]> cvs.zerfleddert.de Git - proxmark3-svn/blob - client/ui.c
966ab2ca12f696501340b06fdafd7b981c5906fc
[proxmark3-svn] / client / ui.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2009 Michael Gernoth <michael at gernoth.net>
3 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // UI utilities
10 //-----------------------------------------------------------------------------
11
12 #include <stdarg.h>
13 #include <stdlib.h>
14 #include <stdio.h>
15 #include <stdbool.h>
16 #include <time.h>
17 #include <readline/readline.h>
18 #include <pthread.h>
19 #include "loclass/cipherutils.h"
20 #include "ui.h"
21 #include "cmdmain.h"
22 #include "cmddata.h"
23 //#include <liquid/liquid.h>
24 #define M_PI 3.14159265358979323846264338327
25
26 double CursorScaleFactor;
27 int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
28 int offline;
29 int flushAfterWrite = 0; //buzzy
30 extern pthread_mutex_t print_lock;
31
32 static char *logfilename = "proxmark3.log";
33
34 void PrintAndLog(char *fmt, ...)
35 {
36 char *saved_line;
37 int saved_point;
38 va_list argptr, argptr2;
39 static FILE *logfile = NULL;
40 static int logging=1;
41
42 // lock this section to avoid interlacing prints from different threats
43 pthread_mutex_lock(&print_lock);
44
45 if (logging && !logfile) {
46 logfile=fopen(logfilename, "a");
47 if (!logfile) {
48 fprintf(stderr, "Can't open logfile, logging disabled!\n");
49 logging=0;
50 }
51 }
52
53 int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
54
55 if (need_hack) {
56 saved_point = rl_point;
57 saved_line = rl_copy_text(0, rl_end);
58 rl_save_prompt();
59 rl_replace_line("", 0);
60 rl_redisplay();
61 }
62
63 va_start(argptr, fmt);
64 va_copy(argptr2, argptr);
65 vprintf(fmt, argptr);
66 printf(" "); // cleaning prompt
67 va_end(argptr);
68 printf("\n");
69
70 if (need_hack) {
71 rl_restore_prompt();
72 rl_replace_line(saved_line, 0);
73 rl_point = saved_point;
74 rl_redisplay();
75 free(saved_line);
76 }
77
78 if (logging && logfile) {
79 vfprintf(logfile, fmt, argptr2);
80 fprintf(logfile,"\n");
81 fflush(logfile);
82 }
83 va_end(argptr2);
84
85 if (flushAfterWrite == 1) //buzzy
86 {
87 fflush(NULL);
88 }
89 //release lock
90 pthread_mutex_unlock(&print_lock);
91 }
92
93 void SetLogFilename(char *fn)
94 {
95 logfilename = fn;
96 }
97
98 int manchester_decode( int * data, const size_t len, uint8_t * dataout){
99
100 int bitlength = 0;
101 int i, clock, high, low, startindex;
102 low = startindex = 0;
103 high = 1;
104 uint8_t * bitStream = (uint8_t* ) malloc(sizeof(uint8_t) * len);
105 memset(bitStream, 0x00, len);
106
107 /* Detect high and lows */
108 for (i = 0; i < len; i++) {
109 if (data[i] > high)
110 high = data[i];
111 else if (data[i] < low)
112 low = data[i];
113 }
114
115 /* get clock */
116 clock = GetT55x7Clock( data, len, high );
117 startindex = DetectFirstTransition(data, len, high);
118
119 PrintAndLog(" Clock : %d", clock);
120
121 if (high != 1)
122 bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
123 else
124 bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
125
126 memcpy(dataout, bitStream, bitlength);
127 free(bitStream);
128 return bitlength;
129 }
130
131 int GetT55x7Clock( const int * data, const size_t len, int peak ){
132
133 int i,lastpeak,clock;
134 clock = 0xFFFF;
135 lastpeak = 0;
136
137 /* Detect peak if we don't have one */
138 if (!peak) {
139 for (i = 0; i < len; ++i) {
140 if (data[i] > peak) {
141 peak = data[i];
142 }
143 }
144 }
145
146 for (i = 1; i < len; ++i) {
147 /* if this is the beginning of a peak */
148 if ( data[i-1] != data[i] && data[i] == peak) {
149 /* find lowest difference between peaks */
150 if (lastpeak && i - lastpeak < clock)
151 clock = i - lastpeak;
152 lastpeak = i;
153 }
154 }
155 //return clock;
156 //defaults clock to precise values.
157 switch(clock){
158 case 8:
159 case 16:
160 case 32:
161 case 40:
162 case 50:
163 case 64:
164 case 100:
165 case 128:
166 return clock;
167 break;
168 default: break;
169 }
170
171 //PrintAndLog(" Found Clock : %d - trying to adjust", clock);
172
173 // When detected clock is 31 or 33 then then return
174 int clockmod = clock%8;
175 if ( clockmod == 7 )
176 clock += 1;
177 else if ( clockmod == 1 )
178 clock -= 1;
179
180 return clock;
181 }
182
183 int DetectFirstTransition(const int * data, const size_t len, int threshold){
184
185 int i =0;
186 /* now look for the first threshold */
187 for (; i < len; ++i) {
188 if (data[i] == threshold) {
189 break;
190 }
191 }
192 return i;
193 }
194
195 int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
196
197 int i, j, z, hithigh, hitlow, bitIndex, startType;
198 i = 0;
199 bitIndex = 0;
200
201 int isDamp = 0;
202 int damplimit = (int)((high / 2) * 0.3);
203 int dampHi = (high/2)+damplimit;
204 int dampLow = (high/2)-damplimit;
205 int firstST = 0;
206
207 // i = clock frame of data
208 for (; i < (int)(len / clock); i++)
209 {
210 hithigh = 0;
211 hitlow = 0;
212 startType = -1;
213 z = startIndex + (i*clock);
214 isDamp = 0;
215
216 /* Find out if we hit both high and low peaks */
217 for (j = 0; j < clock; j++)
218 {
219 if (data[z+j] == high){
220 hithigh = 1;
221 if ( startType == -1)
222 startType = 1;
223 }
224
225 if (data[z+j] == low ){
226 hitlow = 1;
227 if ( startType == -1)
228 startType = 0;
229 }
230
231 if (hithigh && hitlow)
232 break;
233 }
234
235 // No high value found, are we in a dampening field?
236 if ( !hithigh ) {
237 //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j);
238 for (j = 0; j < clock; j++) {
239 if (
240 (data[z+j] <= dampHi && data[z+j] >= dampLow)
241 ){
242 isDamp++;
243 }
244 }
245 }
246
247 /* Manchester Switching..
248 0: High -> Low
249 1: Low -> High
250 */
251 if (startType == 0)
252 dataout[bitIndex++] = 1;
253 else if (startType == 1)
254 dataout[bitIndex++] = 0;
255 else
256 dataout[bitIndex++] = 2;
257
258 if ( isDamp > clock/2 ) {
259 firstST++;
260 }
261
262 if ( firstST == 4)
263 break;
264 }
265 return bitIndex;
266 }
267
268 int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
269
270 PrintAndLog(" Path B");
271
272 int i,j, bitindex, lc, tolerance, warnings;
273 warnings = 0;
274 int upperlimit = len*2/clock+8;
275 i = startIndex;
276 j = 0;
277 tolerance = clock/4;
278 uint8_t decodedArr[len];
279
280 /* Detect duration between 2 successive transitions */
281 for (bitindex = 1; i < len; i++) {
282
283 if (data[i-1] != data[i]) {
284 lc = i - startIndex;
285 startIndex = i;
286
287 // Error check: if bitindex becomes too large, we do not
288 // have a Manchester encoded bitstream or the clock is really wrong!
289 if (bitindex > upperlimit ) {
290 PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
291 return 0;
292 }
293 // Then switch depending on lc length:
294 // Tolerance is 1/4 of clock rate (arbitrary)
295 if (abs((lc-clock)/2) < tolerance) {
296 // Short pulse : either "1" or "0"
297 decodedArr[bitindex++] = data[i-1];
298 } else if (abs(lc-clock) < tolerance) {
299 // Long pulse: either "11" or "00"
300 decodedArr[bitindex++] = data[i-1];
301 decodedArr[bitindex++] = data[i-1];
302 } else {
303 ++warnings;
304 PrintAndLog("Warning: Manchester decode error for pulse width detection.");
305 if (warnings > 10) {
306 PrintAndLog("Error: too many detection errors, aborting.");
307 return 0;
308 }
309 }
310 }
311 }
312
313 /*
314 * We have a decodedArr of "01" ("1") or "10" ("0")
315 * parse it into final decoded dataout
316 */
317 for (i = 0; i < bitindex; i += 2) {
318
319 if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
320 dataout[j++] = 1;
321 } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
322 dataout[j++] = 0;
323 } else {
324 i++;
325 warnings++;
326 PrintAndLog("Unsynchronized, resync...");
327 PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
328
329 if (warnings > 10) {
330 PrintAndLog("Error: too many decode errors, aborting.");
331 return 0;
332 }
333 }
334 }
335
336 PrintAndLog("%s", sprint_hex(dataout, j));
337 return j;
338 }
339
340 void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
341 /*
342 * We have a bitstream of "01" ("1") or "10" ("0")
343 * parse it into final decoded bitstream
344 */
345 int i, j, warnings;
346 uint8_t decodedArr[(len/2)+1];
347
348 j = warnings = 0;
349
350 uint8_t lastbit = 0;
351
352 for (i = 0; i < len; i += 2) {
353
354 uint8_t first = bitstream[i];
355 uint8_t second = bitstream[i+1];
356
357 if ( first == second ) {
358 ++i;
359 ++warnings;
360 if (warnings > 10) {
361 PrintAndLog("Error: too many decode errors, aborting.");
362 return;
363 }
364 }
365 else if ( lastbit != first ) {
366 decodedArr[j++] = 0 ^ invert;
367 }
368 else {
369 decodedArr[j++] = 1 ^ invert;
370 }
371 lastbit = second;
372 }
373
374 PrintAndLog("%s", sprint_hex(decodedArr, j));
375 }
376
377 void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
378
379 PrintAndLog(" Manchester decoded : %d bits", len);
380
381 uint8_t mod = len % blocksize;
382 uint8_t div = len / blocksize;
383 int i;
384
385 // Now output the bitstream to the scrollback by line of 16 bits
386 for (i = 0; i < div*blocksize; i+=blocksize) {
387 PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
388 }
389
390 if ( mod > 0 )
391 PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
392 }
393
394 /* Sliding DFT
395 Smooths out
396 */
397 void iceFsk2(int * data, const size_t len){
398
399 int i, j;
400 int * output = (int* ) malloc(sizeof(int) * len);
401 memset(output, 0x00, len);
402
403 // for (i=0; i<len-5; ++i){
404 // for ( j=1; j <=5; ++j) {
405 // output[i] += data[i*j];
406 // }
407 // output[i] /= 5;
408 // }
409 int rest = 127;
410 int tmp =0;
411 for (i=0; i<len; ++i){
412 if ( data[i] < 127)
413 output[i] = 0;
414 else {
415 tmp = (100 * (data[i]-rest)) / rest;
416 output[i] = (tmp > 60)? 100:0;
417 }
418 }
419
420 for (j=0; j<len; ++j)
421 data[j] = output[j];
422
423 free(output);
424 }
425
426 void iceFsk3(int * data, const size_t len){
427
428 int i,j;
429
430 int * output = (int* ) malloc(sizeof(int) * len);
431 memset(output, 0x00, len);
432 float fc = 0.1125f; // center frequency
433 size_t adjustedLen = len;
434
435 // create very simple low-pass filter to remove images (2nd-order Butterworth)
436 float complex iir_buf[3] = {0,0,0};
437 float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
438 float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
439
440 float sample = 0; // input sample read from file
441 float complex x_prime = 1.0f; // save sample for estimating frequency
442 float complex x;
443
444 for (i=0; i<adjustedLen; ++i) {
445
446 sample = data[i]+128;
447
448 // remove DC offset and mix to complex baseband
449 x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
450
451 // apply low-pass filter, removing spectral image (IIR using direct-form II)
452 iir_buf[2] = iir_buf[1];
453 iir_buf[1] = iir_buf[0];
454 iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
455 x = b[0]*iir_buf[0] +
456 b[1]*iir_buf[1] +
457 b[2]*iir_buf[2];
458
459 // compute instantaneous frequency by looking at phase difference
460 // between adjacent samples
461 float freq = cargf(x*conjf(x_prime));
462 x_prime = x; // retain this sample for next iteration
463
464 output[i] =(freq > 0)? 10 : -10;
465 }
466
467 // show data
468 for (j=0; j<adjustedLen; ++j)
469 data[j] = output[j];
470
471 CmdLtrim("30");
472 adjustedLen -= 30;
473
474 // zero crossings.
475 for (j=0; j<adjustedLen; ++j){
476 if ( data[j] == 10) break;
477 }
478 int startOne =j;
479
480 for (;j<adjustedLen; ++j){
481 if ( data[j] == -10 ) break;
482 }
483 int stopOne = j-1;
484
485 int fieldlen = stopOne-startOne;
486
487 fieldlen = (fieldlen == 39 || fieldlen == 41)? 40 : fieldlen;
488 fieldlen = (fieldlen == 59 || fieldlen == 51)? 50 : fieldlen;
489 if ( fieldlen != 40 && fieldlen != 50){
490 printf("Detected field Length: %d \n", fieldlen);
491 printf("Can only handle 40 or 50. Aborting...\n");
492 return;
493 }
494
495 // FSK sequence start == 000111
496 int startPos = 0;
497 for (i =0; i<adjustedLen; ++i){
498 int dec = 0;
499 for ( j = 0; j < 6*fieldlen; ++j){
500 dec += data[i + j];
501 }
502 if (dec == 0) {
503 startPos = i;
504 break;
505 }
506 }
507
508 printf("000111 position: %d \n", startPos);
509
510 startPos += 6*fieldlen+5;
511
512 int bit =0;
513 printf("BINARY\n");
514 printf("R/40 : ");
515 for (i =startPos ; i < adjustedLen; i += 40){
516 bit = data[i]>0 ? 1:0;
517 printf("%d", bit );
518 }
519 printf("\n");
520
521 printf("R/50 : ");
522 for (i =startPos ; i < adjustedLen; i += 50){
523 bit = data[i]>0 ? 1:0;
524 printf("%d", bit ); }
525 printf("\n");
526
527 free(output);
528 }
529
530 float complex cexpf (float complex Z)
531 {
532 float complex Res;
533 double rho = exp (__real__ Z);
534 __real__ Res = rho * cosf(__imag__ Z);
535 __imag__ Res = rho * sinf(__imag__ Z);
536 return Res;
537 }
Impressum, Datenschutz