1 //-----------------------------------------------------------------------------
2 // Miscellaneous routines for low frequency tag operations.
3 // Tags supported here so far are Texas Instruments (TI), HID
4 // Also routines for raw mode reading/simulating of LF waveform
6 //-----------------------------------------------------------------------------
13 void AcquireRawAdcSamples125k(int at134khz
)
16 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
18 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
20 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
22 // Connect the A/D to the peak-detected low-frequency path.
23 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
25 // Give it a bit of time for the resonant antenna to settle.
28 // Now set up the SSC to get the ADC samples that are now streaming at us.
31 // Now call the acquisition routine
35 // split into two routines so we can avoid timing issues after sending commands //
36 void DoAcquisition125k(void)
38 uint8_t *dest
= (uint8_t *)BigBuf
;
39 int n
= sizeof(BigBuf
);
45 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
46 AT91C_BASE_SSC
->SSC_THR
= 0x43;
49 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
50 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
56 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
57 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
60 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
64 /* Make sure the tag is reset */
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
68 // see if 'h' was specified
69 if (command
[strlen((char *) command
) - 1] == 'h')
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
79 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
81 // Give it a bit of time for the resonant antenna to settle.
83 // And a little more time for the tag to fully power up
86 // Now set up the SSC to get the ADC samples that are now streaming at us.
89 // now modulate the reader field
90 while(*command
!= '\0' && *command
!= ' ') {
91 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
93 SpinDelayUs(delay_off
);
95 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
97 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
99 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
101 if(*(command
++) == '0')
102 SpinDelayUs(period_0
);
104 SpinDelayUs(period_1
);
106 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
108 SpinDelayUs(delay_off
);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
112 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
120 /* blank r/w tag data stream
121 ...0000000000000000 01111111
122 1010101010101010101010101010101010101010101010101010101010101010
125 101010101010101[0]000...
127 [5555fe852c5555555555555555fe0000]
131 // some hardcoded initial params
132 // when we read a TI tag we sample the zerocross line at 2Mhz
133 // TI tags modulate a 1 as 16 cycles of 123.2Khz
134 // TI tags modulate a 0 as 16 cycles of 134.2Khz
135 #define FSAMPLE 2000000
136 #define FREQLO 123200
137 #define FREQHI 134200
139 signed char *dest
= (signed char *)BigBuf
;
140 int n
= sizeof(BigBuf
);
141 // int *dest = GraphBuffer;
142 // int n = GraphTraceLen;
144 // 128 bit shift register [shift3:shift2:shift1:shift0]
145 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
147 int i
, cycles
=0, samples
=0;
148 // how many sample points fit in 16 cycles of each frequency
149 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
150 // when to tell if we're close enough to one freq or another
151 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
153 // TI tags charge at 134.2Khz
154 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
156 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
157 // connects to SSP_DIN and the SSP_DOUT logic level controls
158 // whether we're modulating the antenna (high)
159 // or listening to the antenna (low)
160 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
162 // get TI tag data into the buffer
165 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
167 for (i
=0; i
<n
-1; i
++) {
168 // count cycles by looking for lo to hi zero crossings
169 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
171 // after 16 cycles, measure the frequency
174 samples
=i
-samples
; // number of samples in these 16 cycles
176 // TI bits are coming to us lsb first so shift them
177 // right through our 128 bit right shift register
178 shift0
= (shift0
>>1) | (shift1
<< 31);
179 shift1
= (shift1
>>1) | (shift2
<< 31);
180 shift2
= (shift2
>>1) | (shift3
<< 31);
183 // check if the cycles fall close to the number
184 // expected for either the low or high frequency
185 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
186 // low frequency represents a 1
188 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
189 // high frequency represents a 0
191 // probably detected a gay waveform or noise
192 // use this as gaydar or discard shift register and start again
193 shift3
= shift2
= shift1
= shift0
= 0;
197 // for each bit we receive, test if we've detected a valid tag
199 // if we see 17 zeroes followed by 6 ones, we might have a tag
200 // remember the bits are backwards
201 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
202 // if start and end bytes match, we have a tag so break out of the loop
203 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
204 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
212 // if flag is set we have a tag
214 DbpString("Info: No valid tag detected.");
216 // put 64 bit data into shift1 and shift0
217 shift0
= (shift0
>>24) | (shift1
<< 8);
218 shift1
= (shift1
>>24) | (shift2
<< 8);
220 // align 16 bit crc into lower half of shift2
221 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
223 // if r/w tag, check ident match
224 if ( shift3
&(1<<15) ) {
225 DbpString("Info: TI tag is rewriteable");
226 // only 15 bits compare, last bit of ident is not valid
227 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
228 DbpString("Error: Ident mismatch!");
230 DbpString("Info: TI tag ident is valid");
233 DbpString("Info: TI tag is readonly");
236 // WARNING the order of the bytes in which we calc crc below needs checking
237 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
238 // bytes in reverse or something
242 crc
= update_crc16(crc
, (shift0
)&0xff);
243 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
244 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
245 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
246 crc
= update_crc16(crc
, (shift1
)&0xff);
247 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
248 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
249 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
251 Dbprintf("Info: Tag data: %x%08x, crc=%x",
252 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
253 if (crc
!= (shift2
&0xffff)) {
254 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
256 DbpString("Info: CRC is good");
261 void WriteTIbyte(uint8_t b
)
265 // modulate 8 bits out to the antenna
269 // stop modulating antenna
276 // stop modulating antenna
286 void AcquireTiType(void)
289 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
290 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
291 #define TIBUFLEN 1250
294 memset(BigBuf
,0,sizeof(BigBuf
));
296 // Set up the synchronous serial port
297 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
298 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
300 // steal this pin from the SSP and use it to control the modulation
301 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
302 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
304 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
305 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
307 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
308 // 48/2 = 24 MHz clock must be divided by 12
309 AT91C_BASE_SSC
->SSC_CMR
= 12;
311 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
312 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
313 AT91C_BASE_SSC
->SSC_TCMR
= 0;
314 AT91C_BASE_SSC
->SSC_TFMR
= 0;
321 // Charge TI tag for 50ms.
324 // stop modulating antenna and listen
331 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
332 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
333 i
++; if(i
>= TIBUFLEN
) break;
338 // return stolen pin to SSP
339 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
340 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
342 char *dest
= (char *)BigBuf
;
345 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
346 for (j
=0; j
<32; j
++) {
347 if(BigBuf
[i
] & (1 << j
)) {
356 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
357 // if crc provided, it will be written with the data verbatim (even if bogus)
358 // if not provided a valid crc will be computed from the data and written.
359 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
362 crc
= update_crc16(crc
, (idlo
)&0xff);
363 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
364 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
365 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
366 crc
= update_crc16(crc
, (idhi
)&0xff);
367 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
368 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
369 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
371 Dbprintf("Writing to tag: %x%08x, crc=%x",
372 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
374 // TI tags charge at 134.2Khz
375 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
376 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
377 // connects to SSP_DIN and the SSP_DOUT logic level controls
378 // whether we're modulating the antenna (high)
379 // or listening to the antenna (low)
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
383 // steal this pin from the SSP and use it to control the modulation
384 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
385 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
387 // writing algorithm:
388 // a high bit consists of a field off for 1ms and field on for 1ms
389 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
390 // initiate a charge time of 50ms (field on) then immediately start writing bits
391 // start by writing 0xBB (keyword) and 0xEB (password)
392 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
393 // finally end with 0x0300 (write frame)
394 // all data is sent lsb firts
395 // finish with 15ms programming time
399 SpinDelay(50); // charge time
401 WriteTIbyte(0xbb); // keyword
402 WriteTIbyte(0xeb); // password
403 WriteTIbyte( (idlo
)&0xff );
404 WriteTIbyte( (idlo
>>8 )&0xff );
405 WriteTIbyte( (idlo
>>16)&0xff );
406 WriteTIbyte( (idlo
>>24)&0xff );
407 WriteTIbyte( (idhi
)&0xff );
408 WriteTIbyte( (idhi
>>8 )&0xff );
409 WriteTIbyte( (idhi
>>16)&0xff );
410 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
411 WriteTIbyte( (crc
)&0xff ); // crc lo
412 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
413 WriteTIbyte(0x00); // write frame lo
414 WriteTIbyte(0x03); // write frame hi
416 SpinDelay(50); // programming time
420 // get TI tag data into the buffer
423 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
424 DbpString("Now use tiread to check");
427 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
430 uint8_t *tab
= (uint8_t *)BigBuf
;
432 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
434 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
436 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
437 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
439 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
440 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
444 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
446 DbpString("Stopped");
463 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
465 DbpString("Stopped");
482 /* Provides a framework for bidirectional LF tag communication
483 * Encoding is currently Hitag2, but the general idea can probably
484 * be transferred to other encodings.
486 * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
487 * (PA15) a thresholded version of the signal from the ADC. Setting the
488 * ADC path to the low frequency peak detection signal, will enable a
489 * somewhat reasonable receiver for modulation on the carrier signal
490 * that is generated by the reader. The signal is low when the reader
491 * field is switched off, and high when the reader field is active. Due
492 * to the way that the signal looks like, mostly only the rising edge is
493 * useful, your mileage may vary.
495 * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
496 * TIOA1, which can be used as the capture input for timer 1. This should
497 * make it possible to measure the exact edge-to-edge time, without processor
500 * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
501 * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
503 * The following defines are in carrier periods:
505 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
506 #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
507 #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
508 #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
510 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
);
511 //#define DEBUG_RA_VALUES 1
512 #define DEBUG_FRAME_CONTENTS 1
513 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
515 #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
521 DbpString("Starting Hitag2 emulator, press button to end");
524 /* Set up simulator mode, frequency divisor which will drive the FPGA
525 * and analog mux selection.
527 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
528 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
529 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
533 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
534 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
535 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
538 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
539 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
540 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
541 AT91C_BASE_TC1
->TC_CMR
= TC_CMR_TCCLKS_TIMER_CLOCK1
|
542 AT91C_TC_ETRGEDG_RISING
|
544 AT91C_TC_LDRA_RISING
|
545 AT91C_TC_LDRB_RISING
;
546 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
|
549 /* calculate the new value for the carrier period in terms of TC1 values */
553 while(!BUTTON_PRESS()) {
555 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
556 int ra
= AT91C_BASE_TC1
->TC_RA
;
557 if((ra
> t0
*HITAG_T_EOF
) | overflow
) ra
= t0
*HITAG_T_EOF
+1;
559 if(ra
> 255 || overflow
) ra
= 255;
560 ((char*)BigBuf
)[i
] = ra
;
564 if(overflow
|| (ra
> t0
*HITAG_T_EOF
) || (ra
< t0
*HITAG_T_0_MIN
)) {
566 } else if(ra
>= t0
*HITAG_T_1_MIN
) {
568 if(frame_pos
< 8*sizeof(frame
)) {
569 frame
[frame_pos
/ 8] |= 1<<( 7-(frame_pos
%8) );
572 } else if(ra
>= t0
*HITAG_T_0_MIN
) {
574 if(frame_pos
< 8*sizeof(frame
)) {
575 frame
[frame_pos
/ 8] |= 0<<( 7-(frame_pos
%8) );
583 if(AT91C_BASE_TC1
->TC_CV
> t0
*HITAG_T_EOF
) {
584 /* Minor nuisance: In Capture mode, the timer can not be
585 * stopped by a Compare C. There's no way to stop the clock
586 * in software, so we'll just have to note the fact that an
587 * overflow happened and the next loaded timer value might
588 * have wrapped. Also, this marks the end of frame, and the
589 * still running counter can be used to determine the correct
590 * time for the start of the reply.
595 /* Have a frame, do something with it */
596 #if DEBUG_FRAME_CONTENTS
597 ((char*)BigBuf
)[i
++] = frame_pos
;
598 memcpy( ((char*)BigBuf
)+i
, frame
, 7);
600 i
= i
% sizeof(BigBuf
);
602 hitag_handle_frame(t0
, frame_pos
, frame
);
603 memset(frame
, 0, sizeof(frame
));
611 DbpString("All done");
614 static void hitag_send_bit(int t0
, int bit
) {
616 /* Manchester: Loaded, then unloaded */
619 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
621 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
623 } else if(bit
== 0) {
624 /* Manchester: Unloaded, then loaded */
627 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
629 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
632 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset clock for the next bit */
635 static void hitag_send_frame(int t0
, int frame_len
, const char const * frame
, int fdt
)
638 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
640 /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
641 * not that since the clock counts since the rising edge, but T_wresp is
642 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
643 * periods. The gap time T_g varies (4..10).
645 while(AT91C_BASE_TC1
->TC_CV
< t0
*(fdt
-8));
647 int saved_cmr
= AT91C_BASE_TC1
->TC_CMR
;
648 AT91C_BASE_TC1
->TC_CMR
&= ~AT91C_TC_ETRGEDG
; /* Disable external trigger for the clock */
649 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset the clock and use it for response timing */
653 hitag_send_bit(t0
, 1); /* Start of frame */
655 for(i
=0; i
<frame_len
; i
++) {
656 hitag_send_bit(t0
, !!(frame
[i
/ 8] & (1<<( 7-(i
%8) ))) );
660 AT91C_BASE_TC1
->TC_CMR
= saved_cmr
;
663 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
664 static int hitag_cb(const char* response_data
, const int response_length
, const int fdt
, void *cb_cookie
)
666 hitag_send_frame(*(int*)cb_cookie
, response_length
, response_data
, fdt
);
669 /* Frame length in bits, frame contents in MSBit first format */
670 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
)
672 hitag2_handle_command(frame
, frame_len
, hitag_cb
, &t0
);
675 // compose fc/8 fc/10 waveform
676 static void fc(int c
, int *n
) {
677 uint8_t *dest
= (uint8_t *)BigBuf
;
680 // for when we want an fc8 pattern every 4 logical bits
691 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
693 for (idx
=0; idx
<6; idx
++) {
705 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
707 for (idx
=0; idx
<5; idx
++) {
722 // prepare a waveform pattern in the buffer based on the ID given then
723 // simulate a HID tag until the button is pressed
724 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
728 HID tag bitstream format
729 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
730 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
731 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
732 A fc8 is inserted before every 4 bits
733 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
734 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
738 DbpString("Tags can only have 44 bits.");
742 // special start of frame marker containing invalid bit sequences
743 fc(8, &n
); fc(8, &n
); // invalid
744 fc(8, &n
); fc(10, &n
); // logical 0
745 fc(10, &n
); fc(10, &n
); // invalid
746 fc(8, &n
); fc(10, &n
); // logical 0
749 // manchester encode bits 43 to 32
750 for (i
=11; i
>=0; i
--) {
751 if ((i
%4)==3) fc(0,&n
);
753 fc(10, &n
); fc(8, &n
); // low-high transition
755 fc(8, &n
); fc(10, &n
); // high-low transition
760 // manchester encode bits 31 to 0
761 for (i
=31; i
>=0; i
--) {
762 if ((i
%4)==3) fc(0,&n
);
764 fc(10, &n
); fc(8, &n
); // low-high transition
766 fc(8, &n
); fc(10, &n
); // high-low transition
772 SimulateTagLowFrequency(n
, 0, ledcontrol
);
779 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
780 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
782 uint8_t *dest
= (uint8_t *)BigBuf
;
783 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
786 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
787 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
789 // Connect the A/D to the peak-detected low-frequency path.
790 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
792 // Give it a bit of time for the resonant antenna to settle.
795 // Now set up the SSC to get the ADC samples that are now streaming at us.
803 DbpString("Stopped");
813 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
814 AT91C_BASE_SSC
->SSC_THR
= 0x43;
818 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
819 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
820 // we don't care about actual value, only if it's more or less than a
821 // threshold essentially we capture zero crossings for later analysis
822 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
834 // sync to first lo-hi transition
835 for( idx
=1; idx
<m
; idx
++) {
836 if (dest
[idx
-1]<dest
[idx
])
842 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
843 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
844 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
845 for( i
=0; idx
<m
; idx
++) {
846 if (dest
[idx
-1]<dest
[idx
]) {
861 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
866 for( idx
=0; idx
<m
; idx
++) {
867 if (dest
[idx
]==lastval
) {
870 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
871 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
872 // swallowed up by rounding
873 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
874 // special start of frame markers use invalid manchester states (no transitions) by using sequences
877 n
=(n
+1)/6; // fc/8 in sets of 6
879 n
=(n
+1)/5; // fc/10 in sets of 5
881 switch (n
) { // stuff appropriate bits in buffer
884 dest
[i
++]=dest
[idx
-1];
887 dest
[i
++]=dest
[idx
-1];
888 dest
[i
++]=dest
[idx
-1];
890 case 3: // 3 bit start of frame markers
891 dest
[i
++]=dest
[idx
-1];
892 dest
[i
++]=dest
[idx
-1];
893 dest
[i
++]=dest
[idx
-1];
895 // When a logic 0 is immediately followed by the start of the next transmisson
896 // (special pattern) a pattern of 4 bit duration lengths is created.
898 dest
[i
++]=dest
[idx
-1];
899 dest
[i
++]=dest
[idx
-1];
900 dest
[i
++]=dest
[idx
-1];
901 dest
[i
++]=dest
[idx
-1];
903 default: // this shouldn't happen, don't stuff any bits
913 // final loop, go over previously decoded manchester data and decode into usable tag ID
914 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
915 for( idx
=0; idx
<m
-6; idx
++) {
916 // search for a start of frame marker
917 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
921 if (found
&& (hi
|lo
)) {
922 Dbprintf("TAG ID: %x%08x (%d)",
923 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
924 /* if we're only looking for one tag */
937 if (dest
[idx
] && (!dest
[idx
+1]) ) {
940 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
950 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
954 if (found
&& (hi
|lo
)) {
955 Dbprintf("TAG ID: %x%08x (%d)",
956 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
957 /* if we're only looking for one tag */