]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443b.c
a47f30179270e0bf551aa98023065cac288a2131
[proxmark3-svn] / armsrc / iso14443b.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
11
12 #include "proxmark3.h"
13 #include "apps.h"
14 #include "util.h"
15 #include "string.h"
16 #include "iso14443crc.h"
17 #include "common.h"
18 #define RECEIVE_SAMPLES_TIMEOUT 600000
19 #define ISO14443B_DMA_BUFFER_SIZE 256
20
21
22 // PCB Block number for APDUs
23 static uint8_t pcb_blocknum = 0;
24
25 //=============================================================================
26 // An ISO 14443 Type B tag. We listen for commands from the reader, using
27 // a UART kind of thing that's implemented in software. When we get a
28 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
29 // If it's good, then we can do something appropriate with it, and send
30 // a response.
31 //=============================================================================
32
33 //-----------------------------------------------------------------------------
34 // Code up a string of octets at layer 2 (including CRC, we don't generate
35 // that here) so that they can be transmitted to the reader. Doesn't transmit
36 // them yet, just leaves them ready to send in ToSend[].
37 //-----------------------------------------------------------------------------
38 static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
39 {
40 int i;
41
42 ToSendReset();
43
44 // Transmit a burst of ones, as the initial thing that lets the
45 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
46 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
47 // so I will too.
48 for(i = 0; i < 20; i++) {
49 ToSendStuffBit(1);
50 ToSendStuffBit(1);
51 ToSendStuffBit(1);
52 ToSendStuffBit(1);
53 }
54
55 // Send SOF.
56 for(i = 0; i < 10; i++) {
57 ToSendStuffBit(0);
58 ToSendStuffBit(0);
59 ToSendStuffBit(0);
60 ToSendStuffBit(0);
61 }
62 for(i = 0; i < 2; i++) {
63 ToSendStuffBit(1);
64 ToSendStuffBit(1);
65 ToSendStuffBit(1);
66 ToSendStuffBit(1);
67 }
68
69 for(i = 0; i < len; i++) {
70 int j;
71 uint8_t b = cmd[i];
72
73 // Start bit
74 ToSendStuffBit(0);
75 ToSendStuffBit(0);
76 ToSendStuffBit(0);
77 ToSendStuffBit(0);
78
79 // Data bits
80 for(j = 0; j < 8; j++) {
81 if(b & 1) {
82 ToSendStuffBit(1);
83 ToSendStuffBit(1);
84 ToSendStuffBit(1);
85 ToSendStuffBit(1);
86 } else {
87 ToSendStuffBit(0);
88 ToSendStuffBit(0);
89 ToSendStuffBit(0);
90 ToSendStuffBit(0);
91 }
92 b >>= 1;
93 }
94
95 // Stop bit
96 ToSendStuffBit(1);
97 ToSendStuffBit(1);
98 ToSendStuffBit(1);
99 ToSendStuffBit(1);
100 }
101
102 // Send EOF.
103 for(i = 0; i < 10; i++) {
104 ToSendStuffBit(0);
105 ToSendStuffBit(0);
106 ToSendStuffBit(0);
107 ToSendStuffBit(0);
108 }
109 for(i = 0; i < 2; i++) {
110 ToSendStuffBit(1);
111 ToSendStuffBit(1);
112 ToSendStuffBit(1);
113 ToSendStuffBit(1);
114 }
115
116 // Convert from last byte pos to length
117 ToSendMax++;
118 }
119
120 //-----------------------------------------------------------------------------
121 // The software UART that receives commands from the reader, and its state
122 // variables.
123 //-----------------------------------------------------------------------------
124 static struct {
125 enum {
126 STATE_UNSYNCD,
127 STATE_GOT_FALLING_EDGE_OF_SOF,
128 STATE_AWAITING_START_BIT,
129 STATE_RECEIVING_DATA
130 } state;
131 uint16_t shiftReg;
132 int bitCnt;
133 int byteCnt;
134 int byteCntMax;
135 int posCnt;
136 uint8_t *output;
137 } Uart;
138
139 /* Receive & handle a bit coming from the reader.
140 *
141 * This function is called 4 times per bit (every 2 subcarrier cycles).
142 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
143 *
144 * LED handling:
145 * LED A -> ON once we have received the SOF and are expecting the rest.
146 * LED A -> OFF once we have received EOF or are in error state or unsynced
147 *
148 * Returns: true if we received a EOF
149 * false if we are still waiting for some more
150 */
151 static RAMFUNC int Handle14443bUartBit(uint8_t bit)
152 {
153 switch(Uart.state) {
154 case STATE_UNSYNCD:
155 if(!bit) {
156 // we went low, so this could be the beginning
157 // of an SOF
158 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
159 Uart.posCnt = 0;
160 Uart.bitCnt = 0;
161 }
162 break;
163
164 case STATE_GOT_FALLING_EDGE_OF_SOF:
165 Uart.posCnt++;
166 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
167 if(bit) {
168 if(Uart.bitCnt > 9) {
169 // we've seen enough consecutive
170 // zeros that it's a valid SOF
171 Uart.posCnt = 0;
172 Uart.byteCnt = 0;
173 Uart.state = STATE_AWAITING_START_BIT;
174 LED_A_ON(); // Indicate we got a valid SOF
175 } else {
176 // didn't stay down long enough
177 // before going high, error
178 Uart.state = STATE_UNSYNCD;
179 }
180 } else {
181 // do nothing, keep waiting
182 }
183 Uart.bitCnt++;
184 }
185 if(Uart.posCnt >= 4) Uart.posCnt = 0;
186 if(Uart.bitCnt > 12) {
187 // Give up if we see too many zeros without
188 // a one, too.
189 LED_A_OFF();
190 Uart.state = STATE_UNSYNCD;
191 }
192 break;
193
194 case STATE_AWAITING_START_BIT:
195 Uart.posCnt++;
196 if(bit) {
197 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
198 // stayed high for too long between
199 // characters, error
200 Uart.state = STATE_UNSYNCD;
201 }
202 } else {
203 // falling edge, this starts the data byte
204 Uart.posCnt = 0;
205 Uart.bitCnt = 0;
206 Uart.shiftReg = 0;
207 Uart.state = STATE_RECEIVING_DATA;
208 }
209 break;
210
211 case STATE_RECEIVING_DATA:
212 Uart.posCnt++;
213 if(Uart.posCnt == 2) {
214 // time to sample a bit
215 Uart.shiftReg >>= 1;
216 if(bit) {
217 Uart.shiftReg |= 0x200;
218 }
219 Uart.bitCnt++;
220 }
221 if(Uart.posCnt >= 4) {
222 Uart.posCnt = 0;
223 }
224 if(Uart.bitCnt == 10) {
225 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
226 {
227 // this is a data byte, with correct
228 // start and stop bits
229 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
230 Uart.byteCnt++;
231
232 if(Uart.byteCnt >= Uart.byteCntMax) {
233 // Buffer overflowed, give up
234 LED_A_OFF();
235 Uart.state = STATE_UNSYNCD;
236 } else {
237 // so get the next byte now
238 Uart.posCnt = 0;
239 Uart.state = STATE_AWAITING_START_BIT;
240 }
241 } else if (Uart.shiftReg == 0x000) {
242 // this is an EOF byte
243 LED_A_OFF(); // Finished receiving
244 Uart.state = STATE_UNSYNCD;
245 if (Uart.byteCnt != 0) {
246 return TRUE;
247 }
248 } else {
249 // this is an error
250 LED_A_OFF();
251 Uart.state = STATE_UNSYNCD;
252 }
253 }
254 break;
255
256 default:
257 LED_A_OFF();
258 Uart.state = STATE_UNSYNCD;
259 break;
260 }
261
262 return FALSE;
263 }
264
265
266 static void UartReset()
267 {
268 Uart.byteCntMax = MAX_FRAME_SIZE;
269 Uart.state = STATE_UNSYNCD;
270 Uart.byteCnt = 0;
271 Uart.bitCnt = 0;
272 Uart.posCnt = 0;
273 memset(Uart.output, 0x00, MAX_FRAME_SIZE);
274 }
275
276
277 static void UartInit(uint8_t *data)
278 {
279 Uart.output = data;
280 UartReset();
281 }
282
283
284 //-----------------------------------------------------------------------------
285 // Receive a command (from the reader to us, where we are the simulated tag),
286 // and store it in the given buffer, up to the given maximum length. Keeps
287 // spinning, waiting for a well-framed command, until either we get one
288 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
289 //
290 // Assume that we're called with the SSC (to the FPGA) and ADC path set
291 // correctly.
292 //-----------------------------------------------------------------------------
293 static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
294 {
295 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
296 // only, since we are receiving, not transmitting).
297 // Signal field is off with the appropriate LED
298 LED_D_OFF();
299 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
300
301 // Now run a `software UART' on the stream of incoming samples.
302 UartInit(received);
303
304 for(;;) {
305 WDT_HIT();
306
307 if(BUTTON_PRESS()) return FALSE;
308
309 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
310 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
311 for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
312 if(Handle14443bUartBit(b & mask)) {
313 *len = Uart.byteCnt;
314 return TRUE;
315 }
316 }
317 }
318 }
319
320 return FALSE;
321 }
322
323 //-----------------------------------------------------------------------------
324 // Main loop of simulated tag: receive commands from reader, decide what
325 // response to send, and send it.
326 //-----------------------------------------------------------------------------
327 void SimulateIso14443bTag(void)
328 {
329 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
330 static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 }; // WUPB
331 // ... and REQB, AFI=0, Normal Request, N=1:
332 static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF }; // REQB
333 // ... and HLTB
334 static const uint8_t cmd3[] = { 0x50, 0xff, 0xff, 0xff, 0xff }; // HLTB
335 // ... and ATTRIB
336 static const uint8_t cmd4[] = { 0x1D, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
337
338 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
339 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
340 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
341 static const uint8_t response1[] = {
342 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
343 0x00, 0x21, 0x85, 0x5e, 0xd7
344 };
345 // response to HLTB and ATTRIB
346 static const uint8_t response2[] = {0x00, 0x78, 0xF0};
347
348 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
349
350 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
351
352 clear_trace();
353 set_tracing(TRUE);
354
355 const uint8_t *resp;
356 uint8_t *respCode;
357 uint16_t respLen, respCodeLen;
358
359 // allocate command receive buffer
360 BigBuf_free();
361 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
362
363 uint16_t len;
364 uint16_t cmdsRecvd = 0;
365
366 // prepare the (only one) tag answer:
367 CodeIso14443bAsTag(response1, sizeof(response1));
368 uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
369 memcpy(resp1Code, ToSend, ToSendMax);
370 uint16_t resp1CodeLen = ToSendMax;
371
372 // prepare the (other) tag answer:
373 CodeIso14443bAsTag(response2, sizeof(response2));
374 uint8_t *resp2Code = BigBuf_malloc(ToSendMax);
375 memcpy(resp2Code, ToSend, ToSendMax);
376 uint16_t resp2CodeLen = ToSendMax;
377
378 // We need to listen to the high-frequency, peak-detected path.
379 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
380 FpgaSetupSsc();
381
382 cmdsRecvd = 0;
383
384 for(;;) {
385
386 if (!GetIso14443bCommandFromReader(receivedCmd, &len)) {
387 Dbprintf("button pressed, received %d commands", cmdsRecvd);
388 break;
389 }
390
391 LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
392
393 // Good, look at the command now.
394 if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
395 || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
396 resp = response1;
397 respLen = sizeof(response1);
398 respCode = resp1Code;
399 respCodeLen = resp1CodeLen;
400 } else if ( (len == sizeof(cmd3) && receivedCmd[0] == cmd3[0])
401 || (len == sizeof(cmd4) && receivedCmd[0] == cmd4[0]) ) {
402 resp = response2;
403 respLen = sizeof(response2);
404 respCode = resp2Code;
405 respCodeLen = resp2CodeLen;
406 } else {
407 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
408 // And print whether the CRC fails, just for good measure
409 uint8_t b1, b2;
410 if (len >= 3){ // if crc exists
411 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
412 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
413 // Not so good, try again.
414 DbpString("+++CRC fail");
415
416 } else {
417 DbpString("CRC passes");
418 }
419 }
420 //get rid of compiler warning
421 respCodeLen = 0;
422 resp = response1;
423 respLen = 0;
424 respCode = resp1Code;
425 //don't crash at new command just wait and see if reader will send other new cmds.
426 //break;
427 }
428
429 cmdsRecvd++;
430
431 if(cmdsRecvd > 0x30) {
432 DbpString("many commands later...");
433 break;
434 }
435
436 if(respCodeLen <= 0) continue;
437
438 // Modulate BPSK
439 // Signal field is off with the appropriate LED
440 LED_D_OFF();
441 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
442 AT91C_BASE_SSC->SSC_THR = 0xff;
443 FpgaSetupSsc();
444
445 uint8_t c;
446 // clear receiving shift register and holding register
447 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
448 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
449 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
450 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
451
452 // Clear TXRDY:
453 AT91C_BASE_SSC->SSC_THR = 0x00;
454
455 // Transmit the response.
456 uint16_t FpgaSendQueueDelay = 0;
457 uint16_t i = 0;
458 for(;i < respCodeLen; ) {
459 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
460 AT91C_BASE_SSC->SSC_THR = respCode[i++];
461 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
462 }
463 if(BUTTON_PRESS()) break;
464 }
465
466 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
467 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
468 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
469 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
470 AT91C_BASE_SSC->SSC_THR = 0x00;
471 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
472 i++;
473 }
474 }
475
476 LogTrace(resp, respLen, 0, 0, parity, FALSE);
477 }
478 FpgaDisableSscDma();
479 set_tracing(FALSE);
480 }
481
482 //=============================================================================
483 // An ISO 14443 Type B reader. We take layer two commands, code them
484 // appropriately, and then send them to the tag. We then listen for the
485 // tag's response, which we leave in the buffer to be demodulated on the
486 // PC side.
487 //=============================================================================
488
489 static struct {
490 enum {
491 DEMOD_UNSYNCD,
492 DEMOD_PHASE_REF_TRAINING,
493 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
494 DEMOD_GOT_FALLING_EDGE_OF_SOF,
495 DEMOD_AWAITING_START_BIT,
496 DEMOD_RECEIVING_DATA
497 } state;
498 int bitCount;
499 int posCount;
500 int thisBit;
501 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
502 int metric;
503 int metricN;
504 */
505 uint16_t shiftReg;
506 uint8_t *output;
507 int len;
508 int sumI;
509 int sumQ;
510 } Demod;
511
512 /*
513 * Handles reception of a bit from the tag
514 *
515 * This function is called 2 times per bit (every 4 subcarrier cycles).
516 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
517 *
518 * LED handling:
519 * LED C -> ON once we have received the SOF and are expecting the rest.
520 * LED C -> OFF once we have received EOF or are unsynced
521 *
522 * Returns: true if we received a EOF
523 * false if we are still waiting for some more
524 *
525 */
526 #define abs(x) ( ((x)<0) ? -(x) : (x) )
527 static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
528 {
529 int v = 0;
530 int ai = abs(ci);
531 int aq = abs(cq);
532 int halfci = (ai >> 1);
533 int halfcq = (aq >> 1);
534
535 // The soft decision on the bit uses an estimate of just the
536 // quadrant of the reference angle, not the exact angle.
537 #define MAKE_SOFT_DECISION() { \
538 if(Demod.sumI > 0) { \
539 v = ci; \
540 } else { \
541 v = -ci; \
542 } \
543 if(Demod.sumQ > 0) { \
544 v += cq; \
545 } else { \
546 v -= cq; \
547 } \
548 }
549
550 #define SUBCARRIER_DETECT_THRESHOLD 8
551
552 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
553 #define CHECK_FOR_SUBCARRIER() { \
554 v = MAX(ai, aq) + MIN(halfci, halfcq); \
555 }
556
557
558 switch(Demod.state) {
559 case DEMOD_UNSYNCD:
560 CHECK_FOR_SUBCARRIER();
561 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
562 Demod.state = DEMOD_PHASE_REF_TRAINING;
563 Demod.sumI = ci;
564 Demod.sumQ = cq;
565 Demod.posCount = 1;
566 }
567 break;
568
569 case DEMOD_PHASE_REF_TRAINING:
570 if(Demod.posCount < 8) {
571 //if(Demod.posCount < 10*2) {
572 CHECK_FOR_SUBCARRIER();
573 if (v > SUBCARRIER_DETECT_THRESHOLD) {
574 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
575 // note: synchronization time > 80 1/fs
576 Demod.sumI += ci;
577 Demod.sumQ += cq;
578 Demod.posCount++;
579 } else { // subcarrier lost
580 Demod.state = DEMOD_UNSYNCD;
581 }
582 } else {
583 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
584 }
585 break;
586
587 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
588 MAKE_SOFT_DECISION();
589 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
590 if(v <= 0) { // logic '0' detected
591 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
592 Demod.posCount = 0; // start of SOF sequence
593 } else {
594 if(Demod.posCount > 25*2) { // maximum length of TR1 = 200 1/fs
595 Demod.state = DEMOD_UNSYNCD;
596 }
597 }
598 Demod.posCount++;
599 break;
600
601 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
602 Demod.posCount++;
603 MAKE_SOFT_DECISION();
604 if(v > 0) {
605 if(Demod.posCount < 10*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
606 Demod.state = DEMOD_UNSYNCD;
607 } else {
608 LED_C_ON(); // Got SOF
609 Demod.state = DEMOD_AWAITING_START_BIT;
610 Demod.posCount = 0;
611 Demod.len = 0;
612 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
613 Demod.metricN = 0;
614 Demod.metric = 0;
615 */
616 }
617 } else {
618 if(Demod.posCount > 13*2) { // low phase of SOF too long (> 12 etu)
619 Demod.state = DEMOD_UNSYNCD;
620 LED_C_OFF();
621 }
622 }
623 break;
624
625 case DEMOD_AWAITING_START_BIT:
626 Demod.posCount++;
627 MAKE_SOFT_DECISION();
628 if(v > 0) {
629 if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
630 Demod.state = DEMOD_UNSYNCD;
631 LED_C_OFF();
632 }
633 } else { // start bit detected
634 Demod.bitCount = 0;
635 Demod.posCount = 1; // this was the first half
636 Demod.thisBit = v;
637 Demod.shiftReg = 0;
638 Demod.state = DEMOD_RECEIVING_DATA;
639 }
640 break;
641
642 case DEMOD_RECEIVING_DATA:
643 MAKE_SOFT_DECISION();
644 if(Demod.posCount == 0) { // first half of bit
645 Demod.thisBit = v;
646 Demod.posCount = 1;
647 } else { // second half of bit
648 Demod.thisBit += v;
649
650 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
651 if(Demod.thisBit > 0) {
652 Demod.metric += Demod.thisBit;
653 } else {
654 Demod.metric -= Demod.thisBit;
655 }
656 (Demod.metricN)++;
657 */
658
659 Demod.shiftReg >>= 1;
660 if(Demod.thisBit > 0) { // logic '1'
661 Demod.shiftReg |= 0x200;
662 }
663
664 Demod.bitCount++;
665 if(Demod.bitCount == 10) {
666 uint16_t s = Demod.shiftReg;
667 if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
668 uint8_t b = (s >> 1);
669 Demod.output[Demod.len] = b;
670 Demod.len++;
671 Demod.state = DEMOD_AWAITING_START_BIT;
672 } else {
673 Demod.state = DEMOD_UNSYNCD;
674 LED_C_OFF();
675 if(s == 0x000) {
676 // This is EOF (start, stop and all data bits == '0'
677 return TRUE;
678 }
679 }
680 }
681 Demod.posCount = 0;
682 }
683 break;
684
685 default:
686 Demod.state = DEMOD_UNSYNCD;
687 LED_C_OFF();
688 break;
689 }
690 return FALSE;
691 }
692
693
694 static void DemodReset()
695 {
696 // Clear out the state of the "UART" that receives from the tag.
697 Demod.len = 0;
698 Demod.state = DEMOD_UNSYNCD;
699 Demod.posCount = 0;
700 Demod.sumI = 0;
701 Demod.sumQ = 0;
702 Demod.bitCount = 0;
703 Demod.thisBit = 0;
704 Demod.shiftReg = 0;
705 memset(Demod.output, 0x00, MAX_FRAME_SIZE);
706 }
707
708
709 static void DemodInit(uint8_t *data)
710 {
711 Demod.output = data;
712 DemodReset();
713 }
714
715
716 /*
717 * Demodulate the samples we received from the tag, also log to tracebuffer
718 * quiet: set to 'TRUE' to disable debug output
719 */
720 static void GetSamplesFor14443bDemod(int n, bool quiet)
721 {
722 int max = 0;
723 bool gotFrame = FALSE;
724 int lastRxCounter, ci, cq, samples = 0;
725
726 // Allocate memory from BigBuf for some buffers
727 // free all previous allocations first
728 BigBuf_free();
729
730 // And put the FPGA in the appropriate mode
731 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
732
733 // The response (tag -> reader) that we're receiving.
734 // Set up the demodulator for tag -> reader responses.
735 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
736
737 // The DMA buffer, used to stream samples from the FPGA
738 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
739
740 // Setup and start DMA.
741 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
742
743 int8_t *upTo = dmaBuf;
744 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
745
746 // Signal field is ON with the appropriate LED:
747 LED_D_ON();
748 for(;;) {
749 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
750 if(behindBy > max) max = behindBy;
751
752 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
753 ci = upTo[0];
754 cq = upTo[1];
755 upTo += 2;
756 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
757 upTo = dmaBuf;
758 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
759 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
760 }
761 lastRxCounter -= 2;
762 if(lastRxCounter <= 0) {
763 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
764 }
765
766 samples += 2;
767
768 //
769 gotFrame = Handle14443bSamplesDemod(ci , cq );
770 if ( gotFrame )
771 break;
772 }
773
774 if(samples > n || gotFrame) {
775 break;
776 }
777 }
778
779 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
780
781 if (!quiet) {
782 Dbprintf("max behindby = %d, samples = %d, gotFrame = %s, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
783 max,
784 samples,
785 (gotFrame) ? "true" : "false",
786 Demod.len,
787 Demod.sumI,
788 Demod.sumQ
789 );
790 }
791
792 //Tracing
793 if (Demod.len > 0) {
794 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
795 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
796 }
797 }
798
799
800 //-----------------------------------------------------------------------------
801 // Transmit the command (to the tag) that was placed in ToSend[].
802 //-----------------------------------------------------------------------------
803 static void TransmitFor14443b(void)
804 {
805 int c;
806
807 FpgaSetupSsc();
808
809 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
810 AT91C_BASE_SSC->SSC_THR = 0xff;
811 }
812
813 // Signal field is ON with the appropriate Red LED
814 LED_D_ON();
815 // Signal we are transmitting with the Green LED
816 LED_B_ON();
817 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
818
819 for(c = 0; c < 10;) {
820 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
821 AT91C_BASE_SSC->SSC_THR = 0xff;
822 c++;
823 }
824 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
825 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
826 (void)r;
827 }
828 WDT_HIT();
829 }
830
831 c = 0;
832 for(;;) {
833 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
834 AT91C_BASE_SSC->SSC_THR = ToSend[c];
835 c++;
836 if(c >= ToSendMax) {
837 break;
838 }
839 }
840 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
841 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
842 (void)r;
843 }
844 WDT_HIT();
845 }
846 LED_B_OFF(); // Finished sending
847 }
848
849
850 //-----------------------------------------------------------------------------
851 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
852 // so that it is ready to transmit to the tag using TransmitFor14443b().
853 //-----------------------------------------------------------------------------
854 static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
855 {
856 int i, j;
857 uint8_t b;
858
859 ToSendReset();
860
861 // Establish initial reference level
862 for(i = 0; i < 40; i++) {
863 ToSendStuffBit(1);
864 }
865 // Send SOF
866 for(i = 0; i < 11; i++) {
867 ToSendStuffBit(0);
868 }
869
870 for(i = 0; i < len; i++) {
871 // Stop bits/EGT
872 ToSendStuffBit(1);
873 ToSendStuffBit(1);
874 // Start bit
875 ToSendStuffBit(0);
876 // Data bits
877 b = cmd[i];
878 for(j = 0; j < 8; j++) {
879 if(b & 1) {
880 ToSendStuffBit(1);
881 } else {
882 ToSendStuffBit(0);
883 }
884 b >>= 1;
885 }
886 }
887 // Send EOF
888 ToSendStuffBit(1);
889 for(i = 0; i < 11; i++) {
890 ToSendStuffBit(0);
891 }
892 for(i = 0; i < 8; i++) {
893 ToSendStuffBit(1);
894 }
895
896 // And then a little more, to make sure that the last character makes
897 // it out before we switch to rx mode.
898 for(i = 0; i < 10; i++) {
899 ToSendStuffBit(1);
900 }
901
902 // Convert from last character reference to length
903 ToSendMax++;
904 }
905
906
907 /**
908 Convenience function to encode, transmit and trace iso 14443b comms
909 **/
910 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
911 {
912 CodeIso14443bAsReader(cmd, len);
913 TransmitFor14443b();
914 if (tracing) {
915 uint8_t parity[MAX_PARITY_SIZE];
916 LogTrace(cmd,len, 0, 0, parity, TRUE);
917 }
918 }
919
920 /* Sends an APDU to the tag
921 * TODO: check CRC and preamble
922 */
923 int iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response)
924 {
925 uint8_t message_frame[message_length + 4];
926 // PCB
927 message_frame[0] = 0x0A | pcb_blocknum;
928 pcb_blocknum ^= 1;
929 // CID
930 message_frame[1] = 0;
931 // INF
932 memcpy(message_frame + 2, message, message_length);
933 // EDC (CRC)
934 ComputeCrc14443(CRC_14443_B, message_frame, message_length + 2, &message_frame[message_length + 2], &message_frame[message_length + 3]);
935 // send
936 CodeAndTransmit14443bAsReader(message_frame, message_length + 4);
937 // get response
938 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT*100, TRUE);
939 if(Demod.len < 3)
940 {
941 return 0;
942 }
943 // TODO: Check CRC
944 // copy response contents
945 if(response != NULL)
946 {
947 memcpy(response, Demod.output, Demod.len);
948 }
949 return Demod.len;
950 }
951
952 /* Perform the ISO 14443 B Card Selection procedure
953 * Currently does NOT do any collision handling.
954 * It expects 0-1 cards in the device's range.
955 * TODO: Support multiple cards (perform anticollision)
956 * TODO: Verify CRC checksums
957 */
958 int iso14443b_select_card()
959 {
960 // WUPB command (including CRC)
961 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
962 static const uint8_t wupb[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
963 // ATTRIB command (with space for CRC)
964 uint8_t attrib[] = { 0x1D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
965
966 // first, wake up the tag
967 CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
968 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
969 // ATQB too short?
970 if (Demod.len < 14)
971 {
972 return 2;
973 }
974
975 // select the tag
976 // copy the PUPI to ATTRIB
977 memcpy(attrib + 1, Demod.output + 1, 4);
978 /* copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into
979 ATTRIB (Param 3) */
980 attrib[7] = Demod.output[10] & 0x0F;
981 ComputeCrc14443(CRC_14443_B, attrib, 9, attrib + 9, attrib + 10);
982 CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
983 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
984 // Answer to ATTRIB too short?
985 if(Demod.len < 3)
986 {
987 return 2;
988 }
989 // reset PCB block number
990 pcb_blocknum = 0;
991 return 1;
992 }
993
994 // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
995 void iso14443b_setup() {
996
997 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
998
999 BigBuf_free();
1000 // Set up the synchronous serial port
1001 FpgaSetupSsc();
1002 // connect Demodulated Signal to ADC:
1003 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1004
1005 // Signal field is on with the appropriate LED
1006 LED_D_ON();
1007 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1008
1009 //SpinDelay(100);
1010
1011 // Start the timer
1012 StartCountSspClk();
1013
1014 DemodReset();
1015 UartReset();
1016 }
1017
1018 //-----------------------------------------------------------------------------
1019 // Read a SRI512 ISO 14443B tag.
1020 //
1021 // SRI512 tags are just simple memory tags, here we're looking at making a dump
1022 // of the contents of the memory. No anticollision algorithm is done, we assume
1023 // we have a single tag in the field.
1024 //
1025 // I tried to be systematic and check every answer of the tag, every CRC, etc...
1026 //-----------------------------------------------------------------------------
1027 void ReadSTMemoryIso14443b(uint32_t dwLast)
1028 {
1029 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1030 BigBuf_free();
1031
1032 clear_trace();
1033 set_tracing(TRUE);
1034
1035 uint8_t i = 0x00;
1036
1037 // Make sure that we start from off, since the tags are stateful;
1038 // confusing things will happen if we don't reset them between reads.
1039 LED_D_OFF();
1040 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1041 SpinDelay(200);
1042
1043 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1044 FpgaSetupSsc();
1045
1046 // Now give it time to spin up.
1047 // Signal field is on with the appropriate LED
1048 LED_D_ON();
1049 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
1050 SpinDelay(200);
1051
1052 // First command: wake up the tag using the INITIATE command
1053 uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
1054 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1055 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1056
1057 if (Demod.len == 0) {
1058 DbpString("No response from tag");
1059 set_tracing(FALSE);
1060 return;
1061 } else {
1062 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1063 Demod.output[0], Demod.output[1], Demod.output[2]);
1064 }
1065
1066 // There is a response, SELECT the uid
1067 DbpString("Now SELECT tag:");
1068 cmd1[0] = 0x0E; // 0x0E is SELECT
1069 cmd1[1] = Demod.output[0];
1070 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1071 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1072 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1073 if (Demod.len != 3) {
1074 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
1075 set_tracing(FALSE);
1076 return;
1077 }
1078 // Check the CRC of the answer:
1079 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
1080 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
1081 DbpString("CRC Error reading select response.");
1082 set_tracing(FALSE);
1083 return;
1084 }
1085 // Check response from the tag: should be the same UID as the command we just sent:
1086 if (cmd1[1] != Demod.output[0]) {
1087 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
1088 set_tracing(FALSE);
1089 return;
1090 }
1091
1092 // Tag is now selected,
1093 // First get the tag's UID:
1094 cmd1[0] = 0x0B;
1095 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
1096 CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
1097 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1098 if (Demod.len != 10) {
1099 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
1100 set_tracing(FALSE);
1101 return;
1102 }
1103 // The check the CRC of the answer (use cmd1 as temporary variable):
1104 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
1105 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
1106 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1107 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
1108 // Do not return;, let's go on... (we should retry, maybe ?)
1109 }
1110 Dbprintf("Tag UID (64 bits): %08x %08x",
1111 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
1112 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
1113
1114 // Now loop to read all 16 blocks, address from 0 to last block
1115 Dbprintf("Tag memory dump, block 0 to %d", dwLast);
1116 cmd1[0] = 0x08;
1117 i = 0x00;
1118 dwLast++;
1119 for (;;) {
1120 if (i == dwLast) {
1121 DbpString("System area block (0xff):");
1122 i = 0xff;
1123 }
1124 cmd1[1] = i;
1125 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1126 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
1127 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
1128 if (Demod.len != 6) { // Check if we got an answer from the tag
1129 DbpString("Expected 6 bytes from tag, got less...");
1130 return;
1131 }
1132 // The check the CRC of the answer (use cmd1 as temporary variable):
1133 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
1134 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
1135 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1136 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
1137 // Do not return;, let's go on... (we should retry, maybe ?)
1138 }
1139 // Now print out the memory location:
1140 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
1141 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
1142 (Demod.output[4]<<8)+Demod.output[5]);
1143 if (i == 0xff) {
1144 break;
1145 }
1146 i++;
1147 }
1148
1149 set_tracing(FALSE);
1150 }
1151
1152
1153 //=============================================================================
1154 // Finally, the `sniffer' combines elements from both the reader and
1155 // simulated tag, to show both sides of the conversation.
1156 //=============================================================================
1157
1158 //-----------------------------------------------------------------------------
1159 // Record the sequence of commands sent by the reader to the tag, with
1160 // triggering so that we start recording at the point that the tag is moved
1161 // near the reader.
1162 //-----------------------------------------------------------------------------
1163 /*
1164 * Memory usage for this function, (within BigBuf)
1165 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1166 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1167 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1168 * Demodulated samples received - all the rest
1169 */
1170 void RAMFUNC SnoopIso14443b(void)
1171 {
1172 // We won't start recording the frames that we acquire until we trigger;
1173 // a good trigger condition to get started is probably when we see a
1174 // response from the tag.
1175 int triggered = TRUE; // TODO: set and evaluate trigger condition
1176
1177 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1178 BigBuf_free();
1179
1180 clear_trace();
1181 set_tracing(TRUE);
1182
1183 // The DMA buffer, used to stream samples from the FPGA
1184 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
1185 int lastRxCounter;
1186 int8_t *upTo;
1187 int ci, cq;
1188 int maxBehindBy = 0;
1189
1190 // Count of samples received so far, so that we can include timing
1191 // information in the trace buffer.
1192 int samples = 0;
1193
1194 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1195 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
1196
1197 // Print some debug information about the buffer sizes
1198 Dbprintf("Snooping buffers initialized:");
1199 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1200 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1201 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
1202 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
1203
1204 // Signal field is off, no reader signal, no tag signal
1205 LEDsoff();
1206
1207 // And put the FPGA in the appropriate mode
1208 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
1209 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1210
1211 // Setup for the DMA.
1212 FpgaSetupSsc();
1213 upTo = dmaBuf;
1214 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1215 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
1216 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1217
1218 bool TagIsActive = FALSE;
1219 bool ReaderIsActive = FALSE;
1220
1221 // And now we loop, receiving samples.
1222 for(;;) {
1223 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
1224 (ISO14443B_DMA_BUFFER_SIZE-1);
1225 if(behindBy > maxBehindBy) {
1226 maxBehindBy = behindBy;
1227 }
1228
1229 if(behindBy < 2) continue;
1230
1231 ci = upTo[0];
1232 cq = upTo[1];
1233 upTo += 2;
1234 lastRxCounter -= 2;
1235 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
1236 upTo = dmaBuf;
1237 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
1238 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
1239 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
1240 WDT_HIT();
1241 if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
1242 Dbprintf("blew circular buffer! behindBy=%d", behindBy);
1243 break;
1244 }
1245
1246 if(!tracing) {
1247 DbpString("Trace full");
1248 break;
1249 }
1250
1251 if(BUTTON_PRESS()) {
1252 DbpString("cancelled");
1253 break;
1254 }
1255 }
1256
1257 samples += 2;
1258
1259 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1260 if (Handle14443bUartBit(ci & 0x01)) {
1261 if ( triggered)
1262 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1263
1264 /* And ready to receive another command. */
1265 UartReset();
1266 /* And also reset the demod code, which might have been */
1267 /* false-triggered by the commands from the reader. */
1268 DemodReset();
1269 }
1270 if (Handle14443bUartBit(cq & 0x01)) {
1271 if (triggered)
1272 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
1273
1274 /* And ready to receive another command. */
1275 UartReset();
1276 /* And also reset the demod code, which might have been */
1277 /* false-triggered by the commands from the reader. */
1278 DemodReset();
1279 }
1280 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
1281 }
1282
1283 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1284 // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103
1285 if(Handle14443bSamplesDemod(ci & 0xfe, cq & 0xfe)) {
1286
1287 //Use samples as a time measurement
1288 LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
1289
1290 triggered = TRUE;
1291
1292 // And ready to receive another response.
1293 DemodReset();
1294 }
1295 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
1296 }
1297 }
1298
1299 FpgaDisableSscDma();
1300 LEDsoff();
1301
1302 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
1303 DbpString("Snoop statistics:");
1304 Dbprintf(" Max behind by: %i", maxBehindBy);
1305 Dbprintf(" Uart State: %x", Uart.state);
1306 Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
1307 Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
1308 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1309 set_tracing(FALSE);
1310 }
1311
1312
1313 /*
1314 * Send raw command to tag ISO14443B
1315 * @Input
1316 * datalen len of buffer data
1317 * recv bool when true wait for data from tag and send to client
1318 * powerfield bool leave the field on when true
1319 * data buffer with byte to send
1320 *
1321 * @Output
1322 * none
1323 *
1324 */
1325 void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
1326 {
1327 // param ISO_
1328 // param ISO_CONNECT
1329 // param ISO14A_NO_DISCONNECT
1330 //if (param & ISO14A_NO_DISCONNECT)
1331 // return;
1332 iso14443b_setup();
1333
1334 if ( datalen == 0 && recv == 0 && powerfield == 0){
1335
1336 } else {
1337 set_tracing(TRUE);
1338 CodeAndTransmit14443bAsReader(data, datalen);
1339 }
1340
1341 if (recv) {
1342 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, FALSE);
1343 uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1344 cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
1345 }
1346
1347 if (!powerfield) {
1348 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1349 FpgaDisableSscDma();
1350 set_tracing(FALSE);
1351 LED_D_OFF();
1352 }
1353 }
1354
Impressum, Datenschutz