1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
83 101010101010101[0]000...
85 [5555fe852c5555555555555555fe0000]
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
97 signed char *dest
= (signed char *)BigBuf_get_addr();
98 uint16_t n
= BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
102 int i
, cycles
=0, samples
=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
118 // get TI tag data into the buffer
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
123 for (i
=0; i
<n
-1; i
++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
127 // after 16 cycles, measure the frequency
130 samples
=i
-samples
; // number of samples in these 16 cycles
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0
= (shift0
>>1) | (shift1
<< 31);
135 shift1
= (shift1
>>1) | (shift2
<< 31);
136 shift2
= (shift2
>>1) | (shift3
<< 31);
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
142 // low frequency represents a 1
144 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
145 // high frequency represents a 0
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3
= shift2
= shift1
= shift0
= 0;
153 // for each bit we receive, test if we've detected a valid tag
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
160 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
168 // if flag is set we have a tag
170 DbpString("Info: No valid tag detected.");
172 // put 64 bit data into shift1 and shift0
173 shift0
= (shift0
>>24) | (shift1
<< 8);
174 shift1
= (shift1
>>24) | (shift2
<< 8);
176 // align 16 bit crc into lower half of shift2
177 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
179 // if r/w tag, check ident match
180 if (shift3
& (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
186 DbpString("Info: TI tag ident is valid");
189 DbpString("Info: TI tag is readonly");
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
198 crc
= update_crc16(crc
, (shift0
)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
201 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
202 crc
= update_crc16(crc
, (shift1
)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
205 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
209 if (crc
!= (shift2
&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
212 DbpString("Info: CRC is good");
217 void WriteTIbyte(uint8_t b
)
221 // modulate 8 bits out to the antenna
225 // stop modulating antenna
232 // stop modulating antenna
242 void AcquireTiType(void)
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
250 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
251 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
255 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
259 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC
->SSC_CMR
= 12;
268 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
270 AT91C_BASE_SSC
->SSC_TCMR
= 0;
271 AT91C_BASE_SSC
->SSC_TFMR
= 0;
278 // Charge TI tag for 50ms.
281 // stop modulating antenna and listen
288 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
289 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
290 i
++; if(i
>= TIBUFLEN
) break;
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
297 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
299 char *dest
= (char *)BigBuf_get_addr();
302 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
303 for (j
=0; j
<32; j
++) {
304 if(BigBuf
[i
] & (1 << j
)) {
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
320 crc
= update_crc16(crc
, (idlo
)&0xff);
321 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
324 crc
= update_crc16(crc
, (idhi
)&0xff);
325 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
357 SpinDelay(50); // charge time
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo
)&0xff );
362 WriteTIbyte( (idlo
>>8 )&0xff );
363 WriteTIbyte( (idlo
>>16)&0xff );
364 WriteTIbyte( (idlo
>>24)&0xff );
365 WriteTIbyte( (idhi
)&0xff );
366 WriteTIbyte( (idhi
>>8 )&0xff );
367 WriteTIbyte( (idhi
>>16)&0xff );
368 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc
)&0xff ); // crc lo
370 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
374 SpinDelay(50); // programming time
378 // get TI tag data into the buffer
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
382 DbpString("Now use 'lf ti read' to check");
385 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
388 uint8_t *tab
= BigBuf_get_addr();
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
393 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
395 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
396 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 DbpString("Stopped");
421 //wait until SSC_CLK goes LOW
422 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
424 DbpString("Stopped");
442 #define DEBUG_FRAME_CONTENTS 1
443 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
447 // compose fc/8 fc/10 waveform (FSK2)
448 static void fc(int c
, int *n
)
450 uint8_t *dest
= BigBuf_get_addr();
453 // for when we want an fc8 pattern every 4 logical bits
465 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
467 for (idx
=0; idx
<6; idx
++) {
479 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
481 for (idx
=0; idx
<5; idx
++) {
495 // compose fc/X fc/Y waveform (FSKx)
496 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
498 uint8_t *dest
= BigBuf_get_addr();
499 uint8_t halfFC
= fc
/2;
500 uint8_t wavesPerClock
= clock
/fc
;
501 uint8_t mod
= clock
% fc
; //modifier
502 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
503 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
504 // loop through clock - step field clock
505 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
506 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
507 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
508 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
511 if (mod
>0) (*modCnt
)++;
512 if ((mod
>0) && modAdjOk
){ //fsk2
513 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
514 memset(dest
+(*n
), 0, fc
-halfFC
);
515 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
519 if (mod
>0 && !modAdjOk
){ //fsk1
520 memset(dest
+(*n
), 0, mod
-(mod
/2));
521 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
526 // prepare a waveform pattern in the buffer based on the ID given then
527 // simulate a HID tag until the button is pressed
528 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
532 HID tag bitstream format
533 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
534 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
535 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
536 A fc8 is inserted before every 4 bits
537 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
538 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 // special start of frame marker containing invalid bit sequences
547 fc(8, &n
); fc(8, &n
); // invalid
548 fc(8, &n
); fc(10, &n
); // logical 0
549 fc(10, &n
); fc(10, &n
); // invalid
550 fc(8, &n
); fc(10, &n
); // logical 0
553 // manchester encode bits 43 to 32
554 for (i
=11; i
>=0; i
--) {
555 if ((i
%4)==3) fc(0,&n
);
557 fc(10, &n
); fc(8, &n
); // low-high transition
559 fc(8, &n
); fc(10, &n
); // high-low transition
564 // manchester encode bits 31 to 0
565 for (i
=31; i
>=0; i
--) {
566 if ((i
%4)==3) fc(0,&n
);
568 fc(10, &n
); fc(8, &n
); // low-high transition
570 fc(8, &n
); fc(10, &n
); // high-low transition
576 SimulateTagLowFrequency(n
, 0, ledcontrol
);
582 // prepare a waveform pattern in the buffer based on the ID given then
583 // simulate a FSK tag until the button is pressed
584 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
585 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
589 uint8_t fcHigh
= arg1
>> 8;
590 uint8_t fcLow
= arg1
& 0xFF;
592 uint8_t clk
= arg2
& 0xFF;
593 uint8_t invert
= (arg2
>> 8) & 1;
595 for (i
=0; i
<size
; i
++){
596 if (BitStream
[i
] == invert
){
597 fcAll(fcLow
, &n
, clk
, &modCnt
);
599 fcAll(fcHigh
, &n
, clk
, &modCnt
);
602 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
603 /*Dbprintf("DEBUG: First 32:");
604 uint8_t *dest = BigBuf_get_addr();
606 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
608 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
613 SimulateTagLowFrequency(n
, 0, ledcontrol
);
619 // compose ask waveform for one bit(ASK)
620 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
622 uint8_t *dest
= BigBuf_get_addr();
623 uint8_t halfClk
= clock
/2;
624 // c = current bit 1 or 0
626 memset(dest
+(*n
), c
, halfClk
);
627 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
629 memset(dest
+(*n
), c
, clock
);
634 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
636 uint8_t *dest
= BigBuf_get_addr();
637 uint8_t halfClk
= clock
/2;
639 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
640 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
642 memset(dest
+(*n
), c
^ *phase
, clock
);
648 // args clock, ask/man or askraw, invert, transmission separator
649 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
653 uint8_t clk
= (arg1
>> 8) & 0xFF;
654 uint8_t encoding
= arg1
& 0xFF;
655 uint8_t separator
= arg2
& 1;
656 uint8_t invert
= (arg2
>> 8) & 1;
658 if (encoding
==2){ //biphase
660 for (i
=0; i
<size
; i
++){
661 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
663 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
664 for (i
=0; i
<size
; i
++){
665 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
668 } else { // ask/manchester || ask/raw
669 for (i
=0; i
<size
; i
++){
670 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
672 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
673 for (i
=0; i
<size
; i
++){
674 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
679 if (separator
==1) Dbprintf("sorry but separator option not yet available");
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
683 //Dbprintf("First 32:");
684 //uint8_t *dest = BigBuf_get_addr();
686 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
688 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
693 SimulateTagLowFrequency(n
, 0, ledcontrol
);
699 //carrier can be 2,4 or 8
700 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
702 uint8_t *dest
= BigBuf_get_addr();
703 uint8_t halfWave
= waveLen
/2;
707 // write phase change
708 memset(dest
+(*n
), *curPhase
^1, halfWave
);
709 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
714 //write each normal clock wave for the clock duration
715 for (; i
< clk
; i
+=waveLen
){
716 memset(dest
+(*n
), *curPhase
, halfWave
);
717 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
722 // args clock, carrier, invert,
723 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
727 uint8_t clk
= arg1
>> 8;
728 uint8_t carrier
= arg1
& 0xFF;
729 uint8_t invert
= arg2
& 0xFF;
730 uint8_t curPhase
= 0;
731 for (i
=0; i
<size
; i
++){
732 if (BitStream
[i
] == curPhase
){
733 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
735 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
738 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
739 //Dbprintf("DEBUG: First 32:");
740 //uint8_t *dest = BigBuf_get_addr();
742 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
744 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
748 SimulateTagLowFrequency(n
, 0, ledcontrol
);
754 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
755 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
757 uint8_t *dest
= BigBuf_get_addr();
758 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
760 uint32_t hi2
=0, hi
=0, lo
=0;
762 // Configure to go in 125Khz listen mode
763 LFSetupFPGAForADC(95, true);
765 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
768 if (ledcontrol
) LED_A_ON();
770 DoAcquisition_default(-1,true);
772 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
773 size
= 50*128*2; //big enough to catch 2 sequences of largest format
774 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
776 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
777 // go over previously decoded manchester data and decode into usable tag ID
778 if (hi2
!= 0){ //extra large HID tags 88/192 bits
779 Dbprintf("TAG ID: %x%08x%08x (%d)",
780 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
781 }else { //standard HID tags 44/96 bits
782 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
785 uint32_t cardnum
= 0;
786 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
788 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
790 while(lo2
> 1){ //find last bit set to 1 (format len bit)
798 cardnum
= (lo
>>1)&0xFFFF;
802 cardnum
= (lo
>>1)&0x7FFFF;
803 fc
= ((hi
&0xF)<<12)|(lo
>>20);
806 cardnum
= (lo
>>1)&0xFFFF;
807 fc
= ((hi
&1)<<15)|(lo
>>17);
810 cardnum
= (lo
>>1)&0xFFFFF;
811 fc
= ((hi
&1)<<11)|(lo
>>21);
814 else { //if bit 38 is not set then 37 bit format is used
819 cardnum
= (lo
>>1)&0x7FFFF;
820 fc
= ((hi
&0xF)<<12)|(lo
>>20);
823 //Dbprintf("TAG ID: %x%08x (%d)",
824 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
825 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
826 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
827 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
830 if (ledcontrol
) LED_A_OFF();
837 hi2
= hi
= lo
= idx
= 0;
840 DbpString("Stopped");
841 if (ledcontrol
) LED_A_OFF();
844 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
845 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
847 uint8_t *dest
= BigBuf_get_addr();
848 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
851 // Configure to go in 125Khz listen mode
852 LFSetupFPGAForADC(95, true);
854 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
857 if (ledcontrol
) LED_A_ON();
859 DoAcquisition_default(-1,true);
861 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
862 size
= 50*128*2; //big enough to catch 2 sequences of largest format
863 idx
= AWIDdemodFSK(dest
, &size
);
865 if (idx
>0 && size
==96){
867 // 0 10 20 30 40 50 60
869 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
870 // -----------------------------------------------------------------------------
871 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
872 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
873 // |---26 bit---| |-----117----||-------------142-------------|
874 // b = format bit len, o = odd parity of last 3 bits
875 // f = facility code, c = card number
876 // w = wiegand parity
877 // (26 bit format shown)
879 //get raw ID before removing parities
880 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
881 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
882 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
884 size
= removeParity(dest
, idx
+8, 4, 1, 88);
885 // ok valid card found!
888 // 0 10 20 30 40 50 60
890 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
891 // -----------------------------------------------------------------------------
892 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
893 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
894 // |26 bit| |-117--| |-----142------|
895 // b = format bit len, o = odd parity of last 3 bits
896 // f = facility code, c = card number
897 // w = wiegand parity
898 // (26 bit format shown)
901 uint32_t cardnum
= 0;
904 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
906 fc
= bytebits_to_byte(dest
+9, 8);
907 cardnum
= bytebits_to_byte(dest
+17, 16);
908 code1
= bytebits_to_byte(dest
+8,fmtLen
);
909 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
911 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
913 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
914 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
915 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
917 code1
= bytebits_to_byte(dest
+8,fmtLen
);
918 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
922 if (ledcontrol
) LED_A_OFF();
930 DbpString("Stopped");
931 if (ledcontrol
) LED_A_OFF();
934 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
936 uint8_t *dest
= BigBuf_get_addr();
938 size_t size
=0, idx
=0;
939 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
942 // Configure to go in 125Khz listen mode
943 LFSetupFPGAForADC(95, true);
945 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
948 if (ledcontrol
) LED_A_ON();
950 DoAcquisition_default(-1,true);
951 size
= BigBuf_max_traceLen();
952 //askdemod and manchester decode
953 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
954 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
957 if (errCnt
<0) continue;
959 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
962 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
966 (uint32_t)(lo
&0xFFFF),
967 (uint32_t)((lo
>>16LL) & 0xFF),
968 (uint32_t)(lo
& 0xFFFFFF));
970 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
973 (uint32_t)(lo
&0xFFFF),
974 (uint32_t)((lo
>>16LL) & 0xFF),
975 (uint32_t)(lo
& 0xFFFFFF));
979 if (ledcontrol
) LED_A_OFF();
981 *low
=lo
& 0xFFFFFFFF;
986 hi
= lo
= size
= idx
= 0;
987 clk
= invert
= errCnt
= 0;
989 DbpString("Stopped");
990 if (ledcontrol
) LED_A_OFF();
993 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
995 uint8_t *dest
= BigBuf_get_addr();
997 uint32_t code
=0, code2
=0;
999 uint8_t facilitycode
=0;
1002 uint16_t calccrc
= 0;
1003 // Configure to go in 125Khz listen mode
1004 LFSetupFPGAForADC(95, true);
1006 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1008 if (ledcontrol
) LED_A_ON();
1009 DoAcquisition_default(-1,true);
1010 //fskdemod and get start index
1012 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1013 if (idx
<0) continue;
1017 //0 10 20 30 40 50 60
1019 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1020 //-----------------------------------------------------------------------------
1021 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1024 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1025 //preamble F0 E0 01 03 B6 75
1026 // How to calc checksum,
1027 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1028 // F0 + E0 + 01 + 03 + B6 = 28A
1032 //XSF(version)facility:codeone+codetwo
1034 if(findone
){ //only print binary if we are doing one
1035 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1036 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1037 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1038 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1039 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1040 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1041 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1043 code
= bytebits_to_byte(dest
+idx
,32);
1044 code2
= bytebits_to_byte(dest
+idx
+32,32);
1045 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1046 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1047 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1049 crc
= bytebits_to_byte(dest
+idx
+54,8);
1050 for (uint8_t i
=1; i
<6; ++i
)
1051 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1053 calccrc
= 0xff - calccrc
;
1055 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1057 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1058 // if we're only looking for one tag
1060 if (ledcontrol
) LED_A_OFF();
1067 version
=facilitycode
=0;
1073 DbpString("Stopped");
1074 if (ledcontrol
) LED_A_OFF();
1077 /*------------------------------
1078 * T5555/T5557/T5567 routines
1079 *------------------------------
1082 /* T55x7 configuration register definitions */
1083 #define T55x7_POR_DELAY 0x00000001
1084 #define T55x7_ST_TERMINATOR 0x00000008
1085 #define T55x7_PWD 0x00000010
1086 #define T55x7_MAXBLOCK_SHIFT 5
1087 #define T55x7_AOR 0x00000200
1088 #define T55x7_PSKCF_RF_2 0
1089 #define T55x7_PSKCF_RF_4 0x00000400
1090 #define T55x7_PSKCF_RF_8 0x00000800
1091 #define T55x7_MODULATION_DIRECT 0
1092 #define T55x7_MODULATION_PSK1 0x00001000
1093 #define T55x7_MODULATION_PSK2 0x00002000
1094 #define T55x7_MODULATION_PSK3 0x00003000
1095 #define T55x7_MODULATION_FSK1 0x00004000
1096 #define T55x7_MODULATION_FSK2 0x00005000
1097 #define T55x7_MODULATION_FSK1a 0x00006000
1098 #define T55x7_MODULATION_FSK2a 0x00007000
1099 #define T55x7_MODULATION_MANCHESTER 0x00008000
1100 #define T55x7_MODULATION_BIPHASE 0x00010000
1101 //#define T55x7_MODULATION_BIPHASE57 0x00011000
1102 #define T55x7_BITRATE_RF_8 0
1103 #define T55x7_BITRATE_RF_16 0x00040000
1104 #define T55x7_BITRATE_RF_32 0x00080000
1105 #define T55x7_BITRATE_RF_40 0x000C0000
1106 #define T55x7_BITRATE_RF_50 0x00100000
1107 #define T55x7_BITRATE_RF_64 0x00140000
1108 #define T55x7_BITRATE_RF_100 0x00180000
1109 #define T55x7_BITRATE_RF_128 0x001C0000
1111 /* T5555 (Q5) configuration register definitions */
1112 #define T5555_ST_TERMINATOR 0x00000001
1113 #define T5555_MAXBLOCK_SHIFT 0x00000001
1114 #define T5555_MODULATION_MANCHESTER 0
1115 #define T5555_MODULATION_PSK1 0x00000010
1116 #define T5555_MODULATION_PSK2 0x00000020
1117 #define T5555_MODULATION_PSK3 0x00000030
1118 #define T5555_MODULATION_FSK1 0x00000040
1119 #define T5555_MODULATION_FSK2 0x00000050
1120 #define T5555_MODULATION_BIPHASE 0x00000060
1121 #define T5555_MODULATION_DIRECT 0x00000070
1122 #define T5555_INVERT_OUTPUT 0x00000080
1123 #define T5555_PSK_RF_2 0
1124 #define T5555_PSK_RF_4 0x00000100
1125 #define T5555_PSK_RF_8 0x00000200
1126 #define T5555_USE_PWD 0x00000400
1127 #define T5555_USE_AOR 0x00000800
1128 #define T5555_BITRATE_SHIFT 12
1129 #define T5555_FAST_WRITE 0x00004000
1130 #define T5555_PAGE_SELECT 0x00008000
1133 * Relevant times in microsecond
1134 * To compensate antenna falling times shorten the write times
1135 * and enlarge the gap ones.
1138 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1139 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1140 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1141 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1143 // VALUES TAKEN FROM EM4x function: SendForward
1144 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1145 // WRITE_GAP = 128; (16*8)
1146 // WRITE_1 = 256 32*8; (32*8)
1148 // These timings work for 4469/4269/4305 (with the 55*8 above)
1149 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1151 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1152 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1153 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1154 // T0 = TIMER_CLOCK1 / 125000 = 192
1155 // 1 Cycle = 8 microseconds(us)
1157 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1159 // Write one bit to card
1160 void T55xxWriteBit(int bit
)
1162 //FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1163 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1164 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1166 SpinDelayUs(WRITE_0
);
1168 SpinDelayUs(WRITE_1
);
1169 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1170 SpinDelayUs(WRITE_GAP
);
1173 // Write one card block in page 0, no lock
1174 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1178 // Set up FPGA, 125kHz
1179 // Wait for config.. (192+8190xPOW)x8 == 67ms
1180 LFSetupFPGAForADC(0, true);
1182 // Now start writting
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1184 SpinDelayUs(START_GAP
);
1188 T55xxWriteBit(0); //Page 0
1191 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1192 T55xxWriteBit(Pwd
& i
);
1198 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1199 T55xxWriteBit(Data
& i
);
1202 for (i
= 0x04; i
!= 0; i
>>= 1)
1203 T55xxWriteBit(Block
& i
);
1205 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1206 // so wait a little more)
1207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1208 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1210 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1213 void TurnReadLFOn(){
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1215 // Give it a bit of time for the resonant antenna to settle.
1220 // Read one card block in page 0
1221 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1224 uint8_t *dest
= BigBuf_get_addr();
1225 uint16_t bufferlength
= BigBuf_max_traceLen();
1226 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1227 bufferlength
= T55xx_SAMPLES_SIZE
;
1229 // Clear destination buffer before sending the command
1230 memset(dest
, 0x80, bufferlength
);
1232 // Set up FPGA, 125kHz
1233 // Wait for config.. (192+8190xPOW)x8 == 67ms
1234 //LFSetupFPGAForADC(0, true);
1235 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1236 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1237 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1239 // Connect the A/D to the peak-detected low-frequency path.
1240 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1242 // Now set up the SSC to get the ADC samples that are now streaming at us.
1245 // Give it a bit of time for the resonant antenna to settle.
1246 //SpinDelayUs(8*200); //192FC
1249 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1250 SpinDelayUs(START_GAP
);
1254 T55xxWriteBit(0); //Page 0
1257 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1258 T55xxWriteBit(Pwd
& i
);
1263 for (i
= 0x04; i
!= 0; i
>>= 1)
1264 T55xxWriteBit(Block
& i
);
1266 // Turn field on to read the response
1268 // Now do the acquisition
1271 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1272 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1275 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1276 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1279 if (i
>= bufferlength
) break;
1283 cmd_send(CMD_ACK
,0,0,0,0,0);
1284 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1288 // Read card traceability data (page 1)
1289 void T55xxReadTrace(void){
1292 uint8_t *dest
= BigBuf_get_addr();
1293 uint16_t bufferlength
= BigBuf_max_traceLen();
1294 if ( bufferlength
> T55xx_SAMPLES_SIZE
)
1295 bufferlength
= T55xx_SAMPLES_SIZE
;
1297 // Clear destination buffer before sending the command
1298 memset(dest
, 0x80, bufferlength
);
1300 LFSetupFPGAForADC(0, true);
1301 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1302 SpinDelayUs(START_GAP
);
1306 T55xxWriteBit(1); //Page 1
1308 // Turn field on to read the response
1311 // Now do the acquisition
1313 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1314 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1317 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1318 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1322 if (i
>= bufferlength
) break;
1326 cmd_send(CMD_ACK
,0,0,0,0,0);
1327 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1331 /*-------------- Cloning routines -----------*/
1332 // Copy HID id to card and setup block 0 config
1333 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1335 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1339 // Ensure no more than 84 bits supplied
1341 DbpString("Tags can only have 84 bits.");
1344 // Build the 6 data blocks for supplied 84bit ID
1346 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1347 for (int i
=0;i
<4;i
++) {
1348 if (hi2
& (1<<(19-i
)))
1349 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1351 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1355 for (int i
=0;i
<16;i
++) {
1356 if (hi2
& (1<<(15-i
)))
1357 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1359 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1363 for (int i
=0;i
<16;i
++) {
1364 if (hi
& (1<<(31-i
)))
1365 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1367 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1371 for (int i
=0;i
<16;i
++) {
1372 if (hi
& (1<<(15-i
)))
1373 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1375 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1379 for (int i
=0;i
<16;i
++) {
1380 if (lo
& (1<<(31-i
)))
1381 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1383 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1387 for (int i
=0;i
<16;i
++) {
1388 if (lo
& (1<<(15-i
)))
1389 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1391 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1395 // Ensure no more than 44 bits supplied
1397 DbpString("Tags can only have 44 bits.");
1401 // Build the 3 data blocks for supplied 44bit ID
1404 data1
= 0x1D000000; // load preamble
1406 for (int i
=0;i
<12;i
++) {
1407 if (hi
& (1<<(11-i
)))
1408 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1410 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1414 for (int i
=0;i
<16;i
++) {
1415 if (lo
& (1<<(31-i
)))
1416 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1418 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1422 for (int i
=0;i
<16;i
++) {
1423 if (lo
& (1<<(15-i
)))
1424 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1426 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1431 // Program the data blocks for supplied ID
1432 // and the block 0 for HID format
1433 T55xxWriteBlock(data1
,1,0,0);
1434 T55xxWriteBlock(data2
,2,0,0);
1435 T55xxWriteBlock(data3
,3,0,0);
1437 if (longFMT
) { // if long format there are 6 blocks
1438 T55xxWriteBlock(data4
,4,0,0);
1439 T55xxWriteBlock(data5
,5,0,0);
1440 T55xxWriteBlock(data6
,6,0,0);
1443 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1444 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1445 T55x7_MODULATION_FSK2a
|
1446 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1454 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1456 int data1
=0, data2
=0; //up to six blocks for long format
1458 data1
= hi
; // load preamble
1462 // Program the data blocks for supplied ID
1463 // and the block 0 for HID format
1464 T55xxWriteBlock(data1
,1,0,0);
1465 T55xxWriteBlock(data2
,2,0,0);
1468 T55xxWriteBlock(0x00147040,0,0,0);
1474 // Define 9bit header for EM410x tags
1475 #define EM410X_HEADER 0x1FF
1476 #define EM410X_ID_LENGTH 40
1478 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1481 uint64_t id
= EM410X_HEADER
;
1482 uint64_t rev_id
= 0; // reversed ID
1483 int c_parity
[4]; // column parity
1484 int r_parity
= 0; // row parity
1487 // Reverse ID bits given as parameter (for simpler operations)
1488 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1490 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1493 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1498 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1499 id_bit
= rev_id
& 1;
1502 // Don't write row parity bit at start of parsing
1504 id
= (id
<< 1) | r_parity
;
1505 // Start counting parity for new row
1512 // First elements in column?
1514 // Fill out first elements
1515 c_parity
[i
] = id_bit
;
1517 // Count column parity
1518 c_parity
[i
% 4] ^= id_bit
;
1521 id
= (id
<< 1) | id_bit
;
1525 // Insert parity bit of last row
1526 id
= (id
<< 1) | r_parity
;
1528 // Fill out column parity at the end of tag
1529 for (i
= 0; i
< 4; ++i
)
1530 id
= (id
<< 1) | c_parity
[i
];
1535 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1539 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1540 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1542 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1544 // Clock rate is stored in bits 8-15 of the card value
1545 clock
= (card
& 0xFF00) >> 8;
1546 Dbprintf("Clock rate: %d", clock
);
1550 clock
= T55x7_BITRATE_RF_32
;
1553 clock
= T55x7_BITRATE_RF_16
;
1556 // A value of 0 is assumed to be 64 for backwards-compatibility
1559 clock
= T55x7_BITRATE_RF_64
;
1562 Dbprintf("Invalid clock rate: %d", clock
);
1566 // Writing configuration for T55x7 tag
1567 T55xxWriteBlock(clock
|
1568 T55x7_MODULATION_MANCHESTER
|
1569 2 << T55x7_MAXBLOCK_SHIFT
,
1573 // Writing configuration for T5555(Q5) tag
1574 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1575 T5555_MODULATION_MANCHESTER
|
1576 2 << T5555_MAXBLOCK_SHIFT
,
1580 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1581 (uint32_t)(id
>> 32), (uint32_t)id
);
1584 // Clone Indala 64-bit tag by UID to T55x7
1585 void CopyIndala64toT55x7(int hi
, int lo
)
1588 //Program the 2 data blocks for supplied 64bit UID
1589 // and the block 0 for Indala64 format
1590 T55xxWriteBlock(hi
,1,0,0);
1591 T55xxWriteBlock(lo
,2,0,0);
1592 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1593 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1594 T55x7_MODULATION_PSK1
|
1595 2 << T55x7_MAXBLOCK_SHIFT
,
1597 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1598 // T5567WriteBlock(0x603E1042,0);
1604 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1607 //Program the 7 data blocks for supplied 224bit UID
1608 // and the block 0 for Indala224 format
1609 T55xxWriteBlock(uid1
,1,0,0);
1610 T55xxWriteBlock(uid2
,2,0,0);
1611 T55xxWriteBlock(uid3
,3,0,0);
1612 T55xxWriteBlock(uid4
,4,0,0);
1613 T55xxWriteBlock(uid5
,5,0,0);
1614 T55xxWriteBlock(uid6
,6,0,0);
1615 T55xxWriteBlock(uid7
,7,0,0);
1616 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1617 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1618 T55x7_MODULATION_PSK1
|
1619 7 << T55x7_MAXBLOCK_SHIFT
,
1621 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1622 // T5567WriteBlock(0x603E10E2,0);
1629 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1630 #define max(x,y) ( x<y ? y:x)
1632 int DemodPCF7931(uint8_t **outBlocks
) {
1634 uint8_t bits
[256] = {0x00};
1635 uint8_t blocks
[8][16];
1636 uint8_t *dest
= BigBuf_get_addr();
1638 int GraphTraceLen
= BigBuf_max_traceLen();
1639 if ( GraphTraceLen
> 18000 )
1640 GraphTraceLen
= 18000;
1643 int i
, j
, lastval
, bitidx
, half_switch
;
1645 int tolerance
= clock
/ 8;
1646 int pmc
, block_done
;
1647 int lc
, warnings
= 0;
1649 int lmin
=128, lmax
=128;
1652 LFSetupFPGAForADC(95, true);
1653 DoAcquisition_default(0, true);
1660 /* Find first local max/min */
1661 if(dest
[1] > dest
[0]) {
1662 while(i
< GraphTraceLen
) {
1663 if( !(dest
[i
] > dest
[i
-1]) && dest
[i
] > lmax
)
1670 while(i
< GraphTraceLen
) {
1671 if( !(dest
[i
] < dest
[i
-1]) && dest
[i
] < lmin
)
1683 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1685 if ( (dest
[i
-1] > dest
[i
] && dir
== 1 && dest
[i
] > lmax
) || (dest
[i
-1] < dest
[i
] && dir
== 0 && dest
[i
] < lmin
))
1690 // Switch depending on lc length:
1691 // Tolerance is 1/8 of clock rate (arbitrary)
1692 if (abs(lc
-clock
/4) < tolerance
) {
1694 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1696 i
+= (128+127+16+32+33+16)-1;
1704 } else if (abs(lc
-clock
/2) < tolerance
) {
1706 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1708 i
+= (128+127+16+32+33)-1;
1713 else if(half_switch
== 1) {
1719 } else if (abs(lc
-clock
) < tolerance
) {
1727 Dbprintf("Error: too many detection errors, aborting.");
1732 if(block_done
== 1) {
1734 for(j
=0; j
<16; j
++) {
1735 blocks
[num_blocks
][j
] = 128*bits
[j
*8+7]+
1751 if(i
< GraphTraceLen
)
1752 dir
=(dest
[i
-1] > dest
[i
]) ? 0 : 1;
1757 if(num_blocks
== 4) break;
1759 memcpy(outBlocks
, blocks
, 16*num_blocks
);
1763 int IsBlock0PCF7931(uint8_t *Block
) {
1764 // Assume RFU means 0 :)
1765 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1767 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1772 int IsBlock1PCF7931(uint8_t *Block
) {
1773 // Assume RFU means 0 :)
1774 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1775 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1783 void ReadPCF7931() {
1784 uint8_t Blocks
[8][17];
1785 uint8_t tmpBlocks
[4][16];
1786 int i
, j
, ind
, ind2
, n
;
1793 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1796 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1797 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1800 if(error
==10 && num_blocks
== 0) {
1801 Dbprintf("Error, no tag or bad tag");
1804 else if (tries
==20 || error
==10) {
1805 Dbprintf("Error reading the tag");
1806 Dbprintf("Here is the partial content");
1811 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1812 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1813 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1815 for(i
=0; i
<n
; i
++) {
1816 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1818 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1822 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1823 Blocks
[0][ALLOC
] = 1;
1824 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1825 Blocks
[1][ALLOC
] = 1;
1826 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1828 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1830 // Handle following blocks
1831 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1834 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1835 Blocks
[ind2
][ALLOC
] = 1;
1843 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1844 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1845 for(j
=0; j
<max_blocks
; j
++) {
1846 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1847 // Found an identical block
1848 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1851 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1852 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1853 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1854 Blocks
[ind2
][ALLOC
] = 1;
1856 if(num_blocks
== max_blocks
) goto end
;
1859 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1860 if(ind2
> max_blocks
)
1862 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1863 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1864 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1865 Blocks
[ind2
][ALLOC
] = 1;
1867 if(num_blocks
== max_blocks
) goto end
;
1876 if (BUTTON_PRESS()) return;
1877 } while (num_blocks
!= max_blocks
);
1879 Dbprintf("-----------------------------------------");
1880 Dbprintf("Memory content:");
1881 Dbprintf("-----------------------------------------");
1882 for(i
=0; i
<max_blocks
; i
++) {
1883 if(Blocks
[i
][ALLOC
]==1)
1884 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1885 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1886 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1888 Dbprintf("<missing block %d>", i
);
1890 Dbprintf("-----------------------------------------");
1896 //-----------------------------------
1897 // EM4469 / EM4305 routines
1898 //-----------------------------------
1899 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1900 #define FWD_CMD_WRITE 0xA
1901 #define FWD_CMD_READ 0x9
1902 #define FWD_CMD_DISABLE 0x5
1905 uint8_t forwardLink_data
[64]; //array of forwarded bits
1906 uint8_t * forward_ptr
; //ptr for forward message preparation
1907 uint8_t fwd_bit_sz
; //forwardlink bit counter
1908 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1910 //====================================================================
1911 // prepares command bits
1913 //====================================================================
1914 //--------------------------------------------------------------------
1915 uint8_t Prepare_Cmd( uint8_t cmd
) {
1916 //--------------------------------------------------------------------
1918 *forward_ptr
++ = 0; //start bit
1919 *forward_ptr
++ = 0; //second pause for 4050 code
1921 *forward_ptr
++ = cmd
;
1923 *forward_ptr
++ = cmd
;
1925 *forward_ptr
++ = cmd
;
1927 *forward_ptr
++ = cmd
;
1929 return 6; //return number of emited bits
1932 //====================================================================
1933 // prepares address bits
1935 //====================================================================
1937 //--------------------------------------------------------------------
1938 uint8_t Prepare_Addr( uint8_t addr
) {
1939 //--------------------------------------------------------------------
1941 register uint8_t line_parity
;
1946 *forward_ptr
++ = addr
;
1947 line_parity
^= addr
;
1951 *forward_ptr
++ = (line_parity
& 1);
1953 return 7; //return number of emited bits
1956 //====================================================================
1957 // prepares data bits intreleaved with parity bits
1959 //====================================================================
1961 //--------------------------------------------------------------------
1962 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1963 //--------------------------------------------------------------------
1965 register uint8_t line_parity
;
1966 register uint8_t column_parity
;
1967 register uint8_t i
, j
;
1968 register uint16_t data
;
1973 for(i
=0; i
<4; i
++) {
1975 for(j
=0; j
<8; j
++) {
1976 line_parity
^= data
;
1977 column_parity
^= (data
& 1) << j
;
1978 *forward_ptr
++ = data
;
1981 *forward_ptr
++ = line_parity
;
1986 for(j
=0; j
<8; j
++) {
1987 *forward_ptr
++ = column_parity
;
1988 column_parity
>>= 1;
1992 return 45; //return number of emited bits
1995 //====================================================================
1996 // Forward Link send function
1997 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1998 // fwd_bit_count set with number of bits to be sent
1999 //====================================================================
2000 void SendForward(uint8_t fwd_bit_count
) {
2002 fwd_write_ptr
= forwardLink_data
;
2003 fwd_bit_sz
= fwd_bit_count
;
2008 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
2009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
2012 // Give it a bit of time for the resonant antenna to settle.
2013 // And for the tag to fully power up
2016 // force 1st mod pulse (start gap must be longer for 4305)
2017 fwd_bit_sz
--; //prepare next bit modulation
2019 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2020 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
2021 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2022 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2023 SpinDelayUs(16*8); //16 cycles on (8us each)
2025 // now start writting
2026 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
2027 if(((*fwd_write_ptr
++) & 1) == 1)
2028 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2030 //These timings work for 4469/4269/4305 (with the 55*8 above)
2031 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2032 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2033 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
2034 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
2035 SpinDelayUs(9*8); //16 cycles on (8us each)
2040 void EM4xLogin(uint32_t Password
) {
2042 uint8_t fwd_bit_count
;
2044 forward_ptr
= forwardLink_data
;
2045 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
2046 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
2048 SendForward(fwd_bit_count
);
2050 //Wait for command to complete
2055 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2057 uint8_t *dest
= BigBuf_get_addr();
2058 uint16_t bufferlength
= BigBuf_max_traceLen();
2061 // Clear destination buffer before sending the command 0x80 = average.
2062 memset(dest
, 0x80, bufferlength
);
2064 uint8_t fwd_bit_count
;
2066 //If password mode do login
2067 if (PwdMode
== 1) EM4xLogin(Pwd
);
2069 forward_ptr
= forwardLink_data
;
2070 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
2071 fwd_bit_count
+= Prepare_Addr( Address
);
2073 // Connect the A/D to the peak-detected low-frequency path.
2074 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
2075 // Now set up the SSC to get the ADC samples that are now streaming at us.
2078 SendForward(fwd_bit_count
);
2080 // Now do the acquisition
2083 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
2084 AT91C_BASE_SSC
->SSC_THR
= 0x43;
2086 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
2087 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
2089 if (i
>= bufferlength
) break;
2093 cmd_send(CMD_ACK
,0,0,0,0,0);
2094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2098 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
2100 uint8_t fwd_bit_count
;
2102 //If password mode do login
2103 if (PwdMode
== 1) EM4xLogin(Pwd
);
2105 forward_ptr
= forwardLink_data
;
2106 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
2107 fwd_bit_count
+= Prepare_Addr( Address
);
2108 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
2110 SendForward(fwd_bit_count
);
2112 //Wait for write to complete
2114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
2117 void CopyViKingtoT55x7(uint32_t block1
,uint32_t block2
)
2120 T55xxWriteBlock(block1
,1,0,0);
2121 T55xxWriteBlock(block2
,2,0,0);
2123 T55xxWriteBlock(T55x7_MODULATION_MANCHESTER
| T55x7_BITRATE_RF_32
| 2 << T5555_MAXBLOCK_SHIFT
,0,0,1);