1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "../include/proxmark3.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "../common/iso14443crc.h"
49 #include "../common/iso15693tools.h"
50 #include "iso15693tools.h"
53 static int timeout
= 4096;
56 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
58 //-----------------------------------------------------------------------------
59 // The software UART that receives commands from the reader, and its state
61 //-----------------------------------------------------------------------------
65 STATE_START_OF_COMMUNICATION
,
86 static RAMFUNC
int OutOfNDecoding(int bit
)
92 Uart
.bitBuffer
= bit
^ 0xFF0;
97 Uart
.bitBuffer
^= bit
;
101 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
104 if(Uart.byteCnt > 15) { return TRUE; }
110 if(Uart
.state
!= STATE_UNSYNCD
) {
113 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
119 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
125 if(bit
!= bitright
) { bit
= bitright
; }
128 // So, now we only have to deal with *bit*, lets see...
129 if(Uart
.posCnt
== 1) {
130 // measurement first half bitperiod
132 // Drop in first half means that we are either seeing
135 if(Uart
.nOutOfCnt
== 1) {
136 // End of Communication
137 Uart
.state
= STATE_UNSYNCD
;
139 if(Uart
.byteCnt
== 0) {
140 // Its not straightforward to show single EOFs
141 // So just leave it and do not return TRUE
142 Uart
.output
[Uart
.byteCnt
] = 0xf0;
145 // Calculate the parity bit for the client...
152 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
153 // When not part of SOF or EOF, it is an error
154 Uart
.state
= STATE_UNSYNCD
;
161 // measurement second half bitperiod
162 // Count the bitslot we are in... (ISO 15693)
166 if(Uart
.dropPosition
) {
167 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
173 // It is an error if we already have seen a drop in current frame
174 Uart
.state
= STATE_UNSYNCD
;
178 Uart
.dropPosition
= Uart
.nOutOfCnt
;
185 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
188 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
189 if(Uart
.dropPosition
== 4) {
190 Uart
.state
= STATE_RECEIVING
;
193 else if(Uart
.dropPosition
== 3) {
194 Uart
.state
= STATE_RECEIVING
;
196 //Uart.output[Uart.byteCnt] = 0xdd;
200 Uart
.state
= STATE_UNSYNCD
;
203 Uart
.dropPosition
= 0;
208 if(!Uart
.dropPosition
) {
209 Uart
.state
= STATE_UNSYNCD
;
218 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
219 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
221 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
223 Uart
.dropPosition
= 0;
225 if(Uart
.bitCnt
== 8) {
226 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
229 // Calculate the parity bit for the client...
230 Uart
.parityBits
<<= 1;
231 //Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)];
232 Uart
.parityBits
^= oddparity(Uart
.shiftReg
& 0xff);
240 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
243 if(!Uart
.dropPosition
) {
244 Uart
.state
= STATE_UNSYNCD
;
250 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
253 // Calculate the parity bit for the client...
254 Uart
.parityBits
<<= 1;
255 //Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)];
256 Uart
.parityBits
^= oddparity((Uart
.dropPosition
& 0xff));
261 Uart
.dropPosition
= 0;
266 Uart.output[Uart.byteCnt] = 0xAA;
268 Uart.output[Uart.byteCnt] = error & 0xFF;
270 Uart.output[Uart.byteCnt] = 0xAA;
272 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
274 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
276 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
278 Uart.output[Uart.byteCnt] = 0xAA;
286 bit
= Uart
.bitBuffer
& 0xf0;
288 bit
^= 0x0F; // drops become 1s ;-)
290 // should have been high or at least (4 * 128) / fc
291 // according to ISO this should be at least (9 * 128 + 20) / fc
292 if(Uart
.highCnt
== 8) {
293 // we went low, so this could be start of communication
294 // it turns out to be safer to choose a less significant
295 // syncbit... so we check whether the neighbour also represents the drop
296 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
297 Uart
.syncBit
= bit
& 8;
299 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
300 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
301 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
302 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
303 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
304 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
307 // the first half bit period is expected in next sample
312 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
315 Uart
.state
= STATE_START_OF_COMMUNICATION
;
320 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
321 Uart
.dropPosition
= 0;
330 if(Uart
.highCnt
< 8) {
339 //=============================================================================
341 //=============================================================================
346 DEMOD_START_OF_COMMUNICATION
,
347 DEMOD_START_OF_COMMUNICATION2
,
348 DEMOD_START_OF_COMMUNICATION3
,
352 DEMOD_END_OF_COMMUNICATION
,
353 DEMOD_END_OF_COMMUNICATION2
,
377 static RAMFUNC
int ManchesterDecoding(int v
)
384 Demod
.buffer
= Demod
.buffer2
;
385 Demod
.buffer2
= Demod
.buffer3
;
393 if(Demod
.state
==DEMOD_UNSYNCD
) {
394 Demod
.output
[Demod
.len
] = 0xfa;
397 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
400 Demod
.syncBit
= 0x08;
407 Demod
.syncBit
= 0x04;
414 Demod
.syncBit
= 0x02;
417 if(bit
& 0x01 && Demod
.syncBit
) {
418 Demod
.syncBit
= 0x01;
423 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
424 Demod
.sub
= SUB_FIRST_HALF
;
427 Demod
.parityBits
= 0;
430 //if(trigger) LED_A_OFF(); // Not useful in this case...
431 switch(Demod
.syncBit
) {
432 case 0x08: Demod
.samples
= 3; break;
433 case 0x04: Demod
.samples
= 2; break;
434 case 0x02: Demod
.samples
= 1; break;
435 case 0x01: Demod
.samples
= 0; break;
437 // SOF must be long burst... otherwise stay unsynced!!!
438 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
439 Demod
.state
= DEMOD_UNSYNCD
;
443 // SOF must be long burst... otherwise stay unsynced!!!
444 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
445 Demod
.state
= DEMOD_UNSYNCD
;
455 modulation
= bit
& Demod
.syncBit
;
456 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
460 if(Demod
.posCount
==0) {
463 Demod
.sub
= SUB_FIRST_HALF
;
466 Demod
.sub
= SUB_NONE
;
471 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
472 if(Demod.state!=DEMOD_ERROR_WAIT) {
473 Demod.state = DEMOD_ERROR_WAIT;
474 Demod.output[Demod.len] = 0xaa;
478 //else if(modulation) {
480 if(Demod
.sub
== SUB_FIRST_HALF
) {
481 Demod
.sub
= SUB_BOTH
;
484 Demod
.sub
= SUB_SECOND_HALF
;
487 else if(Demod
.sub
== SUB_NONE
) {
488 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
489 Demod
.output
[Demod
.len
] = 0x0f;
491 Demod
.parityBits
<<= 1;
492 //Demod.parityBits ^= OddByteParity[0x0f];
493 Demod
.parityBits
^= oddparity(0x0f);
494 Demod
.state
= DEMOD_UNSYNCD
;
499 Demod
.state
= DEMOD_ERROR_WAIT
;
502 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
503 Demod.state = DEMOD_ERROR_WAIT;
504 Demod.output[Demod.len] = 0xaa;
509 switch(Demod
.state
) {
510 case DEMOD_START_OF_COMMUNICATION
:
511 if(Demod
.sub
== SUB_BOTH
) {
512 //Demod.state = DEMOD_MANCHESTER_D;
513 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
515 Demod
.sub
= SUB_NONE
;
518 Demod
.output
[Demod
.len
] = 0xab;
519 Demod
.state
= DEMOD_ERROR_WAIT
;
523 case DEMOD_START_OF_COMMUNICATION2
:
524 if(Demod
.sub
== SUB_SECOND_HALF
) {
525 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
528 Demod
.output
[Demod
.len
] = 0xab;
529 Demod
.state
= DEMOD_ERROR_WAIT
;
533 case DEMOD_START_OF_COMMUNICATION3
:
534 if(Demod
.sub
== SUB_SECOND_HALF
) {
535 // Demod.state = DEMOD_MANCHESTER_D;
536 Demod
.state
= DEMOD_SOF_COMPLETE
;
537 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
541 Demod
.output
[Demod
.len
] = 0xab;
542 Demod
.state
= DEMOD_ERROR_WAIT
;
546 case DEMOD_SOF_COMPLETE
:
547 case DEMOD_MANCHESTER_D
:
548 case DEMOD_MANCHESTER_E
:
549 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
550 // 00001111 = 1 (0 in 14443)
551 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
553 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
554 Demod
.state
= DEMOD_MANCHESTER_D
;
556 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
558 Demod
.shiftReg
>>= 1;
559 Demod
.state
= DEMOD_MANCHESTER_E
;
561 else if(Demod
.sub
== SUB_BOTH
) {
562 Demod
.state
= DEMOD_MANCHESTER_F
;
565 Demod
.state
= DEMOD_ERROR_WAIT
;
570 case DEMOD_MANCHESTER_F
:
571 // Tag response does not need to be a complete byte!
572 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
573 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
574 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
575 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
577 // No parity bit, so just shift a 0
578 Demod
.parityBits
<<= 1;
581 Demod
.state
= DEMOD_UNSYNCD
;
585 Demod
.output
[Demod
.len
] = 0xad;
586 Demod
.state
= DEMOD_ERROR_WAIT
;
591 case DEMOD_ERROR_WAIT
:
592 Demod
.state
= DEMOD_UNSYNCD
;
596 Demod
.output
[Demod
.len
] = 0xdd;
597 Demod
.state
= DEMOD_UNSYNCD
;
601 /*if(Demod.bitCount>=9) {
602 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
605 Demod.parityBits <<= 1;
606 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
611 if(Demod
.bitCount
>=8) {
612 Demod
.shiftReg
>>= 1;
613 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
616 // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT
617 Demod
.parityBits
<<= 1;
618 //Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)];
619 Demod
.parityBits
^= oddparity((Demod
.shiftReg
& 0xff));
626 Demod
.output
[Demod
.len
] = 0xBB;
628 Demod
.output
[Demod
.len
] = error
& 0xFF;
630 Demod
.output
[Demod
.len
] = 0xBB;
632 Demod
.output
[Demod
.len
] = bit
& 0xFF;
634 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
637 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
639 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
641 Demod
.output
[Demod
.len
] = 0xBB;
648 } // end (state != UNSYNCED)
653 //=============================================================================
654 // Finally, a `sniffer' for iClass communication
655 // Both sides of communication!
656 //=============================================================================
658 //-----------------------------------------------------------------------------
659 // Record the sequence of commands sent by the reader to the tag, with
660 // triggering so that we start recording at the point that the tag is moved
662 //-----------------------------------------------------------------------------
663 void RAMFUNC
SnoopIClass(void)
667 // We won't start recording the frames that we acquire until we trigger;
668 // a good trigger condition to get started is probably when we see a
669 // response from the tag.
670 //int triggered = FALSE; // FALSE to wait first for card
672 // The command (reader -> tag) that we're receiving.
673 // The length of a received command will in most cases be no more than 18 bytes.
674 // So 32 should be enough!
675 uint8_t *readerToTagCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
676 // The response (tag -> reader) that we're receiving.
677 uint8_t *tagToReaderResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
679 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
681 // reset traceLen to 0
682 iso14a_set_tracing(TRUE
);
683 iso14a_clear_trace();
684 iso14a_set_trigger(FALSE
);
686 // The DMA buffer, used to stream samples from the FPGA
687 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
693 // Count of samples received so far, so that we can include timing
694 // information in the trace buffer.
698 // Set up the demodulator for tag -> reader responses.
699 Demod
.output
= tagToReaderResponse
;
701 Demod
.state
= DEMOD_UNSYNCD
;
703 // Setup for the DMA.
706 lastRxCounter
= DMA_BUFFER_SIZE
;
707 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
709 // And the reader -> tag commands
710 memset(&Uart
, 0, sizeof(Uart
));
711 Uart
.output
= readerToTagCmd
;
712 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
713 Uart
.state
= STATE_UNSYNCD
;
715 // And put the FPGA in the appropriate mode
716 // Signal field is off with the appropriate LED
718 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
719 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
721 uint32_t time_0
= GetCountSspClk();
729 // And now we loop, receiving samples.
733 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
735 if(behindBy
> maxBehindBy
) {
736 maxBehindBy
= behindBy
;
738 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
742 if(behindBy
< 1) continue;
748 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
749 upTo
-= DMA_BUFFER_SIZE
;
750 lastRxCounter
+= DMA_BUFFER_SIZE
;
751 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
752 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
759 decbyte
^= (1 << (3 - div
));
762 // FOR READER SIDE COMMUMICATION...
765 decbyter
^= (smpl
& 0x30);
769 if((div
+ 1) % 2 == 0) {
771 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
772 rsamples
= samples
- Uart
.samples
;
775 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
776 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
779 LogTrace(Uart
.output
,Uart
.byteCnt
, (GetCountSspClk()-time_0
) << 4, Uart
.parityBits
,TRUE
);
780 LogTrace(NULL
, 0, (GetCountSspClk()-time_0
) << 4, 0, TRUE
);
784 /* And ready to receive another command. */
785 Uart
.state
= STATE_UNSYNCD
;
786 /* And also reset the demod code, which might have been */
787 /* false-triggered by the commands from the reader. */
788 Demod
.state
= DEMOD_UNSYNCD
;
797 if(ManchesterDecoding(smpl
& 0x0F)) {
798 rsamples
= samples
- Demod
.samples
;
803 LogTrace(Demod
.output
,Demod
.len
, (GetCountSspClk()-time_0
) << 4 , Demod
.parityBits
,FALSE
);
804 LogTrace(NULL
, 0, (GetCountSspClk()-time_0
) << 4, 0, FALSE
);
808 // And ready to receive another response.
809 memset(&Demod
, 0, sizeof(Demod
));
810 Demod
.output
= tagToReaderResponse
;
811 Demod
.state
= DEMOD_UNSYNCD
;
821 DbpString("cancelled_a");
826 DbpString("COMMAND FINISHED");
828 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
829 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
832 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
833 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
834 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
841 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
843 for(i
= 0; i
< 8; i
++) {
844 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
848 //-----------------------------------------------------------------------------
849 // Wait for commands from reader
850 // Stop when button is pressed
851 // Or return TRUE when command is captured
852 //-----------------------------------------------------------------------------
853 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
855 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
856 // only, since we are receiving, not transmitting).
857 // Signal field is off with the appropriate LED
859 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
861 // Now run a `software UART' on the stream of incoming samples.
862 Uart
.output
= received
;
863 Uart
.byteCntMax
= maxLen
;
864 Uart
.state
= STATE_UNSYNCD
;
869 if(BUTTON_PRESS()) return FALSE
;
871 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
872 AT91C_BASE_SSC
->SSC_THR
= 0x00;
874 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
875 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
877 if(OutOfNDecoding(b
& 0x0f)) {
886 //-----------------------------------------------------------------------------
887 // Prepare tag messages
888 //-----------------------------------------------------------------------------
889 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
891 //So far a dummy implementation, not used
892 //int lastProxToAirDuration =0;
898 ToSend
[++ToSendMax
] = 0x00;
899 ToSend
[++ToSendMax
] = 0x00;
900 ToSend
[++ToSendMax
] = 0x00;
901 ToSend
[++ToSendMax
] = 0xff;//Proxtoair duration starts here
902 ToSend
[++ToSendMax
] = 0xff;
903 ToSend
[++ToSendMax
] = 0xff;
904 ToSend
[++ToSendMax
] = 0x00;
905 ToSend
[++ToSendMax
] = 0xff;
907 for(i
= 0; i
< len
; i
++) {
912 for(j
= 0; j
< 8; j
++) {
914 ToSend
[++ToSendMax
] = 0x00;
915 ToSend
[++ToSendMax
] = 0xff;
917 ToSend
[++ToSendMax
] = 0xff;
918 ToSend
[++ToSendMax
] = 0x00;
925 ToSend
[++ToSendMax
] = 0xff;
926 ToSend
[++ToSendMax
] = 0x00;
927 ToSend
[++ToSendMax
] = 0xff;
928 ToSend
[++ToSendMax
] = 0xff;
929 ToSend
[++ToSendMax
] = 0xff;
930 ToSend
[++ToSendMax
] = 0x00;
931 ToSend
[++ToSendMax
] = 0x00;
932 ToSend
[++ToSendMax
] = 0x00;
934 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
936 // Convert from last byte pos to length
941 static void CodeIClassTagSOF()
943 //So far a dummy implementation, not used
944 //int lastProxToAirDuration =0;
948 ToSend
[++ToSendMax
] = 0x00;
949 ToSend
[++ToSendMax
] = 0x00;
950 ToSend
[++ToSendMax
] = 0x00;
951 ToSend
[++ToSendMax
] = 0xff;
952 ToSend
[++ToSendMax
] = 0xff;
953 ToSend
[++ToSendMax
] = 0xff;
954 ToSend
[++ToSendMax
] = 0x00;
955 ToSend
[++ToSendMax
] = 0xff;
957 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
960 // Convert from last byte pos to length
963 int doIClassSimulation(uint8_t csn
[], int breakAfterMacReceived
, uint8_t *reader_mac_buf
);
965 * @brief SimulateIClass simulates an iClass card.
966 * @param arg0 type of simulation
967 * - 0 uses the first 8 bytes in usb data as CSN
968 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
969 * in the usb data. This mode collects MAC from the reader, in order to do an offline
970 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
971 * - Other : Uses the default CSN (031fec8af7ff12e0)
972 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
976 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
978 uint32_t simType
= arg0
;
979 uint32_t numberOfCSNS
= arg1
;
980 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
982 // Enable and clear the trace
983 iso14a_set_tracing(TRUE
);
984 iso14a_clear_trace();
986 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
988 // Use the CSN from commandline
989 memcpy(csn_crc
, datain
, 8);
990 doIClassSimulation(csn_crc
,0,NULL
);
991 }else if(simType
== 1)
993 doIClassSimulation(csn_crc
,0,NULL
);
995 else if(simType
== 2)
998 uint8_t mac_responses
[64] = { 0 };
999 Dbprintf("Going into attack mode");
1000 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1001 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1002 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1004 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1006 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1008 memcpy(csn_crc
, datain
+(i
*8), 8);
1009 if(doIClassSimulation(csn_crc
,1,mac_responses
))
1011 return; // Button pressed
1014 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1018 // We may want a mode here where we hardcode the csns to use (from proxclone).
1019 // That will speed things up a little, but not required just yet.
1020 Dbprintf("The mode is not implemented, reserved for future use");
1022 Dbprintf("Done...");
1026 * @brief Does the actual simulation
1027 * @param csn - csn to use
1028 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1030 int doIClassSimulation(uint8_t csn
[], int breakAfterMacReceived
, uint8_t *reader_mac_buf
)
1034 // CSN followed by two CRC bytes
1035 uint8_t response2
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1036 uint8_t response3
[] = { 0,0,0,0,0,0,0,0,0,0};
1037 memcpy(response3
,csn
,sizeof(response3
));
1038 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1040 uint8_t response4
[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1042 // Construct anticollision-CSN
1043 rotateCSN(response3
,response2
);
1045 // Compute CRC on both CSNs
1046 ComputeCrc14443(CRC_ICLASS
, response2
, 8, &response2
[8], &response2
[9]);
1047 ComputeCrc14443(CRC_ICLASS
, response3
, 8, &response3
[8], &response3
[9]);
1053 // Tag anticoll. CSN
1054 // Reader 81 anticoll. CSN
1059 uint8_t* respdata
= NULL
;
1063 // Respond SOF -- takes 8 bytes
1064 uint8_t *resp1
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1067 // Anticollision CSN (rotated CSN)
1068 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1069 uint8_t *resp2
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 10);
1073 // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit)
1074 uint8_t *resp3
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 190);
1078 // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit)
1079 uint8_t *resp4
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 370);
1083 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
1084 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1087 // Prepare card messages
1090 // First card answer: SOF
1092 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1094 // Anticollision CSN
1095 CodeIClassTagAnswer(response2
, sizeof(response2
));
1096 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1099 CodeIClassTagAnswer(response3
, sizeof(response3
));
1100 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1103 CodeIClassTagAnswer(response4
, sizeof(response4
));
1104 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1107 // Start from off (no field generated)
1108 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1113 // We need to listen to the high-frequency, peak-detected path.
1114 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1117 // To control where we are in the protocol
1119 uint32_t time_0
= GetCountSspClk();
1120 uint32_t t2r_time
=0;
1121 uint32_t r2t_time
=0;
1124 bool buttonPressed
= false;
1126 /** Hack for testing
1127 memcpy(reader_mac_buf,csn,8);
1135 // Can be used to get a trigger for an oscilloscope..
1138 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1139 buttonPressed
= true;
1142 r2t_time
= GetCountSspClk();
1146 // Okay, look at the command now.
1147 if(receivedCmd
[0] == 0x0a ) {
1148 // Reader in anticollission phase
1149 resp
= resp1
; respLen
= resp1Len
; //order = 1;
1151 respsize
= sizeof(sof
);
1152 } else if(receivedCmd
[0] == 0x0c) {
1153 // Reader asks for anticollission CSN
1154 resp
= resp2
; respLen
= resp2Len
; //order = 2;
1155 respdata
= response2
;
1156 respsize
= sizeof(response2
);
1157 //DbpString("Reader requests anticollission CSN:");
1158 } else if(receivedCmd
[0] == 0x81) {
1159 // Reader selects anticollission CSN.
1160 // Tag sends the corresponding real CSN
1161 resp
= resp3
; respLen
= resp3Len
; //order = 3;
1162 respdata
= response3
;
1163 respsize
= sizeof(response3
);
1164 //DbpString("Reader selects anticollission CSN:");
1165 } else if(receivedCmd
[0] == 0x88) {
1166 // Read e-purse (88 02)
1167 resp
= resp4
; respLen
= resp4Len
; //order = 4;
1168 respdata
= response4
;
1169 respsize
= sizeof(response4
);
1171 } else if(receivedCmd
[0] == 0x05) {
1172 // Reader random and reader MAC!!!
1174 // We do not know what to answer, so lets keep quiet
1175 resp
= resp1
; respLen
= 0; //order = 5;
1178 if (breakAfterMacReceived
){
1180 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1181 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1182 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1183 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1184 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1185 if (reader_mac_buf
!= NULL
)
1187 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1191 } else if(receivedCmd
[0] == 0x00 && len
== 1) {
1192 // Reader ends the session
1193 resp
= resp1
; respLen
= 0; //order = 0;
1197 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1198 // Never seen this command before
1199 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1201 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1202 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1203 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1205 resp
= resp1
; respLen
= 0; //order = 0;
1210 if(cmdsRecvd
> 100) {
1211 //DbpString("100 commands later...");
1219 SendIClassAnswer(resp
, respLen
, 21);
1220 t2r_time
= GetCountSspClk();
1224 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, Uart
.parityBits
,TRUE
);
1225 LogTrace(NULL
,0, (r2t_time
-time_0
) << 4, 0,TRUE
);
1227 if (respdata
!= NULL
) {
1228 LogTrace(respdata
,respsize
, (t2r_time
-time_0
) << 4,SwapBits(GetParity(respdata
,respsize
),respsize
),FALSE
);
1229 LogTrace(NULL
,0, (t2r_time
-time_0
) << 4,0,FALSE
);
1234 DbpString("Trace full");
1239 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1242 //Dbprintf("%x", cmdsRecvd);
1247 DbpString("Button pressed");
1249 return buttonPressed
;
1252 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1254 int i
= 0, d
=0;//, u = 0, d = 0;
1257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K
);
1259 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1261 while(!BUTTON_PRESS()) {
1262 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1263 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1265 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1278 AT91C_BASE_SSC
->SSC_THR
= b
;
1281 if (i
> respLen
+4) break;
1289 //-----------------------------------------------------------------------------
1290 // Transmit the command (to the tag) that was placed in ToSend[].
1291 //-----------------------------------------------------------------------------
1292 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1295 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1296 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1303 for(c
= 0; c
< *wait
;) {
1304 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1305 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1308 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1309 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1316 bool firstpart
= TRUE
;
1319 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1321 // DOUBLE THE SAMPLES!
1323 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1326 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1329 if(sendbyte
== 0xff) {
1332 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1333 firstpart
= !firstpart
;
1339 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1340 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1345 if (samples
) *samples
= (c
+ *wait
) << 3;
1349 //-----------------------------------------------------------------------------
1350 // Prepare iClass reader command to send to FPGA
1351 //-----------------------------------------------------------------------------
1352 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1359 // Start of Communication: 1 out of 4
1360 ToSend
[++ToSendMax
] = 0xf0;
1361 ToSend
[++ToSendMax
] = 0x00;
1362 ToSend
[++ToSendMax
] = 0x0f;
1363 ToSend
[++ToSendMax
] = 0x00;
1365 // Modulate the bytes
1366 for (i
= 0; i
< len
; i
++) {
1368 for(j
= 0; j
< 4; j
++) {
1369 for(k
= 0; k
< 4; k
++) {
1371 ToSend
[++ToSendMax
] = 0x0f;
1374 ToSend
[++ToSendMax
] = 0x00;
1381 // End of Communication
1382 ToSend
[++ToSendMax
] = 0x00;
1383 ToSend
[++ToSendMax
] = 0x00;
1384 ToSend
[++ToSendMax
] = 0xf0;
1385 ToSend
[++ToSendMax
] = 0x00;
1387 // Convert from last character reference to length
1391 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1397 // This is tied to other size changes
1398 CodeIClassCommand(frame
,len
);
1401 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1405 // Store reader command in buffer
1406 if (tracing
) LogTrace(frame
,len
,rsamples
,par
,TRUE
);
1409 //-----------------------------------------------------------------------------
1410 // Wait a certain time for tag response
1411 // If a response is captured return TRUE
1412 // If it takes too long return FALSE
1413 //-----------------------------------------------------------------------------
1414 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1416 // buffer needs to be 512 bytes
1419 // Set FPGA mode to "reader listen mode", no modulation (listen
1420 // only, since we are receiving, not transmitting).
1421 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1423 // Now get the answer from the card
1424 Demod
.output
= receivedResponse
;
1426 Demod
.state
= DEMOD_UNSYNCD
;
1429 if (elapsed
) *elapsed
= 0;
1437 if(BUTTON_PRESS()) return FALSE
;
1439 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1440 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1441 if (elapsed
) (*elapsed
)++;
1443 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1444 if(c
< timeout
) { c
++; } else { return FALSE
; }
1445 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1449 if(ManchesterDecoding(b
& 0x0f)) {
1457 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1460 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
;
1461 rsamples
+= samples
;
1462 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,rsamples
,Demod
.parityBits
,FALSE
);
1463 if(samples
== 0) return FALSE
;
1467 void setupIclassReader()
1469 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1470 // Reset trace buffer
1471 iso14a_set_tracing(TRUE
);
1472 iso14a_clear_trace();
1476 // Start from off (no field generated)
1477 // Signal field is off with the appropriate LED
1479 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1482 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1484 // Now give it time to spin up.
1485 // Signal field is on with the appropriate LED
1486 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1492 // Reader iClass Anticollission
1493 void ReaderIClass(uint8_t arg0
) {
1494 uint8_t act_all
[] = { 0x0a };
1495 uint8_t identify
[] = { 0x0c };
1496 uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1497 uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1499 uint8_t card_data
[24]={0};
1500 uint8_t last_csn
[8]={0};
1502 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1505 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1507 setupIclassReader();
1509 size_t datasize
= 0;
1510 while(!BUTTON_PRESS())
1515 ReaderTransmitIClass(act_all
, 1);
1517 if(ReaderReceiveIClass(resp
)) {
1519 ReaderTransmitIClass(identify
, 1);
1521 if(ReaderReceiveIClass(resp
) == 10) {
1522 //Copy the Anti-collision CSN to our select-packet
1523 memcpy(&select
[1],resp
,8);
1524 //Dbprintf("Anti-collision CSN: %02x %02x %02x %02x %02x %02x %02x %02x",resp[0], resp[1], resp[2],
1525 // resp[3], resp[4], resp[5],
1526 // resp[6], resp[7]);
1528 ReaderTransmitIClass(select
, sizeof(select
));
1530 if(ReaderReceiveIClass(resp
) == 10) {
1531 //Save CSN in response data
1532 memcpy(card_data
,resp
,8);
1534 //Flag that we got to at least stage 1, read CSN
1538 //Dbprintf("Readcheck on Sector 2");
1539 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1540 if(ReaderReceiveIClass(resp
) == 8) {
1541 //Save CC (e-purse) in response data
1542 memcpy(card_data
+8,resp
,8);
1549 //Send back to client, but don't bother if we already sent this
1550 if(memcmp(last_csn
, card_data
, 8) != 0)
1551 cmd_send(CMD_ACK
,read_status
,0,0,card_data
,datasize
);
1553 //Save that we already sent this....
1554 if(read_status
== 2)
1555 memcpy(last_csn
, card_data
, 8);
1559 if(abort_after_read
) break;
1564 if(traceLen
> TRACE_SIZE
) {
1565 DbpString("Trace full");
1572 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1573 uint8_t act_all
[] = { 0x0a };
1574 uint8_t identify
[] = { 0x0c };
1575 uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1576 uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1577 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1578 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1582 bool read_success
=false;
1585 static struct memory_t
{
1593 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1595 setupIclassReader();
1598 for(int i
=0;i
<1;i
++) {
1600 if(traceLen
> TRACE_SIZE
) {
1601 DbpString("Trace full");
1605 if (BUTTON_PRESS()) break;
1608 ReaderTransmitIClass(act_all
, 1);
1610 if(ReaderReceiveIClass(resp
)) {
1611 ReaderTransmitIClass(identify
, 1);
1612 if(ReaderReceiveIClass(resp
) == 10) {
1614 memcpy(&select
[1],resp
,8);
1615 ReaderTransmitIClass(select
, sizeof(select
));
1617 if(ReaderReceiveIClass(resp
) == 10) {
1618 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1619 resp
[0], resp
[1], resp
[2],
1620 resp
[3], resp
[4], resp
[5],
1624 Dbprintf("Readcheck on Sector 2");
1625 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1626 if(ReaderReceiveIClass(resp
) == 8) {
1627 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1628 resp
[0], resp
[1], resp
[2],
1629 resp
[3], resp
[4], resp
[5],
1632 Dbprintf("Authenticate");
1633 //for now replay captured auth (as cc not updated)
1634 memcpy(check
+5,MAC
,4);
1635 //Dbprintf(" AA: %02x %02x %02x %02x",
1636 // check[5], check[6], check[7],check[8]);
1637 ReaderTransmitIClass(check
, sizeof(check
));
1638 if(ReaderReceiveIClass(resp
) == 4) {
1639 Dbprintf(" AR: %02x %02x %02x %02x",
1640 resp
[0], resp
[1], resp
[2],resp
[3]);
1642 Dbprintf("Error: Authentication Fail!");
1645 Dbprintf("Dump Contents");
1646 //first get configuration block
1649 uint8_t *blockno
=&read
[1];
1650 crc
= iclass_crc16((char *)blockno
,1);
1652 read
[3] = crc
& 0xff;
1653 while(!read_success
){
1654 ReaderTransmitIClass(read
, sizeof(read
));
1655 if(ReaderReceiveIClass(resp
) == 10) {
1658 memory
.k16
= (mem
& 0x80);
1659 memory
.book
= (mem
& 0x20);
1660 memory
.k2
= (mem
& 0x8);
1661 memory
.lockauth
= (mem
& 0x2);
1662 memory
.keyaccess
= (mem
& 0x1);
1669 //then loop around remaining blocks
1670 for(uint8_t j
=0; j
<cardsize
; j
++){
1672 uint8_t *blockno
=&j
;
1675 crc
= iclass_crc16((char *)blockno
,1);
1677 read
[3] = crc
& 0xff;
1678 while(!read_success
){
1679 ReaderTransmitIClass(read
, sizeof(read
));
1680 if(ReaderReceiveIClass(resp
) == 10) {
1682 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1683 j
, resp
[0], resp
[1], resp
[2],
1684 resp
[3], resp
[4], resp
[5],
1697 //2. Create Read method (cut-down from above) based off responses from 1.
1698 // Since we have the MAC could continue to use replay function.
1699 //3. Create Write method
1701 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1702 uint8_t act_all[] = { 0x0a };
1703 uint8_t identify[] = { 0x0c };
1704 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1705 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1706 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1707 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1708 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1712 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1714 // Reset trace buffer
1715 memset(trace, 0x44, RECV_CMD_OFFSET);
1720 // Start from off (no field generated)
1721 // Signal field is off with the appropriate LED
1723 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1726 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1728 // Now give it time to spin up.
1729 // Signal field is on with the appropriate LED
1730 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1735 for(int i=0;i<1;i++) {
1737 if(traceLen > TRACE_SIZE) {
1738 DbpString("Trace full");
1742 if (BUTTON_PRESS()) break;
1745 ReaderTransmitIClass(act_all, 1);
1747 if(ReaderReceiveIClass(resp)) {
1748 ReaderTransmitIClass(identify, 1);
1749 if(ReaderReceiveIClass(resp) == 10) {
1751 memcpy(&select[1],resp,8);
1752 ReaderTransmitIClass(select, sizeof(select));
1754 if(ReaderReceiveIClass(resp) == 10) {
1755 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1756 resp[0], resp[1], resp[2],
1757 resp[3], resp[4], resp[5],
1761 Dbprintf("Readcheck on Sector 2");
1762 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1763 if(ReaderReceiveIClass(resp) == 8) {
1764 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1765 resp[0], resp[1], resp[2],
1766 resp[3], resp[4], resp[5],
1769 Dbprintf("Authenticate");
1770 //for now replay captured auth (as cc not updated)
1771 memcpy(check+5,MAC,4);
1772 Dbprintf(" AA: %02x %02x %02x %02x",
1773 check[5], check[6], check[7],check[8]);
1774 ReaderTransmitIClass(check, sizeof(check));
1775 if(ReaderReceiveIClass(resp) == 4) {
1776 Dbprintf(" AR: %02x %02x %02x %02x",
1777 resp[0], resp[1], resp[2],resp[3]);
1779 Dbprintf("Error: Authentication Fail!");
1782 Dbprintf("Write Block");
1784 //read configuration for max block number
1787 uint8_t *blockno=&read[1];
1788 crc = iclass_crc16((char *)blockno,1);
1790 read[3] = crc & 0xff;
1791 while(!read_success){
1792 ReaderTransmitIClass(read, sizeof(read));
1793 if(ReaderReceiveIClass(resp) == 10) {
1796 memory.k16= (mem & 0x80);
1797 memory.book= (mem & 0x20);
1798 memory.k2= (mem & 0x8);
1799 memory.lockauth= (mem & 0x2);
1800 memory.keyaccess= (mem & 0x1);
1809 memcpy(write+1,blockNo,1);
1810 memcpy(write+2,data,8);
1811 memcpy(write+10,mac,4);
1812 while(!send_success){
1813 ReaderTransmitIClass(write, sizeof(write));
1814 if(ReaderReceiveIClass(resp) == 10) {