(8, &n
); fc(10, &n
); // high-low transition
583 SimulateTagLowFrequency(n
, 0, ledcontrol
);
589 // prepare a waveform pattern in the buffer based on the ID given then
590 // simulate a FSK tag until the button is pressed
591 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
592 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
596 uint8_t fcHigh
= arg1
>> 8;
597 uint8_t fcLow
= arg1
& 0xFF;
599 uint8_t clk
= arg2
& 0xFF;
600 uint8_t invert
= (arg2
>> 8) & 1;
602 for (i
=0; i
<size
; i
++){
603 if (BitStream
[i
] == invert
){
604 fcAll(fcLow
, &n
, clk
, &modCnt
);
606 fcAll(fcHigh
, &n
, clk
, &modCnt
);
609 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
610 /*Dbprintf("DEBUG: First 32:");
611 uint8_t *dest = BigBuf_get_addr();
613 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
615 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
620 SimulateTagLowFrequency(n
, 0, ledcontrol
);
626 // compose ask waveform for one bit(ASK)
627 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
629 uint8_t *dest
= BigBuf_get_addr();
630 uint8_t halfClk
= clock
/2;
631 // c = current bit 1 or 0
633 memset(dest
+(*n
), c
, halfClk
);
634 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
636 memset(dest
+(*n
), c
, clock
);
641 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
643 uint8_t *dest
= BigBuf_get_addr();
644 uint8_t halfClk
= clock
/2;
646 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
647 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
649 memset(dest
+(*n
), c
^ *phase
, clock
);
654 // args clock, ask/man or askraw, invert, transmission separator
655 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
659 uint8_t clk
= (arg1
>> 8) & 0xFF;
660 uint8_t encoding
= arg1
& 0xFF;
661 uint8_t separator
= arg2
& 1;
662 uint8_t invert
= (arg2
>> 8) & 1;
664 if (encoding
==2){ //biphase
666 for (i
=0; i
<size
; i
++){
667 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
669 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
670 for (i
=0; i
<size
; i
++){
671 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
674 } else { // ask/manchester || ask/raw
675 for (i
=0; i
<size
; i
++){
676 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
678 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
679 for (i
=0; i
<size
; i
++){
680 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
685 if (separator
==1) Dbprintf("sorry but separator option not yet available");
687 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
689 //Dbprintf("First 32:");
690 //uint8_t *dest = BigBuf_get_addr();
692 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
694 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
699 SimulateTagLowFrequency(n
, 0, ledcontrol
);
705 //carrier can be 2,4 or 8
706 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
708 uint8_t *dest
= BigBuf_get_addr();
709 uint8_t halfWave
= waveLen
/2;
713 // write phase change
714 memset(dest
+(*n
), *curPhase
^1, halfWave
);
715 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
720 //write each normal clock wave for the clock duration
721 for (; i
< clk
; i
+=waveLen
){
722 memset(dest
+(*n
), *curPhase
, halfWave
);
723 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
728 // args clock, carrier, invert,
729 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
733 uint8_t clk
= arg1
>> 8;
734 uint8_t carrier
= arg1
& 0xFF;
735 uint8_t invert
= arg2
& 0xFF;
736 uint8_t curPhase
= 0;
737 for (i
=0; i
<size
; i
++){
738 if (BitStream
[i
] == curPhase
){
739 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
741 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
744 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
745 //Dbprintf("DEBUG: First 32:");
746 //uint8_t *dest = BigBuf_get_addr();
748 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
750 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
754 SimulateTagLowFrequency(n
, 0, ledcontrol
);
760 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
761 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
763 uint8_t *dest
= BigBuf_get_addr();
764 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
766 uint32_t hi2
=0, hi
=0, lo
=0;
768 // Configure to go in 125Khz listen mode
769 LFSetupFPGAForADC(95, true);
771 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
774 if (ledcontrol
) LED_A_ON();
776 DoAcquisition_default(-1,true);
778 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
779 size
= 50*128*2; //big enough to catch 2 sequences of largest format
780 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
782 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
783 // go over previously decoded manchester data and decode into usable tag ID
784 if (hi2
!= 0){ //extra large HID tags 88/192 bits
785 Dbprintf("TAG ID: %x%08x%08x (%d)",
786 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
787 }else { //standard HID tags 44/96 bits
788 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
791 uint32_t cardnum
= 0;
792 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
794 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
796 while(lo2
> 1){ //find last bit set to 1 (format len bit)
804 cardnum
= (lo
>>1)&0xFFFF;
808 cardnum
= (lo
>>1)&0x7FFFF;
809 fc
= ((hi
&0xF)<<12)|(lo
>>20);
812 cardnum
= (lo
>>1)&0xFFFF;
813 fc
= ((hi
&1)<<15)|(lo
>>17);
816 cardnum
= (lo
>>1)&0xFFFFF;
817 fc
= ((hi
&1)<<11)|(lo
>>21);
820 else { //if bit 38 is not set then 37 bit format is used
825 cardnum
= (lo
>>1)&0x7FFFF;
826 fc
= ((hi
&0xF)<<12)|(lo
>>20);
829 //Dbprintf("TAG ID: %x%08x (%d)",
830 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
831 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
832 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
833 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
836 if (ledcontrol
) LED_A_OFF();
843 hi2
= hi
= lo
= idx
= 0;
846 DbpString("Stopped");
847 if (ledcontrol
) LED_A_OFF();
850 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
851 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
853 uint8_t *dest
= BigBuf_get_addr();
854 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
857 // Configure to go in 125Khz listen mode
858 LFSetupFPGAForADC(95, true);
860 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
863 if (ledcontrol
) LED_A_ON();
865 DoAcquisition_default(-1,true);
867 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
868 size
= 50*128*2; //big enough to catch 2 sequences of largest format
869 idx
= AWIDdemodFSK(dest
, &size
);
871 if (idx
>0 && size
==96){
873 // 0 10 20 30 40 50 60
875 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
876 // -----------------------------------------------------------------------------
877 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
878 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
879 // |---26 bit---| |-----117----||-------------142-------------|
880 // b = format bit len, o = odd parity of last 3 bits
881 // f = facility code, c = card number
882 // w = wiegand parity
883 // (26 bit format shown)
885 //get raw ID before removing parities
886 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
887 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
888 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
890 size
= removeParity(dest
, idx
+8, 4, 1, 88);
891 // ok valid card found!
894 // 0 10 20 30 40 50 60
896 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
897 // -----------------------------------------------------------------------------
898 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
899 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
900 // |26 bit| |-117--| |-----142------|
901 // b = format bit len, o = odd parity of last 3 bits
902 // f = facility code, c = card number
903 // w = wiegand parity
904 // (26 bit format shown)
907 uint32_t cardnum
= 0;
910 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
912 fc
= bytebits_to_byte(dest
+9, 8);
913 cardnum
= bytebits_to_byte(dest
+17, 16);
914 code1
= bytebits_to_byte(dest
+8,fmtLen
);
915 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
917 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
919 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
920 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
921 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
923 code1
= bytebits_to_byte(dest
+8,fmtLen
);
924 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
928 if (ledcontrol
) LED_A_OFF();
936 DbpString("Stopped");
937 if (ledcontrol
) LED_A_OFF();
940 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
942 uint8_t *dest
= BigBuf_get_addr();
944 size_t size
=0, idx
=0;
945 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
948 // Configure to go in 125Khz listen mode
949 LFSetupFPGAForADC(95, true);
951 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
954 if (ledcontrol
) LED_A_ON();
956 DoAcquisition_default(-1,true);
957 size
= BigBuf_max_traceLen();
958 //askdemod and manchester decode
959 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
960 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
963 if (errCnt
<0) continue;
965 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
968 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
972 (uint32_t)(lo
&0xFFFF),
973 (uint32_t)((lo
>>16LL) & 0xFF),
974 (uint32_t)(lo
& 0xFFFFFF));
976 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
979 (uint32_t)(lo
&0xFFFF),
980 (uint32_t)((lo
>>16LL) & 0xFF),
981 (uint32_t)(lo
& 0xFFFFFF));
985 if (ledcontrol
) LED_A_OFF();
987 *low
=lo
& 0xFFFFFFFF;
992 hi
= lo
= size
= idx
= 0;
993 clk
= invert
= errCnt
= 0;
995 DbpString("Stopped");
996 if (ledcontrol
) LED_A_OFF();
999 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1001 uint8_t *dest
= BigBuf_get_addr();
1003 uint32_t code
=0, code2
=0;
1005 uint8_t facilitycode
=0;
1007 // Configure to go in 125Khz listen mode
1008 LFSetupFPGAForADC(95, true);
1010 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1012 if (ledcontrol
) LED_A_ON();
1013 DoAcquisition_default(-1,true);
1014 //fskdemod and get start index
1016 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1017 if (idx
<0) continue;
1021 //0 10 20 30 40 50 60
1023 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1024 //-----------------------------------------------------------------------------
1025 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1027 //XSF(version)facility:codeone+codetwo
1029 if(findone
){ //only print binary if we are doing one
1030 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1031 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1032 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1033 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1034 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1035 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1036 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1038 code
= bytebits_to_byte(dest
+idx
,32);
1039 code2
= bytebits_to_byte(dest
+idx
+32,32);
1040 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1041 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1042 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1044 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
1045 // if we're only looking for one tag
1047 if (ledcontrol
) LED_A_OFF();
1054 version
=facilitycode
=0;
1060 DbpString("Stopped");
1061 if (ledcontrol
) LED_A_OFF();
1064 /*------------------------------
1065 * T5555/T5557/T5567/T5577 routines
1066 *------------------------------
1069 /* NOTE: T55x7/T5555 configuration register definitions moved to protocols.h */
1072 * Relevant communication times in microsecond
1073 * To compensate antenna falling times shorten the write times
1074 * and enlarge the gap ones.
1075 * Q5 tags seems to have issues when these values changes.
1077 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1078 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1079 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1080 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1081 #define READ_GAP 52*8
1083 // VALUES TAKEN FROM EM4x function: SendForward
1084 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1085 // WRITE_GAP = 128; (16*8)
1086 // WRITE_1 = 256 32*8; (32*8)
1088 // These timings work for 4469/4269/4305 (with the 55*8 above)
1089 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1091 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1092 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1093 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1094 // T0 = TIMER_CLOCK1 / 125000 = 192
1095 // 1 Cycle = 8 microseconds(us) == 1 field clock
1097 void TurnReadLFOn(int delay
) {
1098 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1099 // Give it a bit of time for the resonant antenna to settle.
1100 SpinDelayUs(delay
); //155*8 //50*8
1103 // Write one bit to card
1104 void T55xxWriteBit(int bit
) {
1106 TurnReadLFOn(WRITE_0
);
1108 TurnReadLFOn(WRITE_1
);
1109 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1110 SpinDelayUs(WRITE_GAP
);
1113 // Write one card block in page 0, no lock
1114 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1116 bool PwdMode
= arg
& 0x1;
1117 uint8_t Page
= (arg
& 0x2)>>1;
1120 // Set up FPGA, 125kHz
1121 LFSetupFPGAForADC(95, true);
1123 // Trigger T55x7 in mode.
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1125 SpinDelayUs(START_GAP
);
1129 T55xxWriteBit(Page
); //Page 0
1132 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1133 T55xxWriteBit(Pwd
& i
);
1139 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1140 T55xxWriteBit(Data
& i
);
1142 // Send Block number
1143 for (i
= 0x04; i
!= 0; i
>>= 1)
1144 T55xxWriteBit(Block
& i
);
1146 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1147 // so wait a little more)
1148 TurnReadLFOn(20 * 1000);
1149 //could attempt to do a read to confirm write took
1150 // as the tag should repeat back the new block
1151 // until it is reset, but to confirm it we would
1152 // need to know the current block 0 config mode
1155 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1156 cmd_send(CMD_ACK
,0,0,0,0,0);
1160 // Read one card block in page 0
1161 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1163 bool PwdMode
= arg0
& 0x1;
1164 uint8_t Page
= (arg0
& 0x2) >> 1;
1166 bool RegReadMode
= (Block
== 0xFF);
1168 //clear buffer now so it does not interfere with timing later
1169 BigBuf_Clear_ext(false);
1171 //make sure block is at max 7
1174 // Set up FPGA, 125kHz to power up the tag
1175 LFSetupFPGAForADC(95, true);
1177 // Trigger T55x7 Direct Access Mode with start gap
1178 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1179 SpinDelayUs(START_GAP
);
1183 T55xxWriteBit(Page
); //Page 0
1187 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1188 T55xxWriteBit(Pwd
& i
);
1190 // Send a zero bit separation
1193 // Send Block number (if direct access mode)
1195 for (i
= 0x04; i
!= 0; i
>>= 1)
1196 T55xxWriteBit(Block
& i
);
1198 // Turn field on to read the response
1199 TurnReadLFOn(READ_GAP
);
1202 doT55x7Acquisition();
1204 // Turn the field off
1205 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1206 cmd_send(CMD_ACK
,0,0,0,0,0);
1210 void T55xxWakeUp(uint32_t Pwd
){
1214 // Set up FPGA, 125kHz
1215 LFSetupFPGAForADC(95, true);
1217 // Trigger T55x7 Direct Access Mode
1218 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1219 SpinDelayUs(START_GAP
);
1223 T55xxWriteBit(0); //Page 0
1226 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1227 T55xxWriteBit(Pwd
& i
);
1229 // Turn and leave field on to let the begin repeating transmission
1230 TurnReadLFOn(20*1000);
1233 /*-------------- Cloning routines -----------*/
1235 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1236 // write last block first and config block last (if included)
1237 for (uint8_t i
= numblocks
; i
> startblock
; i
--)
1238 T55xxWriteBlock(blockdata
[i
-1],i
-1,0,0);
1241 // Copy HID id to card and setup block 0 config
1242 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1243 uint32_t data
[] = {0,0,0,0,0,0,0};
1244 //int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1245 uint8_t last_block
= 0;
1248 // Ensure no more than 84 bits supplied
1250 DbpString("Tags can only have 84 bits.");
1253 // Build the 6 data blocks for supplied 84bit ID
1255 // load preamble (1D) & long format identifier (9E manchester encoded)
1256 data
[1] = 0x1D96A900 | manchesterEncode2Bytes((hi2
>> 16) & 0xF);
1257 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1258 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1259 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1260 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1261 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1262 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1264 // Ensure no more than 44 bits supplied
1266 DbpString("Tags can only have 44 bits.");
1269 // Build the 3 data blocks for supplied 44bit ID
1272 data
[1] = 0x1D000000 | manchesterEncode2Bytes(hi
& 0xFFF);
1273 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1274 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1276 // load chip config block
1277 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1280 // Program the data blocks for supplied ID
1281 // and the block 0 for HID format
1282 WriteT55xx(data
, 0, last_block
+1);
1289 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1291 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1294 // Program the data blocks for supplied ID
1295 // and the block 0 config
1296 WriteT55xx(data
, 0, 3);
1303 // Clone Indala 64-bit tag by UID to T55x7
1304 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1305 //Program the 2 data blocks for supplied 64bit UID
1306 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1307 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1308 WriteT55xx(data
, 0, 3);
1309 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1310 // T5567WriteBlock(0x603E1042,0);
1313 // Clone Indala 224-bit tag by UID to T55x7
1314 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
)
1316 //Program the 7 data blocks for supplied 224bit UID
1317 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1318 // and the block 0 for Indala224 format
1319 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1320 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1321 WriteT55xx(data
, 0, 8);
1322 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1323 // T5567WriteBlock(0x603E10E2,0);
1327 // Define 9bit header for EM410x tags
1328 #define EM410X_HEADER 0x1FF
1329 #define EM410X_ID_LENGTH 40
1331 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1334 uint64_t id
= EM410X_HEADER
;
1335 uint64_t rev_id
= 0; // reversed ID
1336 int c_parity
[4]; // column parity
1337 int r_parity
= 0; // row parity
1340 // Reverse ID bits given as parameter (for simpler operations)
1341 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1343 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1346 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1351 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1352 id_bit
= rev_id
& 1;
1355 // Don't write row parity bit at start of parsing
1357 id
= (id
<< 1) | r_parity
;
1358 // Start counting parity for new row
1365 // First elements in column?
1367 // Fill out first elements
1368 c_parity
[i
] = id_bit
;
1370 // Count column parity
1371 c_parity
[i
% 4] ^= id_bit
;
1374 id
= (id
<< 1) | id_bit
;
1378 // Insert parity bit of last row
1379 id
= (id
<< 1) | r_parity
;
1381 // Fill out column parity at the end of tag
1382 for (i
= 0; i
< 4; ++i
)
1383 id
= (id
<< 1) | c_parity
[i
];
1388 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1392 uint32_t data
[] = {0, id
>>32, id
& 0xFFFF};
1394 clock
= (card
& 0xFF00) >> 8;
1395 clock
= (clock
== 0) ? 64 : clock
;
1396 Dbprintf("Clock rate: %d", clock
);
1397 clock
= GetT55xxClockBit(clock
);
1399 Dbprintf("Invalid clock rate: %d", clock
);
1403 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1405 data
[0] = (0x1F << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1408 WriteT55xx(data
, 0, 3);
1411 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1412 (uint32_t)(id
>> 32), (uint32_t)id
);
1415 //-----------------------------------
1416 // EM4469 / EM4305 routines
1417 //-----------------------------------
1418 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1419 #define FWD_CMD_WRITE 0xA
1420 #define FWD_CMD_READ 0x9
1421 #define FWD_CMD_DISABLE 0x5
1424 uint8_t forwardLink_data
[64]; //array of forwarded bits
1425 uint8_t * forward_ptr
; //ptr for forward message preparation
1426 uint8_t fwd_bit_sz
; //forwardlink bit counter
1427 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1429 //====================================================================
1430 // prepares command bits
1432 //====================================================================
1433 //--------------------------------------------------------------------
1434 uint8_t Prepare_Cmd( uint8_t cmd
) {
1435 //--------------------------------------------------------------------
1437 *forward_ptr
++ = 0; //start bit
1438 *forward_ptr
++ = 0; //second pause for 4050 code
1440 *forward_ptr
++ = cmd
;
1442 *forward_ptr
++ = cmd
;
1444 *forward_ptr
++ = cmd
;
1446 *forward_ptr
++ = cmd
;
1448 return 6; //return number of emited bits
1451 //====================================================================
1452 // prepares address bits
1454 //====================================================================
1456 //--------------------------------------------------------------------
1457 uint8_t Prepare_Addr( uint8_t addr
) {
1458 //--------------------------------------------------------------------
1460 register uint8_t line_parity
;
1465 *forward_ptr
++ = addr
;
1466 line_parity
^= addr
;
1470 *forward_ptr
++ = (line_parity
& 1);
1472 return 7; //return number of emited bits
1475 //====================================================================
1476 // prepares data bits intreleaved with parity bits
1478 //====================================================================
1480 //--------------------------------------------------------------------
1481 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1482 //--------------------------------------------------------------------
1484 register uint8_t line_parity
;
1485 register uint8_t column_parity
;
1486 register uint8_t i
, j
;
1487 register uint16_t data
;
1492 for(i
=0; i
<4; i
++) {
1494 for(j
=0; j
<8; j
++) {
1495 line_parity
^= data
;
1496 column_parity
^= (data
& 1) << j
;
1497 *forward_ptr
++ = data
;
1500 *forward_ptr
++ = line_parity
;
1505 for(j
=0; j
<8; j
++) {
1506 *forward_ptr
++ = column_parity
;
1507 column_parity
>>= 1;
1511 return 45; //return number of emited bits
1514 //====================================================================
1515 // Forward Link send function
1516 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1517 // fwd_bit_count set with number of bits to be sent
1518 //====================================================================
1519 void SendForward(uint8_t fwd_bit_count
) {
1521 fwd_write_ptr
= forwardLink_data
;
1522 fwd_bit_sz
= fwd_bit_count
;
1526 // Set up FPGA, 125kHz
1527 LFSetupFPGAForADC(95, true);
1529 // force 1st mod pulse (start gap must be longer for 4305)
1530 fwd_bit_sz
--; //prepare next bit modulation
1532 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1533 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1534 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1535 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1536 SpinDelayUs(16*8); //16 cycles on (8us each)
1538 // now start writting
1539 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1540 if(((*fwd_write_ptr
++) & 1) == 1)
1541 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1543 //These timings work for 4469/4269/4305 (with the 55*8 above)
1544 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1545 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1546 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1547 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1548 SpinDelayUs(9*8); //16 cycles on (8us each)
1553 void EM4xLogin(uint32_t Password
) {
1555 uint8_t fwd_bit_count
;
1557 forward_ptr
= forwardLink_data
;
1558 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1559 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1561 SendForward(fwd_bit_count
);
1563 //Wait for command to complete
1568 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1570 uint8_t fwd_bit_count
;
1571 uint8_t *dest
= BigBuf_get_addr();
1572 uint16_t bufferlength
= BigBuf_max_traceLen();
1575 // Clear destination buffer before sending the command
1576 memset(dest
, 0x80, bufferlength
);
1578 //If password mode do login
1579 if (PwdMode
== 1) EM4xLogin(Pwd
);
1581 forward_ptr
= forwardLink_data
;
1582 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1583 fwd_bit_count
+= Prepare_Addr( Address
);
1585 // Connect the A/D to the peak-detected low-frequency path.
1586 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1587 // Now set up the SSC to get the ADC samples that are now streaming at us.
1590 SendForward(fwd_bit_count
);
1592 // Now do the acquisition
1595 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1596 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1598 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1599 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1601 if (i
>= bufferlength
) break;
1604 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1605 cmd_send(CMD_ACK
,0,0,0,0,0);
1609 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1611 uint8_t fwd_bit_count
;
1613 //If password mode do login
1614 if (PwdMode
== 1) EM4xLogin(Pwd
);
1616 forward_ptr
= forwardLink_data
;
1617 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1618 fwd_bit_count
+= Prepare_Addr( Address
);
1619 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1621 SendForward(fwd_bit_count
);
1623 //Wait for write to complete
1625 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off