1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  18 #include "lfsampling.h" 
  23  * Function to do a modulation and then get samples. 
  29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
  32         int divisor_used 
= 95; // 125 KHz 
  33         // see if 'h' was specified 
  35         if (command
[strlen((char *) command
) - 1] == 'h') 
  36                 divisor_used 
= 88; // 134.8 KHz 
  38         sample_config sc 
= { 0,0,1, divisor_used
, 0}; 
  39         setSamplingConfig(&sc
); 
  41         /* Make sure the tag is reset */ 
  42         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  43         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  46         LFSetupFPGAForADC(sc
.divisor
, 1); 
  48         // And a little more time for the tag to fully power up 
  51         // now modulate the reader field 
  52         while(*command 
!= '\0' && *command 
!= ' ') { 
  53                 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  55                 SpinDelayUs(delay_off
); 
  56                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  58                 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  60                 if(*(command
++) == '0') 
  61                         SpinDelayUs(period_0
); 
  63                         SpinDelayUs(period_1
); 
  65         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  67         SpinDelayUs(delay_off
); 
  68         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  70         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  73         DoAcquisition_config(false); 
  76 /* blank r/w tag data stream 
  77 ...0000000000000000 01111111 
  78 1010101010101010101010101010101010101010101010101010101010101010 
  81 101010101010101[0]000... 
  83 [5555fe852c5555555555555555fe0000] 
  87         // some hardcoded initial params 
  88         // when we read a TI tag we sample the zerocross line at 2Mhz 
  89         // TI tags modulate a 1 as 16 cycles of 123.2Khz 
  90         // TI tags modulate a 0 as 16 cycles of 134.2Khz 
  91         #define FSAMPLE 2000000 
  95         signed char *dest 
= (signed char *)BigBuf_get_addr(); 
  96         uint16_t n 
= BigBuf_max_traceLen(); 
  97         // 128 bit shift register [shift3:shift2:shift1:shift0] 
  98         uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 100         int i
, cycles
=0, samples
=0; 
 101         // how many sample points fit in 16 cycles of each frequency 
 102         uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 103         // when to tell if we're close enough to one freq or another 
 104         uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 106         // TI tags charge at 134.2Khz 
 107         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 108         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 110         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 111         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 112         // whether we're modulating the antenna (high) 
 113         // or listening to the antenna (low) 
 114         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 116         // get TI tag data into the buffer 
 119         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 121         for (i
=0; i
<n
-1; i
++) { 
 122                 // count cycles by looking for lo to hi zero crossings 
 123                 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 125                         // after 16 cycles, measure the frequency 
 128                                 samples
=i
-samples
; // number of samples in these 16 cycles 
 130                                 // TI bits are coming to us lsb first so shift them 
 131                                 // right through our 128 bit right shift register 
 132                                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 133                                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 134                                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 137                                 // check if the cycles fall close to the number 
 138                                 // expected for either the low or high frequency 
 139                                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 140                                         // low frequency represents a 1 
 142                                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 143                                         // high frequency represents a 0 
 145                                         // probably detected a gay waveform or noise 
 146                                         // use this as gaydar or discard shift register and start again 
 147                                         shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 151                                 // for each bit we receive, test if we've detected a valid tag 
 153                                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 154                                 // remember the bits are backwards 
 155                                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 156                                         // if start and end bytes match, we have a tag so break out of the loop 
 157                                         if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 158                                                 cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 166         // if flag is set we have a tag 
 168                 DbpString("Info: No valid tag detected."); 
 170                 // put 64 bit data into shift1 and shift0 
 171                 shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 172                 shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 174                 // align 16 bit crc into lower half of shift2 
 175                 shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 177                 // if r/w tag, check ident match 
 178                 if (shift3 
& (1<<15) ) { 
 179                         DbpString("Info: TI tag is rewriteable"); 
 180                         // only 15 bits compare, last bit of ident is not valid 
 181                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 182                                 DbpString("Error: Ident mismatch!"); 
 184                                 DbpString("Info: TI tag ident is valid"); 
 187                         DbpString("Info: TI tag is readonly"); 
 190                 // WARNING the order of the bytes in which we calc crc below needs checking 
 191                 // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 192                 // bytes in reverse or something 
 196                 crc 
= update_crc16(crc
, (shift0
)&0xff); 
 197                 crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 198                 crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 199                 crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 200                 crc 
= update_crc16(crc
, (shift1
)&0xff); 
 201                 crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 202                 crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 203                 crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 205                 Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 206                                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 207                 if (crc 
!= (shift2
&0xffff)) { 
 208                         Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 210                         DbpString("Info: CRC is good"); 
 215 void WriteTIbyte(uint8_t b
) 
 219         // modulate 8 bits out to the antenna 
 223                         // stop modulating antenna 
 230                         // stop modulating antenna 
 240 void AcquireTiType(void) 
 243         // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 244         // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 245  #define TIBUFLEN 1250 
 248         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 249         memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t)); 
 251         // Set up the synchronous serial port 
 252         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 253         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 255         // steal this pin from the SSP and use it to control the modulation 
 256         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 257         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 259         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 260         AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 262         // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 263         // 48/2 = 24 MHz clock must be divided by 12 
 264         AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 266         AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 267         AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 268         AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 269         AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 276         // Charge TI tag for 50ms. 
 279         // stop modulating antenna and listen 
 286                 if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 287                         BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;    // store 32 bit values in buffer 
 288                         i
++; if(i 
>= TIBUFLEN
) break; 
 293         // return stolen pin to SSP 
 294         AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 295         AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 297         char *dest 
= (char *)BigBuf_get_addr(); 
 300         for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 301                 for (j
=0; j
<32; j
++) { 
 302                         if(BigBuf
[i
] & (1 << j
)) { 
 311 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 312 // if crc provided, it will be written with the data verbatim (even if bogus) 
 313 // if not provided a valid crc will be computed from the data and written. 
 314 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 316         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 318                 crc 
= update_crc16(crc
, (idlo
)&0xff); 
 319                 crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 320                 crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 321                 crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 322                 crc 
= update_crc16(crc
, (idhi
)&0xff); 
 323                 crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 324                 crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 325                 crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 327         Dbprintf("Writing to tag: %x%08x, crc=%x", 
 328                         (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 330         // TI tags charge at 134.2Khz 
 331         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 332         // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 333         // connects to SSP_DIN and the SSP_DOUT logic level controls 
 334         // whether we're modulating the antenna (high) 
 335         // or listening to the antenna (low) 
 336         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 339         // steal this pin from the SSP and use it to control the modulation 
 340         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 341         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 343         // writing algorithm: 
 344         // a high bit consists of a field off for 1ms and field on for 1ms 
 345         // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 346         // initiate a charge time of 50ms (field on) then immediately start writing bits 
 347         // start by writing 0xBB (keyword) and 0xEB (password) 
 348         // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 349         // finally end with 0x0300 (write frame) 
 350         // all data is sent lsb firts 
 351         // finish with 15ms programming time 
 355         SpinDelay(50);  // charge time 
 357         WriteTIbyte(0xbb); // keyword 
 358         WriteTIbyte(0xeb); // password 
 359         WriteTIbyte( (idlo    
)&0xff ); 
 360         WriteTIbyte( (idlo
>>8 )&0xff ); 
 361         WriteTIbyte( (idlo
>>16)&0xff ); 
 362         WriteTIbyte( (idlo
>>24)&0xff ); 
 363         WriteTIbyte( (idhi    
)&0xff ); 
 364         WriteTIbyte( (idhi
>>8 )&0xff ); 
 365         WriteTIbyte( (idhi
>>16)&0xff ); 
 366         WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 367         WriteTIbyte( (crc     
)&0xff ); // crc lo 
 368         WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 369         WriteTIbyte(0x00); // write frame lo 
 370         WriteTIbyte(0x03); // write frame hi 
 372         SpinDelay(50);  // programming time 
 376         // get TI tag data into the buffer 
 379         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 380         DbpString("Now use 'lf ti read' to check"); 
 383 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
) 
 386         uint8_t *tab 
= BigBuf_get_addr(); 
 388         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 389         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 391         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 393         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 394         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 396  #define SHORT_COIL()   LOW(GPIO_SSC_DOUT) 
 397  #define OPEN_COIL()            HIGH(GPIO_SSC_DOUT) 
 401                 //wait until SSC_CLK goes HIGH 
 402                 while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 403                         if(BUTTON_PRESS() || (usb_poll_validate_length() )) { 
 404                                 DbpString("Stopped"); 
 419                 //wait until SSC_CLK goes LOW 
 420                 while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 422                                 DbpString("Stopped"); 
 440 #define DEBUG_FRAME_CONTENTS 1 
 441 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 445 // compose fc/8 fc/10 waveform (FSK2) 
 446 static void fc(int c
, int *n
) 
 448         uint8_t *dest 
= BigBuf_get_addr(); 
 451         // for when we want an fc8 pattern every 4 logical bits 
 463         //      an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples 
 465                 for (idx
=0; idx
<6; idx
++) { 
 477         //      an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples 
 479                 for (idx
=0; idx
<5; idx
++) { 
 493 // compose fc/X fc/Y waveform (FSKx) 
 494 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)  
 496         uint8_t *dest 
= BigBuf_get_addr(); 
 497         uint8_t halfFC 
= fc
/2; 
 498         uint8_t wavesPerClock 
= clock
/fc
; 
 499         uint8_t mod 
= clock 
% fc
;    //modifier 
 500         uint8_t modAdj 
= fc
/mod
;     //how often to apply modifier 
 501         bool modAdjOk 
= !(fc 
% mod
); //if (fc % mod==0) modAdjOk=TRUE; 
 502         // loop through clock - step field clock 
 503         for (uint8_t idx
=0; idx 
< wavesPerClock
; idx
++){ 
 504                 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) 
 505                 memset(dest
+(*n
), 0, fc
-halfFC
);  //in case of odd number use extra here 
 506                 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 509         if (mod
>0) (*modCnt
)++; 
 510         if ((mod
>0) && modAdjOk
){  //fsk2  
 511                 if ((*modCnt 
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave 
 512                         memset(dest
+(*n
), 0, fc
-halfFC
); 
 513                         memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 517         if (mod
>0 && !modAdjOk
){  //fsk1 
 518                 memset(dest
+(*n
), 0, mod
-(mod
/2)); 
 519                 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2); 
 524 // prepare a waveform pattern in the buffer based on the ID given then 
 525 // simulate a HID tag until the button is pressed 
 526 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 530          HID tag bitstream format 
 531          The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 532          A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 533          A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 534          A fc8 is inserted before every 4 bits 
 535          A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 536          nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 540                 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); 
 544         // special start of frame marker containing invalid bit sequences 
 545         fc(8,  &n
);     fc(8,  &n
); // invalid 
 546         fc(8,  &n
);     fc(10, &n
); // logical 0 
 547         fc(10, &n
);     fc(10, &n
); // invalid 
 548         fc(8,  &n
);     fc(10, &n
); // logical 0 
 551         // manchester encode bits 43 to 32 
 552         for (i
=11; i
>=0; i
--) { 
 553                 if ((i%4
)==3) fc(0,&n
); 
 555                         fc(10, &n
); fc(8,  &n
);         // low-high transition 
 557                         fc(8,  &n
); fc(10, &n
);         // high-low transition 
 562         // manchester encode bits 31 to 0 
 563         for (i
=31; i
>=0; i
--) { 
 564                 if ((i%4
)==3) fc(0,&n
); 
 566                         fc(10, &n
); fc(8,  &n
);         // low-high transition 
 568                         fc(8,  &n
); fc(10, &n
);         // high-low transition 
 574         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 580 // prepare a waveform pattern in the buffer based on the ID given then 
 581 // simulate a FSK tag until the button is pressed 
 582 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock 
 583 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 587         uint8_t fcHigh 
= arg1 
>> 8; 
 588         uint8_t fcLow 
= arg1 
& 0xFF; 
 590         uint8_t clk 
= arg2 
& 0xFF; 
 591         uint8_t invert 
= (arg2 
>> 8) & 1; 
 593         for (i
=0; i
<size
; i
++){ 
 594                 if (BitStream
[i
] == invert
){ 
 595                         fcAll(fcLow
, &n
, clk
, &modCnt
); 
 597                         fcAll(fcHigh
, &n
, clk
, &modCnt
); 
 600         Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
); 
 601         /*Dbprintf("DEBUG: First 32:"); 
 602         uint8_t *dest = BigBuf_get_addr(); 
 604         Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 606         Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 611         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 617 // compose ask waveform for one bit(ASK) 
 618 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
) 
 620         uint8_t *dest 
= BigBuf_get_addr(); 
 621         uint8_t halfClk 
= clock
/2; 
 622         // c = current bit 1 or 0 
 624                 memset(dest
+(*n
), c
, halfClk
); 
 625                 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
); 
 627                 memset(dest
+(*n
), c
, clock
); 
 632 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
) 
 634         uint8_t *dest 
= BigBuf_get_addr(); 
 635         uint8_t halfClk 
= clock
/2; 
 637                 memset(dest
+(*n
), c 
^ 1 ^ *phase
, halfClk
); 
 638                 memset(dest
+(*n
) + halfClk
, c 
^ *phase
, halfClk
); 
 640                 memset(dest
+(*n
), c 
^ *phase
, clock
); 
 646 // args clock, ask/man or askraw, invert, transmission separator 
 647 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 651         uint8_t clk 
= (arg1 
>> 8) & 0xFF; 
 652         uint8_t encoding 
= arg1 
& 0xFF; 
 653         uint8_t separator 
= arg2 
& 1; 
 654         uint8_t invert 
= (arg2 
>> 8) & 1; 
 656         if (encoding
==2){  //biphase 
 658                 for (i
=0; i
<size
; i
++){ 
 659                         biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 661                 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check 
 662                         for (i
=0; i
<size
; i
++){ 
 663                                 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 666         } else {  // ask/manchester || ask/raw 
 667                 for (i
=0; i
<size
; i
++){ 
 668                         askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
); 
 670                 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase) 
 671                         for (i
=0; i
<size
; i
++){ 
 672                                 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
); 
 677         if (separator
==1) Dbprintf("sorry but separator option not yet available");  
 679         Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
); 
 681         //Dbprintf("First 32:"); 
 682         //uint8_t *dest = BigBuf_get_addr(); 
 684         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 686         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 691         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 697 //carrier can be 2,4 or 8 
 698 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
) 
 700         uint8_t *dest 
= BigBuf_get_addr(); 
 701         uint8_t halfWave 
= waveLen
/2; 
 705                 // write phase change 
 706                 memset(dest
+(*n
), *curPhase
^1, halfWave
); 
 707                 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
); 
 712         //write each normal clock wave for the clock duration 
 713         for (; i 
< clk
; i
+=waveLen
){ 
 714                 memset(dest
+(*n
), *curPhase
, halfWave
); 
 715                 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
); 
 720 // args clock, carrier, invert, 
 721 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 725         uint8_t clk 
= arg1 
>> 8; 
 726         uint8_t carrier 
= arg1 
& 0xFF; 
 727         uint8_t invert 
= arg2 
& 0xFF; 
 728         uint8_t curPhase 
= 0; 
 729         for (i
=0; i
<size
; i
++){ 
 730                 if (BitStream
[i
] == curPhase
){ 
 731                         pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
); 
 733                         pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
); 
 736         Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
); 
 737         //Dbprintf("DEBUG: First 32:"); 
 738         //uint8_t *dest = BigBuf_get_addr(); 
 740         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 742         //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 746         SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 752 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 753 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 755         uint8_t *dest 
= BigBuf_get_addr(); 
 756         //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); 
 758         uint32_t hi2
=0, hi
=0, lo
=0; 
 760         // Configure to go in 125Khz listen mode 
 761         LFSetupFPGAForADC(95, true); 
 763         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 766                 if (ledcontrol
) LED_A_ON(); 
 768                 DoAcquisition_default(-1,true); 
 770                 //size = sizeOfBigBuff;  //variable size will change after demod so re initialize it before use 
 771                 size 
= 50*128*2; //big enough to catch 2 sequences of largest format 
 772                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 774                 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){ 
 775                         // go over previously decoded manchester data and decode into usable tag ID 
 776                         if (hi2 
!= 0){ //extra large HID tags  88/192 bits 
 777                                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 778                                   (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 779                         }else {  //standard HID tags 44/96 bits 
 780                                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 783                                 uint32_t cardnum 
= 0; 
 784                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 786                                         lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 788                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 796                                                 cardnum 
= (lo
>>1)&0xFFFF; 
 800                                                 cardnum 
= (lo
>>1)&0x7FFFF; 
 801                                                 fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 804                                                 cardnum 
= (lo
>>1)&0xFFFF; 
 805                                                 fc
= ((hi
&1)<<15)|(lo
>>17); 
 808                                                 cardnum 
= (lo
>>1)&0xFFFFF; 
 809                                                 fc 
= ((hi
&1)<<11)|(lo
>>21); 
 812                                 else { //if bit 38 is not set then 37 bit format is used 
 817                                                 cardnum 
= (lo
>>1)&0x7FFFF; 
 818                                                 fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 821                                 //Dbprintf("TAG ID: %x%08x (%d)", 
 822                                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 823                                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 824                                                  (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 825                                                  (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 828                                 if (ledcontrol
) LED_A_OFF(); 
 835                 hi2 
= hi 
= lo 
= idx 
= 0; 
 838         DbpString("Stopped"); 
 839         if (ledcontrol
) LED_A_OFF(); 
 842 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 843 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 845         uint8_t *dest 
= BigBuf_get_addr(); 
 846         //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); 
 849         // Configure to go in 125Khz listen mode 
 850         LFSetupFPGAForADC(95, true); 
 852         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 855                 if (ledcontrol
) LED_A_ON(); 
 857                 DoAcquisition_default(-1,true); 
 859                 //size = sizeOfBigBuff;  //variable size will change after demod so re initialize it before use 
 860                 size 
= 50*128*2; //big enough to catch 2 sequences of largest format 
 861                 idx 
= AWIDdemodFSK(dest
, &size
); 
 863                 if (idx
>0 && size
==96){ 
 865                 // 0            10            20            30              40            50              60 
 867                 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 
 868                 // ----------------------------------------------------------------------------- 
 869                 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 
 870                 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 
 871                 //          |---26 bit---|    |-----117----||-------------142-------------| 
 872                 // b = format bit len, o = odd parity of last 3 bits 
 873                 // f = facility code, c = card number 
 874                 // w = wiegand parity 
 875                 // (26 bit format shown) 
 877                 //get raw ID before removing parities 
 878                 uint32_t rawLo 
= bytebits_to_byte(dest
+idx
+64,32); 
 879                 uint32_t rawHi 
= bytebits_to_byte(dest
+idx
+32,32); 
 880                 uint32_t rawHi2 
= bytebits_to_byte(dest
+idx
,32); 
 882                 size 
= removeParity(dest
, idx
+8, 4, 1, 88); 
 883                 // ok valid card found! 
 886                 // 0           10         20        30          40        50        60 
 888                 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 
 889                 // ----------------------------------------------------------------------------- 
 890                 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 
 891                 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
 892                 // |26 bit|   |-117--| |-----142------| 
 893                 // b = format bit len, o = odd parity of last 3 bits 
 894                 // f = facility code, c = card number 
 895                 // w = wiegand parity 
 896                 // (26 bit format shown) 
 899                 uint32_t cardnum 
= 0; 
 902                 uint8_t fmtLen 
= bytebits_to_byte(dest
,8); 
 904                         fc 
= bytebits_to_byte(dest
+9, 8); 
 905                         cardnum 
= bytebits_to_byte(dest
+17, 16); 
 906                         code1 
= bytebits_to_byte(dest
+8,fmtLen
); 
 907                         Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
); 
 909                         cardnum 
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16); 
 911                         code1 
= bytebits_to_byte(dest
+8,fmtLen
-32); 
 912                         code2 
= bytebits_to_byte(dest
+8+(fmtLen
-32),32); 
 913                         Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
); 
 915                         code1 
= bytebits_to_byte(dest
+8,fmtLen
); 
 916                         Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
); 
 920                                 if (ledcontrol
) LED_A_OFF(); 
 928         DbpString("Stopped"); 
 929         if (ledcontrol
) LED_A_OFF(); 
 932 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 934         uint8_t *dest 
= BigBuf_get_addr(); 
 936         size_t size
=0, idx
=0; 
 937         int clk
=0, invert
=0, errCnt
=0, maxErr
=20; 
 940         // Configure to go in 125Khz listen mode 
 941         LFSetupFPGAForADC(95, true); 
 943         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 946                 if (ledcontrol
) LED_A_ON(); 
 948                 DoAcquisition_default(-1,true); 
 949                 size  
= BigBuf_max_traceLen(); 
 950                 //askdemod and manchester decode 
 951                 if (size 
> 16385) size 
= 16385; //big enough to catch 2 sequences of largest format 
 952                 errCnt 
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1); 
 955                 if (errCnt
<0) continue; 
 957                         errCnt 
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
); 
 960                                         Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", 
 964                                           (uint32_t)(lo
&0xFFFF), 
 965                                           (uint32_t)((lo
>>16LL) & 0xFF), 
 966                                           (uint32_t)(lo 
& 0xFFFFFF)); 
 968                                         Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 971                                           (uint32_t)(lo
&0xFFFF), 
 972                                           (uint32_t)((lo
>>16LL) & 0xFF), 
 973                                           (uint32_t)(lo 
& 0xFFFFFF)); 
 977                                 if (ledcontrol
) LED_A_OFF(); 
 979                                 *low
=lo 
& 0xFFFFFFFF; 
 984                 hi 
= lo 
= size 
= idx 
= 0; 
 985                 clk 
= invert 
= errCnt 
= 0; 
 987         DbpString("Stopped"); 
 988         if (ledcontrol
) LED_A_OFF(); 
 991 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 993         uint8_t *dest 
= BigBuf_get_addr(); 
 995         uint32_t code
=0, code2
=0; 
 997         uint8_t facilitycode
=0; 
1000         uint16_t calccrc 
= 0; 
1001         // Configure to go in 125Khz listen mode 
1002         LFSetupFPGAForADC(95, true); 
1004         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
1006                 if (ledcontrol
) LED_A_ON(); 
1007                 DoAcquisition_default(-1,true); 
1008                 //fskdemod and get start index 
1010                 idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
1011                 if (idx
<0) continue; 
1015                         //0           10          20          30          40          50          60 
1017                         //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
1018                         //----------------------------------------------------------------------------- 
1019             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 
1022                         //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 
1023                         //preamble      F0         E0         01         03         B6         75 
1024                         // How to calc checksum, 
1025                         // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 
1026                         //   F0 + E0 + 01 + 03 + B6 = 28A 
1030                         //XSF(version)facility:codeone+codetwo 
1032                         if(findone
){ //only print binary if we are doing one 
1033                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
1034                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
1035                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
1036                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
1037                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
1038                                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
1039                                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
1041                         code 
= bytebits_to_byte(dest
+idx
,32); 
1042                         code2 
= bytebits_to_byte(dest
+idx
+32,32); 
1043                         version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
1044                 facilitycode 
= bytebits_to_byte(dest
+idx
+18,8); 
1045                         number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
1047                         crc 
= bytebits_to_byte(dest
+idx
+54,8); 
1048                         for (uint8_t i
=1; i
<6; ++i
) 
1049                                 calccrc 
+= bytebits_to_byte(dest
+idx
+9*i
,8); 
1051                         calccrc 
= 0xff - calccrc
; 
1053                         char *crcStr 
= (crc 
== calccrc
) ? "ok":"!crc"; 
1055             Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x)  [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
); 
1056                         // if we're only looking for one tag 
1058                                 if (ledcontrol
) LED_A_OFF(); 
1065                         version
=facilitycode
=0; 
1071         DbpString("Stopped"); 
1072         if (ledcontrol
) LED_A_OFF(); 
1075 /*------------------------------ 
1076  * T5555/T5557/T5567 routines 
1077  *------------------------------ 
1080 /* T55x7 configuration register definitions */ 
1081 #define T55x7_POR_DELAY                         0x00000001 
1082 #define T55x7_ST_TERMINATOR                     0x00000008 
1083 #define T55x7_PWD                                       0x00000010 
1084 #define T55x7_MAXBLOCK_SHIFT            5 
1085 #define T55x7_AOR                                       0x00000200 
1086 #define T55x7_PSKCF_RF_2                        0 
1087 #define T55x7_PSKCF_RF_4                        0x00000400 
1088 #define T55x7_PSKCF_RF_8                        0x00000800 
1089 #define T55x7_MODULATION_DIRECT         0 
1090 #define T55x7_MODULATION_PSK1           0x00001000 
1091 #define T55x7_MODULATION_PSK2           0x00002000 
1092 #define T55x7_MODULATION_PSK3           0x00003000 
1093 #define T55x7_MODULATION_FSK1           0x00004000 
1094 #define T55x7_MODULATION_FSK2           0x00005000 
1095 #define T55x7_MODULATION_FSK1a          0x00006000 
1096 #define T55x7_MODULATION_FSK2a          0x00007000 
1097 #define T55x7_MODULATION_MANCHESTER     0x00008000 
1098 #define T55x7_MODULATION_BIPHASE        0x00010000 
1099 //#define T55x7_MODULATION_BIPHASE57    0x00011000 
1100 #define T55x7_BITRATE_RF_8                      0 
1101 #define T55x7_BITRATE_RF_16                     0x00040000 
1102 #define T55x7_BITRATE_RF_32                     0x00080000 
1103 #define T55x7_BITRATE_RF_40                     0x000C0000 
1104 #define T55x7_BITRATE_RF_50                     0x00100000 
1105 #define T55x7_BITRATE_RF_64                     0x00140000 
1106 #define T55x7_BITRATE_RF_100            0x00180000 
1107 #define T55x7_BITRATE_RF_128            0x001C0000 
1109 /* T5555 (Q5) configuration register definitions */ 
1110 #define T5555_ST_TERMINATOR                     0x00000001 
1111 #define T5555_MAXBLOCK_SHIFT            0x00000001 
1112 #define T5555_MODULATION_MANCHESTER     0 
1113 #define T5555_MODULATION_PSK1           0x00000010 
1114 #define T5555_MODULATION_PSK2           0x00000020 
1115 #define T5555_MODULATION_PSK3           0x00000030 
1116 #define T5555_MODULATION_FSK1           0x00000040 
1117 #define T5555_MODULATION_FSK2           0x00000050 
1118 #define T5555_MODULATION_BIPHASE        0x00000060 
1119 #define T5555_MODULATION_DIRECT         0x00000070 
1120 #define T5555_INVERT_OUTPUT                     0x00000080 
1121 #define T5555_PSK_RF_2                          0 
1122 #define T5555_PSK_RF_4                          0x00000100 
1123 #define T5555_PSK_RF_8                          0x00000200 
1124 #define T5555_USE_PWD                           0x00000400 
1125 #define T5555_USE_AOR                           0x00000800 
1126 #define T5555_BITRATE_SHIFT                     12 
1127 #define T5555_FAST_WRITE                        0x00004000 
1128 #define T5555_PAGE_SELECT                       0x00008000 
1131  * Relevant times in microsecond 
1132  * To compensate antenna falling times shorten the write times 
1133  * and enlarge the gap ones. 
1136 #define START_GAP 50*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (or 15fc) 
1137 #define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (or 10fc) 
1138 #define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) 
1139 #define WRITE_1   50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc)  432 for T55x7; 448 for E5550 
1141 //  VALUES TAKEN FROM EM4x function: SendForward 
1142 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
1143 //  WRITE_GAP = 128;       (16*8) 
1144 //  WRITE_1   = 256 32*8;  (32*8)  
1146 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
1147 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
1149 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) 
1150 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz 
1151 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) 
1152 // T0 = TIMER_CLOCK1 / 125000 = 192 
1153 // 1 Cycle = 8 microseconds(us) 
1155 #define T55xx_SAMPLES_SIZE      12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..) 
1157 // Write one bit to card 
1158 void T55xxWriteBit(int bit
) 
1160         //FpgaDownloadAndGo(FPGA_BITSTREAM_LF); 
1161         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1162         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1164                 SpinDelayUs(WRITE_0
); 
1166                 SpinDelayUs(WRITE_1
); 
1167         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1168         SpinDelayUs(WRITE_GAP
); 
1171 // Write one card block in page 0, no lock 
1172 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1176         // Set up FPGA, 125kHz 
1177         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1178         LFSetupFPGAForADC(0, true); 
1180         // Now start writting 
1181         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1182         SpinDelayUs(START_GAP
); 
1186         T55xxWriteBit(0); //Page 0 
1189                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1190                         T55xxWriteBit(Pwd 
& i
); 
1196         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1197                 T55xxWriteBit(Data 
& i
); 
1200         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1201                 T55xxWriteBit(Block 
& i
); 
1203         // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1204         // so wait a little more) 
1205         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1206         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1208         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1211 void TurnReadLFOn(){ 
1212         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1213         // Give it a bit of time for the resonant antenna to settle. 
1218 // Read one card block in page 0 
1219 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1222         uint8_t *dest 
= BigBuf_get_addr(); 
1223         uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1224         if ( bufferlength 
> T55xx_SAMPLES_SIZE 
) 
1225                 bufferlength 
= T55xx_SAMPLES_SIZE
; 
1227         // Clear destination buffer before sending the command 
1228         memset(dest
, 0x80, bufferlength
); 
1230         // Set up FPGA, 125kHz 
1231         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1232         //LFSetupFPGAForADC(0, true); 
1233         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1234         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1235         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1237         // Connect the A/D to the peak-detected low-frequency path. 
1238         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1240         // Now set up the SSC to get the ADC samples that are now streaming at us. 
1243         // Give it a bit of time for the resonant antenna to settle. 
1244         //SpinDelayUs(8*200);  //192FC 
1247         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1248         //SpinDelayUs(START_GAP); 
1252         T55xxWriteBit(0); //Page 0 
1255                 for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1256                         T55xxWriteBit(Pwd 
& i
); 
1261         for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1262                 T55xxWriteBit(Block 
& i
); 
1264         // Turn field on to read the response 
1266         // Now do the acquisition 
1269                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1270                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1273                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1274                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1277                         if (i 
>= bufferlength
) break; 
1281         cmd_send(CMD_ACK
,0,0,0,0,0);     
1282         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1286 // Read card traceability data (page 1) 
1287 void T55xxReadTrace(void){ 
1290         uint8_t *dest 
= BigBuf_get_addr(); 
1291         uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1292         if ( bufferlength 
> T55xx_SAMPLES_SIZE 
) 
1293                 bufferlength
= T55xx_SAMPLES_SIZE
; 
1295         // Clear destination buffer before sending the command 
1296         memset(dest
, 0x80, bufferlength
); 
1298         LFSetupFPGAForADC(0, true); 
1299         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1300         SpinDelayUs(START_GAP
); 
1304         T55xxWriteBit(1); //Page 1 
1306         // Turn field on to read the response 
1309         // Now do the acquisition 
1311                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1312                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1315                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1316                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1320                         if (i 
>= bufferlength
) break; 
1324         cmd_send(CMD_ACK
,0,0,0,0,0); 
1325         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1329 /*-------------- Cloning routines -----------*/ 
1330 // Copy HID id to card and setup block 0 config 
1331 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1333         int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1337                 // Ensure no more than 84 bits supplied 
1339                         DbpString("Tags can only have 84 bits."); 
1342                 // Build the 6 data blocks for supplied 84bit ID 
1344                 data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1345                 for (int i
=0;i
<4;i
++) { 
1346                         if (hi2 
& (1<<(19-i
))) 
1347                                 data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1349                                 data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1353                 for (int i
=0;i
<16;i
++) { 
1354                         if (hi2 
& (1<<(15-i
))) 
1355                                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1357                                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1361                 for (int i
=0;i
<16;i
++) { 
1362                         if (hi 
& (1<<(31-i
))) 
1363                                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1365                                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1369                 for (int i
=0;i
<16;i
++) { 
1370                         if (hi 
& (1<<(15-i
))) 
1371                                 data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1373                                 data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1377                 for (int i
=0;i
<16;i
++) { 
1378                         if (lo 
& (1<<(31-i
))) 
1379                                 data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1381                                 data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1385                 for (int i
=0;i
<16;i
++) { 
1386                         if (lo 
& (1<<(15-i
))) 
1387                                 data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1389                                 data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1393                 // Ensure no more than 44 bits supplied 
1395                         DbpString("Tags can only have 44 bits."); 
1399                 // Build the 3 data blocks for supplied 44bit ID 
1402                 data1 
= 0x1D000000; // load preamble 
1404                 for (int i
=0;i
<12;i
++) { 
1405                         if (hi 
& (1<<(11-i
))) 
1406                                 data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1408                                 data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1412                 for (int i
=0;i
<16;i
++) { 
1413                         if (lo 
& (1<<(31-i
))) 
1414                                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1416                                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1420                 for (int i
=0;i
<16;i
++) { 
1421                         if (lo 
& (1<<(15-i
))) 
1422                                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1424                                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1429         // Program the data blocks for supplied ID 
1430         // and the block 0 for HID format 
1431         T55xxWriteBlock(data1
,1,0,0); 
1432         T55xxWriteBlock(data2
,2,0,0); 
1433         T55xxWriteBlock(data3
,3,0,0); 
1435         if (longFMT
) { // if long format there are 6 blocks 
1436                 T55xxWriteBlock(data4
,4,0,0); 
1437                 T55xxWriteBlock(data5
,5,0,0); 
1438                 T55xxWriteBlock(data6
,6,0,0); 
1441         // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1442         T55xxWriteBlock(T55x7_BITRATE_RF_50    
| 
1443                                         T55x7_MODULATION_FSK2a 
| 
1444                                         last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1452 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1454         int data1
=0, data2
=0; //up to six blocks for long format 
1456         data1 
= hi
;  // load preamble 
1460         // Program the data blocks for supplied ID 
1461         // and the block 0 for HID format 
1462         T55xxWriteBlock(data1
,1,0,0); 
1463         T55xxWriteBlock(data2
,2,0,0); 
1466         T55xxWriteBlock(0x00147040,0,0,0); 
1472 // Define 9bit header for EM410x tags 
1473 #define EM410X_HEADER           0x1FF 
1474 #define EM410X_ID_LENGTH        40 
1476 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1479         uint64_t id 
= EM410X_HEADER
; 
1480         uint64_t rev_id 
= 0;    // reversed ID 
1481         int c_parity
[4];        // column parity 
1482         int r_parity 
= 0;       // row parity 
1485         // Reverse ID bits given as parameter (for simpler operations) 
1486         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1488                         rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1491                         rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1496         for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1497                 id_bit 
= rev_id 
& 1; 
1500                         // Don't write row parity bit at start of parsing 
1502                                 id 
= (id 
<< 1) | r_parity
; 
1503                         // Start counting parity for new row 
1510                 // First elements in column? 
1512                         // Fill out first elements 
1513                         c_parity
[i
] = id_bit
; 
1515                         // Count column parity 
1516                         c_parity
[i 
% 4] ^= id_bit
; 
1519                 id 
= (id 
<< 1) | id_bit
; 
1523         // Insert parity bit of last row 
1524         id 
= (id 
<< 1) | r_parity
; 
1526         // Fill out column parity at the end of tag 
1527         for (i 
= 0; i 
< 4; ++i
) 
1528                 id 
= (id 
<< 1) | c_parity
[i
]; 
1533         Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1537         T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1538         T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1540         // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1542                 // Clock rate is stored in bits 8-15 of the card value 
1543                 clock 
= (card 
& 0xFF00) >> 8; 
1544                 Dbprintf("Clock rate: %d", clock
); 
1548                         clock 
= T55x7_BITRATE_RF_32
; 
1551                         clock 
= T55x7_BITRATE_RF_16
; 
1554                         // A value of 0 is assumed to be 64 for backwards-compatibility 
1557                         clock 
= T55x7_BITRATE_RF_64
; 
1560                         Dbprintf("Invalid clock rate: %d", clock
); 
1564                 // Writing configuration for T55x7 tag 
1565                 T55xxWriteBlock(clock       
| 
1566                                                 T55x7_MODULATION_MANCHESTER 
| 
1567                                                 2 << T55x7_MAXBLOCK_SHIFT
, 
1571                 // Writing configuration for T5555(Q5) tag 
1572                 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1573                                                 T5555_MODULATION_MANCHESTER 
| 
1574                                                 2 << T5555_MAXBLOCK_SHIFT
, 
1578         Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1579                          (uint32_t)(id 
>> 32), (uint32_t)id
); 
1582 // Clone Indala 64-bit tag by UID to T55x7 
1583 void CopyIndala64toT55x7(int hi
, int lo
) 
1586         //Program the 2 data blocks for supplied 64bit UID 
1587         // and the block 0 for Indala64 format 
1588         T55xxWriteBlock(hi
,1,0,0); 
1589         T55xxWriteBlock(lo
,2,0,0); 
1590         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1591         T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1592                                         T55x7_MODULATION_PSK1 
| 
1593                                         2 << T55x7_MAXBLOCK_SHIFT
, 
1595         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1596         //      T5567WriteBlock(0x603E1042,0); 
1602 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1605         //Program the 7 data blocks for supplied 224bit UID 
1606         // and the block 0 for Indala224 format 
1607         T55xxWriteBlock(uid1
,1,0,0); 
1608         T55xxWriteBlock(uid2
,2,0,0); 
1609         T55xxWriteBlock(uid3
,3,0,0); 
1610         T55xxWriteBlock(uid4
,4,0,0); 
1611         T55xxWriteBlock(uid5
,5,0,0); 
1612         T55xxWriteBlock(uid6
,6,0,0); 
1613         T55xxWriteBlock(uid7
,7,0,0); 
1614         //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1615         T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1616                                         T55x7_MODULATION_PSK1 
| 
1617                                         7 << T55x7_MAXBLOCK_SHIFT
, 
1619         //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1620         //      T5567WriteBlock(0x603E10E2,0); 
1626 //----------------------------------- 
1627 // EM4469 / EM4305 routines 
1628 //----------------------------------- 
1629 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1630 #define FWD_CMD_WRITE 0xA 
1631 #define FWD_CMD_READ 0x9 
1632 #define FWD_CMD_DISABLE 0x5 
1635 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1636 uint8_t * forward_ptr
; //ptr for forward message preparation 
1637 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1638 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1640 //==================================================================== 
1641 // prepares command bits 
1643 //==================================================================== 
1644 //-------------------------------------------------------------------- 
1645 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1646         //-------------------------------------------------------------------- 
1648         *forward_ptr
++ = 0; //start bit 
1649         *forward_ptr
++ = 0; //second pause for 4050 code 
1651         *forward_ptr
++ = cmd
; 
1653         *forward_ptr
++ = cmd
; 
1655         *forward_ptr
++ = cmd
; 
1657         *forward_ptr
++ = cmd
; 
1659         return 6; //return number of emited bits 
1662 //==================================================================== 
1663 // prepares address bits 
1665 //==================================================================== 
1667 //-------------------------------------------------------------------- 
1668 uint8_t Prepare_Addr( uint8_t addr 
) { 
1669         //-------------------------------------------------------------------- 
1671         register uint8_t line_parity
; 
1676                 *forward_ptr
++ = addr
; 
1677                 line_parity 
^= addr
; 
1681         *forward_ptr
++ = (line_parity 
& 1); 
1683         return 7; //return number of emited bits 
1686 //==================================================================== 
1687 // prepares data bits intreleaved with parity bits 
1689 //==================================================================== 
1691 //-------------------------------------------------------------------- 
1692 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1693         //-------------------------------------------------------------------- 
1695         register uint8_t line_parity
; 
1696         register uint8_t column_parity
; 
1697         register uint8_t i
, j
; 
1698         register uint16_t data
; 
1703         for(i
=0; i
<4; i
++) { 
1705                 for(j
=0; j
<8; j
++) { 
1706                         line_parity 
^= data
; 
1707                         column_parity 
^= (data 
& 1) << j
; 
1708                         *forward_ptr
++ = data
; 
1711                 *forward_ptr
++ = line_parity
; 
1716         for(j
=0; j
<8; j
++) { 
1717                 *forward_ptr
++ = column_parity
; 
1718                 column_parity 
>>= 1; 
1722         return 45; //return number of emited bits 
1725 //==================================================================== 
1726 // Forward Link send function 
1727 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1728 // fwd_bit_count set with number of bits to be sent 
1729 //==================================================================== 
1730 void SendForward(uint8_t fwd_bit_count
) { 
1732         fwd_write_ptr 
= forwardLink_data
; 
1733         fwd_bit_sz 
= fwd_bit_count
; 
1738         FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1739         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1740         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1742         // Give it a bit of time for the resonant antenna to settle. 
1743         // And for the tag to fully power up 
1746         // force 1st mod pulse (start gap must be longer for 4305) 
1747         fwd_bit_sz
--; //prepare next bit modulation 
1749         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1750         SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1751         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1752         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1753         SpinDelayUs(16*8); //16 cycles on (8us each) 
1755         // now start writting 
1756         while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1757                 if(((*fwd_write_ptr
++) & 1) == 1) 
1758                         SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1760                         //These timings work for 4469/4269/4305 (with the 55*8 above) 
1761                         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1762                         SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1763                         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1764                         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1765                         SpinDelayUs(9*8); //16 cycles on (8us each) 
1770 void EM4xLogin(uint32_t Password
) { 
1772         uint8_t fwd_bit_count
; 
1774         forward_ptr 
= forwardLink_data
; 
1775         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1776         fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1778         SendForward(fwd_bit_count
); 
1780         //Wait for command to complete 
1785 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1787         uint8_t *dest 
= BigBuf_get_addr(); 
1788         uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1791         // Clear destination buffer before sending the command  0x80 = average. 
1792         memset(dest
, 0x80, bufferlength
); 
1794     uint8_t fwd_bit_count
; 
1796         //If password mode do login 
1797         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1799         forward_ptr 
= forwardLink_data
; 
1800         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1801         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1803         // Connect the A/D to the peak-detected low-frequency path. 
1804         SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1805         // Now set up the SSC to get the ADC samples that are now streaming at us. 
1808         SendForward(fwd_bit_count
); 
1810         // Now do the acquisition 
1813                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1814                         AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1816                 if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1817                         dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1819                         if (i 
>= bufferlength
) break; 
1823         cmd_send(CMD_ACK
,0,0,0,0,0); 
1824         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1828 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1830         uint8_t fwd_bit_count
; 
1832         //If password mode do login 
1833         if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1835         forward_ptr 
= forwardLink_data
; 
1836         fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1837         fwd_bit_count 
+= Prepare_Addr( Address 
); 
1838         fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1840         SendForward(fwd_bit_count
); 
1842         //Wait for write to complete 
1844         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1848 void CopyViKingtoT55x7(uint32_t block1
,uint32_t block2
) { 
1850     T55xxWriteBlock(block1
,1,0,0); 
1851     T55xxWriteBlock(block2
,2,0,0); 
1853     T55xxWriteBlock(T55x7_MODULATION_MANCHESTER 
| T55x7_BITRATE_RF_32 
| 2 << T5555_MAXBLOCK_SHIFT
,0,0,1);