1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
24 uint8_t *trace
= (uint8_t *) BigBuf
;
30 // CARD TO READER - manchester
31 // Sequence D: 11110000 modulation with subcarrier during first half
32 // Sequence E: 00001111 modulation with subcarrier during second half
33 // Sequence F: 00000000 no modulation with subcarrier
34 // READER TO CARD - miller
35 // Sequence X: 00001100 drop after half a period
36 // Sequence Y: 00000000 no drop
37 // Sequence Z: 11000000 drop at start
45 const uint8_t OddByteParity
[256] = {
46 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
49 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
50 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
57 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
58 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
61 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
65 void iso14a_set_trigger(int enable
) {
69 void iso14a_clear_tracelen(void) {
72 void iso14a_set_tracing(int enable
) {
76 //-----------------------------------------------------------------------------
77 // Generate the parity value for a byte sequence
79 //-----------------------------------------------------------------------------
80 byte_t
oddparity (const byte_t bt
)
82 return OddByteParity
[bt
];
85 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
90 // Generate the encrypted data
91 for (i
= 0; i
< iLen
; i
++) {
92 // Save the encrypted parity bit
93 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
98 void AppendCrc14443a(uint8_t* data
, int len
)
100 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
103 // The function LogTrace() is also used by the iClass implementation in iClass.c
104 int LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
106 // Return when trace is full
107 if (traceLen
>= TRACE_SIZE
) return FALSE
;
109 // Trace the random, i'm curious
110 rsamples
+= iSamples
;
111 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
112 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
113 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
114 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
116 trace
[traceLen
- 1] |= 0x80;
118 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
119 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
120 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
121 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
122 trace
[traceLen
++] = iLen
;
123 memcpy(trace
+ traceLen
, btBytes
, iLen
);
128 //-----------------------------------------------------------------------------
129 // The software UART that receives commands from the reader, and its state
131 //-----------------------------------------------------------------------------
134 static RAMFUNC
int MillerDecoding(int bit
)
139 if(!Uart
.bitBuffer
) {
140 Uart
.bitBuffer
= bit
^ 0xFF0;
144 Uart
.bitBuffer
<<= 4;
145 Uart
.bitBuffer
^= bit
;
150 if(Uart
.state
!= STATE_UNSYNCD
) {
153 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
159 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
165 if(bit
!= bitright
) { bit
= bitright
; }
167 if(Uart
.posCnt
== 1) {
168 // measurement first half bitperiod
170 Uart
.drop
= DROP_FIRST_HALF
;
174 // measurement second half bitperiod
175 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
176 Uart
.drop
= DROP_SECOND_HALF
;
179 // measured a drop in first and second half
180 // which should not be possible
181 Uart
.state
= STATE_ERROR_WAIT
;
188 case STATE_START_OF_COMMUNICATION
:
190 if(Uart
.drop
== DROP_SECOND_HALF
) {
191 // error, should not happen in SOC
192 Uart
.state
= STATE_ERROR_WAIT
;
197 Uart
.state
= STATE_MILLER_Z
;
204 if(Uart
.drop
== DROP_NONE
) {
205 // logic '0' followed by sequence Y
206 // end of communication
207 Uart
.state
= STATE_UNSYNCD
;
210 // if(Uart.drop == DROP_FIRST_HALF) {
211 // Uart.state = STATE_MILLER_Z; stay the same
212 // we see a logic '0' }
213 if(Uart
.drop
== DROP_SECOND_HALF
) {
214 // we see a logic '1'
215 Uart
.shiftReg
|= 0x100;
216 Uart
.state
= STATE_MILLER_X
;
222 if(Uart
.drop
== DROP_NONE
) {
223 // sequence Y, we see a '0'
224 Uart
.state
= STATE_MILLER_Y
;
227 if(Uart
.drop
== DROP_FIRST_HALF
) {
228 // Would be STATE_MILLER_Z
229 // but Z does not follow X, so error
230 Uart
.state
= STATE_ERROR_WAIT
;
233 if(Uart
.drop
== DROP_SECOND_HALF
) {
234 // We see a '1' and stay in state X
235 Uart
.shiftReg
|= 0x100;
243 if(Uart
.drop
== DROP_NONE
) {
244 // logic '0' followed by sequence Y
245 // end of communication
246 Uart
.state
= STATE_UNSYNCD
;
249 if(Uart
.drop
== DROP_FIRST_HALF
) {
251 Uart
.state
= STATE_MILLER_Z
;
253 if(Uart
.drop
== DROP_SECOND_HALF
) {
254 // We see a '1' and go to state X
255 Uart
.shiftReg
|= 0x100;
256 Uart
.state
= STATE_MILLER_X
;
260 case STATE_ERROR_WAIT
:
261 // That went wrong. Now wait for at least two bit periods
262 // and try to sync again
263 if(Uart
.drop
== DROP_NONE
) {
265 Uart
.state
= STATE_UNSYNCD
;
270 Uart
.state
= STATE_UNSYNCD
;
275 Uart
.drop
= DROP_NONE
;
277 // should have received at least one whole byte...
278 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
282 if(Uart
.bitCnt
== 9) {
283 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
286 Uart
.parityBits
<<= 1;
287 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
290 // when End of Communication received and
291 // all data bits processed..
298 Uart.output[Uart.byteCnt] = 0xAA;
300 Uart.output[Uart.byteCnt] = error & 0xFF;
302 Uart.output[Uart.byteCnt] = 0xAA;
304 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
306 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
308 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
310 Uart.output[Uart.byteCnt] = 0xAA;
318 bit
= Uart
.bitBuffer
& 0xf0;
322 // should have been high or at least (4 * 128) / fc
323 // according to ISO this should be at least (9 * 128 + 20) / fc
324 if(Uart
.highCnt
== 8) {
325 // we went low, so this could be start of communication
326 // it turns out to be safer to choose a less significant
327 // syncbit... so we check whether the neighbour also represents the drop
328 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
329 Uart
.syncBit
= bit
& 8;
331 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
332 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
333 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
334 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
335 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
336 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
339 // the first half bit period is expected in next sample
344 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
347 Uart
.state
= STATE_START_OF_COMMUNICATION
;
348 Uart
.drop
= DROP_FIRST_HALF
;
359 if(Uart
.highCnt
< 8) {
368 //=============================================================================
369 // ISO 14443 Type A - Manchester
370 //=============================================================================
373 static RAMFUNC
int ManchesterDecoding(int v
)
389 if(Demod
.state
==DEMOD_UNSYNCD
) {
390 Demod
.output
[Demod
.len
] = 0xfa;
393 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
396 Demod
.syncBit
= 0x08;
403 Demod
.syncBit
= 0x04;
410 Demod
.syncBit
= 0x02;
413 if(bit
& 0x01 && Demod
.syncBit
) {
414 Demod
.syncBit
= 0x01;
419 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
420 Demod
.sub
= SUB_FIRST_HALF
;
423 Demod
.parityBits
= 0;
426 if(trigger
) LED_A_OFF();
427 switch(Demod
.syncBit
) {
428 case 0x08: Demod
.samples
= 3; break;
429 case 0x04: Demod
.samples
= 2; break;
430 case 0x02: Demod
.samples
= 1; break;
431 case 0x01: Demod
.samples
= 0; break;
438 //modulation = bit & Demod.syncBit;
439 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
443 if(Demod
.posCount
==0) {
446 Demod
.sub
= SUB_FIRST_HALF
;
449 Demod
.sub
= SUB_NONE
;
454 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
455 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
456 Demod
.state
= DEMOD_ERROR_WAIT
;
457 Demod
.output
[Demod
.len
] = 0xaa;
461 else if(modulation
) {
462 Demod
.sub
= SUB_SECOND_HALF
;
465 switch(Demod
.state
) {
466 case DEMOD_START_OF_COMMUNICATION
:
467 if(Demod
.sub
== SUB_FIRST_HALF
) {
468 Demod
.state
= DEMOD_MANCHESTER_D
;
471 Demod
.output
[Demod
.len
] = 0xab;
472 Demod
.state
= DEMOD_ERROR_WAIT
;
477 case DEMOD_MANCHESTER_D
:
478 case DEMOD_MANCHESTER_E
:
479 if(Demod
.sub
== SUB_FIRST_HALF
) {
481 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
482 Demod
.state
= DEMOD_MANCHESTER_D
;
484 else if(Demod
.sub
== SUB_SECOND_HALF
) {
486 Demod
.shiftReg
>>= 1;
487 Demod
.state
= DEMOD_MANCHESTER_E
;
490 Demod
.state
= DEMOD_MANCHESTER_F
;
494 case DEMOD_MANCHESTER_F
:
495 // Tag response does not need to be a complete byte!
496 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
497 if(Demod
.bitCount
> 0) {
498 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
499 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
501 // No parity bit, so just shift a 0
502 Demod
.parityBits
<<= 1;
505 Demod
.state
= DEMOD_UNSYNCD
;
509 Demod
.output
[Demod
.len
] = 0xad;
510 Demod
.state
= DEMOD_ERROR_WAIT
;
515 case DEMOD_ERROR_WAIT
:
516 Demod
.state
= DEMOD_UNSYNCD
;
520 Demod
.output
[Demod
.len
] = 0xdd;
521 Demod
.state
= DEMOD_UNSYNCD
;
525 if(Demod
.bitCount
>=9) {
526 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
529 Demod
.parityBits
<<= 1;
530 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
537 Demod.output[Demod.len] = 0xBB;
539 Demod.output[Demod.len] = error & 0xFF;
541 Demod.output[Demod.len] = 0xBB;
543 Demod.output[Demod.len] = bit & 0xFF;
545 Demod.output[Demod.len] = Demod.buffer & 0xFF;
547 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
549 Demod.output[Demod.len] = 0xBB;
556 } // end (state != UNSYNCED)
561 //=============================================================================
562 // Finally, a `sniffer' for ISO 14443 Type A
563 // Both sides of communication!
564 //=============================================================================
566 //-----------------------------------------------------------------------------
567 // Record the sequence of commands sent by the reader to the tag, with
568 // triggering so that we start recording at the point that the tag is moved
570 //-----------------------------------------------------------------------------
571 void RAMFUNC
SnoopIso14443a(void)
573 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
574 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
575 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
576 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
577 // #define TRACE_SIZE 2000 // original (working as of 21/2/09) values
579 // We won't start recording the frames that we acquire until we trigger;
580 // a good trigger condition to get started is probably when we see a
581 // response from the tag.
582 int triggered
= FALSE
; // FALSE to wait first for card
584 // The command (reader -> tag) that we're receiving.
585 // The length of a received command will in most cases be no more than 18 bytes.
586 // So 32 should be enough!
587 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
588 // The response (tag -> reader) that we're receiving.
589 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
591 // As we receive stuff, we copy it from receivedCmd or receivedResponse
592 // into trace, along with its length and other annotations.
593 //uint8_t *trace = (uint8_t *)BigBuf;
595 traceLen
= 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
597 // The DMA buffer, used to stream samples from the FPGA
598 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
604 // Count of samples received so far, so that we can include timing
605 // information in the trace buffer.
609 memset(trace
, 0x44, TRACE_SIZE
);
611 // Set up the demodulator for tag -> reader responses.
612 Demod
.output
= receivedResponse
;
614 Demod
.state
= DEMOD_UNSYNCD
;
616 // Setup for the DMA.
619 lastRxCounter
= DMA_BUFFER_SIZE
;
620 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
622 // And the reader -> tag commands
623 memset(&Uart
, 0, sizeof(Uart
));
624 Uart
.output
= receivedCmd
;
625 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
626 Uart
.state
= STATE_UNSYNCD
;
628 // And put the FPGA in the appropriate mode
629 // Signal field is off with the appropriate LED
631 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
632 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
635 // And now we loop, receiving samples.
639 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
641 if(behindBy
> maxBehindBy
) {
642 maxBehindBy
= behindBy
;
644 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
648 if(behindBy
< 1) continue;
654 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
655 upTo
-= DMA_BUFFER_SIZE
;
656 lastRxCounter
+= DMA_BUFFER_SIZE
;
657 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
658 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
662 if(MillerDecoding((smpl
& 0xF0) >> 4)) {
663 rsamples
= samples
- Uart
.samples
;
666 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
667 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
668 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
669 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
670 trace
[traceLen
++] = ((Uart
.parityBits
>> 0) & 0xff);
671 trace
[traceLen
++] = ((Uart
.parityBits
>> 8) & 0xff);
672 trace
[traceLen
++] = ((Uart
.parityBits
>> 16) & 0xff);
673 trace
[traceLen
++] = ((Uart
.parityBits
>> 24) & 0xff);
674 trace
[traceLen
++] = Uart
.byteCnt
;
675 memcpy(trace
+traceLen
, receivedCmd
, Uart
.byteCnt
);
676 traceLen
+= Uart
.byteCnt
;
677 if(traceLen
> TRACE_SIZE
) break;
679 /* And ready to receive another command. */
680 Uart
.state
= STATE_UNSYNCD
;
681 /* And also reset the demod code, which might have been */
682 /* false-triggered by the commands from the reader. */
683 Demod
.state
= DEMOD_UNSYNCD
;
687 if(ManchesterDecoding(smpl
& 0x0F)) {
688 rsamples
= samples
- Demod
.samples
;
691 // timestamp, as a count of samples
692 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
693 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
694 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
695 trace
[traceLen
++] = 0x80 | ((rsamples
>> 24) & 0xff);
696 trace
[traceLen
++] = ((Demod
.parityBits
>> 0) & 0xff);
697 trace
[traceLen
++] = ((Demod
.parityBits
>> 8) & 0xff);
698 trace
[traceLen
++] = ((Demod
.parityBits
>> 16) & 0xff);
699 trace
[traceLen
++] = ((Demod
.parityBits
>> 24) & 0xff);
701 trace
[traceLen
++] = Demod
.len
;
702 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
703 traceLen
+= Demod
.len
;
704 if(traceLen
> TRACE_SIZE
) break;
708 // And ready to receive another response.
709 memset(&Demod
, 0, sizeof(Demod
));
710 Demod
.output
= receivedResponse
;
711 Demod
.state
= DEMOD_UNSYNCD
;
716 DbpString("cancelled_a");
721 DbpString("COMMAND FINISHED");
724 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
725 Dbprintf("maxBehindBy=%x, Uart.state=%x, Uart.byteCnt=%x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
726 Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
733 //-----------------------------------------------------------------------------
734 // Prepare tag messages
735 //-----------------------------------------------------------------------------
736 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
742 // Correction bit, might be removed when not needed
747 ToSendStuffBit(1); // 1
753 ToSend
[++ToSendMax
] = SEC_D
;
755 for(i
= 0; i
< len
; i
++) {
760 for(j
= 0; j
< 8; j
++) {
762 ToSend
[++ToSendMax
] = SEC_D
;
764 ToSend
[++ToSendMax
] = SEC_E
;
769 // Get the parity bit
770 if ((dwParity
>> i
) & 0x01) {
771 ToSend
[++ToSendMax
] = SEC_D
;
773 ToSend
[++ToSendMax
] = SEC_E
;
778 ToSend
[++ToSendMax
] = SEC_F
;
780 // Convert from last byte pos to length
784 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
785 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
788 //-----------------------------------------------------------------------------
789 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
790 //-----------------------------------------------------------------------------
791 static void CodeStrangeAnswerAsTag()
797 // Correction bit, might be removed when not needed
802 ToSendStuffBit(1); // 1
808 ToSend
[++ToSendMax
] = SEC_D
;
811 ToSend
[++ToSendMax
] = SEC_E
;
814 ToSend
[++ToSendMax
] = SEC_E
;
817 ToSend
[++ToSendMax
] = SEC_D
;
820 ToSend
[++ToSendMax
] = SEC_F
;
822 // Flush the buffer in FPGA!!
823 for(i
= 0; i
< 5; i
++) {
824 ToSend
[++ToSendMax
] = SEC_F
;
827 // Convert from last byte pos to length
831 static void Code4bitAnswerAsTag(uint8_t cmd
)
837 // Correction bit, might be removed when not needed
842 ToSendStuffBit(1); // 1
848 ToSend
[++ToSendMax
] = SEC_D
;
851 for(i
= 0; i
< 4; i
++) {
853 ToSend
[++ToSendMax
] = SEC_D
;
855 ToSend
[++ToSendMax
] = SEC_E
;
861 ToSend
[++ToSendMax
] = SEC_F
;
863 // Flush the buffer in FPGA!!
864 for(i
= 0; i
< 5; i
++) {
865 ToSend
[++ToSendMax
] = SEC_F
;
868 // Convert from last byte pos to length
872 //-----------------------------------------------------------------------------
873 // Wait for commands from reader
874 // Stop when button is pressed
875 // Or return TRUE when command is captured
876 //-----------------------------------------------------------------------------
877 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
879 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
880 // only, since we are receiving, not transmitting).
881 // Signal field is off with the appropriate LED
883 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
885 // Now run a `software UART' on the stream of incoming samples.
886 Uart
.output
= received
;
887 Uart
.byteCntMax
= maxLen
;
888 Uart
.state
= STATE_UNSYNCD
;
893 if(BUTTON_PRESS()) return FALSE
;
895 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
896 AT91C_BASE_SSC
->SSC_THR
= 0x00;
898 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
899 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
900 if(MillerDecoding((b
& 0xf0) >> 4)) {
904 if(MillerDecoding(b
& 0x0f)) {
911 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
);
913 //-----------------------------------------------------------------------------
914 // Main loop of simulated tag: receive commands from reader, decide what
915 // response to send, and send it.
916 //-----------------------------------------------------------------------------
917 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
)
919 // Enable and clear the trace
922 memset(trace
, 0x44, TRACE_SIZE
);
924 // This function contains the tag emulation
927 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
928 uint8_t response1
[2];
931 case 1: { // MIFARE Classic
932 // Says: I am Mifare 1k - original line
937 case 2: { // MIFARE Ultralight
938 // Says: I am a stupid memory tag, no crypto
943 case 3: { // MIFARE DESFire
944 // Says: I am a DESFire tag, ph33r me
949 case 4: { // ISO/IEC 14443-4
950 // Says: I am a javacard (JCOP)
956 Dbprintf("Error: unkown tagtype (%d)",tagType
);
961 // The second response contains the (mandatory) first 24 bits of the UID
962 uint8_t response2
[5];
964 // Check if the uid uses the (optional) part
965 uint8_t response2a
[5];
968 num_to_bytes(uid_1st
,3,response2
+1);
969 num_to_bytes(uid_2nd
,4,response2a
);
970 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
972 // Configure the ATQA and SAK accordingly
973 response1
[0] |= 0x40;
976 num_to_bytes(uid_1st
,4,response2
);
977 // Configure the ATQA and SAK accordingly
978 response1
[0] &= 0xBF;
982 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
983 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
985 // Prepare the mandatory SAK (for 4 and 7 byte UID)
986 uint8_t response3
[3];
988 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
990 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
991 uint8_t response3a
[3];
992 response3a
[0] = sak
& 0xFB;
993 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
995 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
996 uint8_t response6
[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
997 ComputeCrc14443(CRC_14443_A
, response6
, 3, &response6
[3], &response6
[4]);
1002 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
1004 // 144 data bits (18 * 8)
1007 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
1008 // 1 just for the case
1012 // 166 bytes, since every bit that needs to be send costs us a byte
1015 // Respond with card type
1016 uint8_t *resp1
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1019 // Anticollision cascade1 - respond with uid
1020 uint8_t *resp2
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 166);
1023 // Anticollision cascade2 - respond with 2nd half of uid if asked
1024 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1025 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1028 // Acknowledge select - cascade 1
1029 uint8_t *resp3
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*2));
1032 // Acknowledge select - cascade 2
1033 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*3));
1036 // Response to a read request - not implemented atm
1037 uint8_t *resp4
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*4));
1040 // Authenticate response - nonce
1041 uint8_t *resp5
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*5));
1044 // Authenticate response - nonce
1045 uint8_t *resp6
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*6));
1048 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
1051 // To control where we are in the protocol
1055 // Just to allow some checks
1060 uint8_t* respdata
= NULL
;
1062 uint8_t nack
= 0x04;
1064 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1066 // Prepare the responses of the anticollision phase
1067 // there will be not enough time to do this at the moment the reader sends it REQA
1069 // Answer to request
1070 CodeIso14443aAsTag(response1
, sizeof(response1
));
1071 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1073 // Send our UID (cascade 1)
1074 CodeIso14443aAsTag(response2
, sizeof(response2
));
1075 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1077 // Answer to select (cascade1)
1078 CodeIso14443aAsTag(response3
, sizeof(response3
));
1079 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1081 // Send the cascade 2 2nd part of the uid
1082 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1083 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1085 // Answer to select (cascade 2)
1086 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1087 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1089 // Strange answer is an example of rare message size (3 bits)
1090 CodeStrangeAnswerAsTag();
1091 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1093 // Authentication answer (random nonce)
1094 CodeIso14443aAsTag(response5
, sizeof(response5
));
1095 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1097 // dummy ATS (pseudo-ATR), answer to RATS
1098 CodeIso14443aAsTag(response6
, sizeof(response6
));
1099 memcpy(resp6
, ToSend
, ToSendMax
); resp6Len
= ToSendMax
;
1101 // We need to listen to the high-frequency, peak-detected path.
1102 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1110 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
1111 DbpString("button press");
1114 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1115 // Okay, look at the command now.
1117 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1118 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1119 respdata
= response1
;
1120 respsize
= sizeof(response1
);
1121 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1122 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1123 respdata
= response1
;
1124 respsize
= sizeof(response1
);
1125 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1126 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1127 respdata
= response2
;
1128 respsize
= sizeof(response2
);
1129 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1130 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1131 respdata
= response2a
;
1132 respsize
= sizeof(response2a
);
1133 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1134 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1135 respdata
= response3
;
1136 respsize
= sizeof(response3
);
1137 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1138 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1139 respdata
= response3a
;
1140 respsize
= sizeof(response3a
);
1141 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1142 resp
= resp4
; respLen
= resp4Len
; order
= 4; // Do nothing
1143 Dbprintf("Read request from reader: %x %x",receivedCmd
[0],receivedCmd
[1]);
1145 respsize
= sizeof(nack
); // 4-bit answer
1146 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1147 DbpString("Reader requested we HALT!:");
1149 resp
= resp1
; respLen
= 0; order
= 0;
1152 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1153 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1154 respdata
= response5
;
1155 respsize
= sizeof(response5
);
1156 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1157 resp
= resp6
; respLen
= resp6Len
; order
= 70;
1158 respdata
= response6
;
1159 respsize
= sizeof(response6
);
1161 // Never seen this command before
1162 Dbprintf("Received (len=%d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1164 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1165 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1166 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1168 resp
= resp1
; respLen
= 0; order
= 0;
1173 // Count number of wakeups received after a halt
1174 if(order
== 6 && lastorder
== 5) { happened
++; }
1176 // Count number of other messages after a halt
1177 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1179 // Look at last parity bit to determine timing of answer
1180 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1181 // 1236, so correction bit needed
1185 if(cmdsRecvd
> 999) {
1186 DbpString("1000 commands later...");
1193 EmSendCmd14443aRaw(resp
, respLen
, receivedCmd
[0] == 0x52);
1197 LogTrace(receivedCmd
,len
, 0, Uart
.parityBits
, TRUE
);
1198 if (respdata
!= NULL
) {
1199 LogTrace(respdata
,respsize
, 0, SwapBits(GetParity(respdata
,respsize
),respsize
), FALSE
);
1201 if(traceLen
> TRACE_SIZE
) {
1202 DbpString("Trace full");
1207 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1210 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1214 //-----------------------------------------------------------------------------
1215 // Transmit the command (to the tag) that was placed in ToSend[].
1216 //-----------------------------------------------------------------------------
1217 static void TransmitFor14443a(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1221 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1227 for(c
= 0; c
< *wait
;) {
1228 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1229 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1232 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1233 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1241 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1242 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1248 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1249 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1254 if (samples
) *samples
= (c
+ *wait
) << 3;
1257 //-----------------------------------------------------------------------------
1258 // Code a 7-bit command without parity bit
1259 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1260 //-----------------------------------------------------------------------------
1261 void ShortFrameFromReader(const uint8_t bt
)
1269 // Start of Communication (Seq. Z)
1270 ToSend
[++ToSendMax
] = SEC_Z
;
1274 for(j
= 0; j
< 7; j
++) {
1277 ToSend
[++ToSendMax
] = SEC_X
;
1282 ToSend
[++ToSendMax
] = SEC_Z
;
1286 ToSend
[++ToSendMax
] = SEC_Y
;
1293 // End of Communication
1296 ToSend
[++ToSendMax
] = SEC_Z
;
1300 ToSend
[++ToSendMax
] = SEC_Y
;
1304 ToSend
[++ToSendMax
] = SEC_Y
;
1307 ToSend
[++ToSendMax
] = SEC_Y
;
1308 ToSend
[++ToSendMax
] = SEC_Y
;
1309 ToSend
[++ToSendMax
] = SEC_Y
;
1311 // Convert from last character reference to length
1315 //-----------------------------------------------------------------------------
1316 // Prepare reader command to send to FPGA
1318 //-----------------------------------------------------------------------------
1319 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1327 // Start of Communication (Seq. Z)
1328 ToSend
[++ToSendMax
] = SEC_Z
;
1331 // Generate send structure for the data bits
1332 for (i
= 0; i
< len
; i
++) {
1333 // Get the current byte to send
1336 for (j
= 0; j
< 8; j
++) {
1339 ToSend
[++ToSendMax
] = SEC_X
;
1344 ToSend
[++ToSendMax
] = SEC_Z
;
1347 ToSend
[++ToSendMax
] = SEC_Y
;
1354 // Get the parity bit
1355 if ((dwParity
>> i
) & 0x01) {
1357 ToSend
[++ToSendMax
] = SEC_X
;
1362 ToSend
[++ToSendMax
] = SEC_Z
;
1365 ToSend
[++ToSendMax
] = SEC_Y
;
1371 // End of Communication
1374 ToSend
[++ToSendMax
] = SEC_Z
;
1377 ToSend
[++ToSendMax
] = SEC_Y
;
1381 ToSend
[++ToSendMax
] = SEC_Y
;
1384 ToSend
[++ToSendMax
] = SEC_Y
;
1385 ToSend
[++ToSendMax
] = SEC_Y
;
1386 ToSend
[++ToSendMax
] = SEC_Y
;
1388 // Convert from last character reference to length
1392 //-----------------------------------------------------------------------------
1393 // Wait for commands from reader
1394 // Stop when button is pressed (return 1) or field was gone (return 2)
1395 // Or return 0 when command is captured
1396 //-----------------------------------------------------------------------------
1397 static int EmGetCmd(uint8_t *received
, int *len
, int maxLen
)
1401 uint32_t timer
= 0, vtime
= 0;
1405 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1406 // only, since we are receiving, not transmitting).
1407 // Signal field is off with the appropriate LED
1409 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1411 // Set ADC to read field strength
1412 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1413 AT91C_BASE_ADC
->ADC_MR
=
1414 ADC_MODE_PRESCALE(32) |
1415 ADC_MODE_STARTUP_TIME(16) |
1416 ADC_MODE_SAMPLE_HOLD_TIME(8);
1417 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1419 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1421 // Now run a 'software UART' on the stream of incoming samples.
1422 Uart
.output
= received
;
1423 Uart
.byteCntMax
= maxLen
;
1424 Uart
.state
= STATE_UNSYNCD
;
1429 if (BUTTON_PRESS()) return 1;
1431 // test if the field exists
1432 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1434 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1435 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1436 if (analogCnt
>= 32) {
1437 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1438 vtime
= GetTickCount();
1439 if (!timer
) timer
= vtime
;
1440 // 50ms no field --> card to idle state
1441 if (vtime
- timer
> 50) return 2;
1443 if (timer
) timer
= 0;
1449 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1450 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1452 // receive and test the miller decoding
1453 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1454 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1455 if(MillerDecoding((b
& 0xf0) >> 4)) {
1456 *len
= Uart
.byteCnt
;
1457 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1460 if(MillerDecoding(b
& 0x0f)) {
1461 *len
= Uart
.byteCnt
;
1462 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1469 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
)
1474 // Modulate Manchester
1475 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1476 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1479 // include correction bit
1481 if((Uart
.parityBits
& 0x01) || correctionNeeded
) {
1482 // 1236, so correction bit needed
1488 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1489 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1492 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1494 b
= 0xff; // was 0x00
1500 AT91C_BASE_SSC
->SSC_THR
= b
;
1504 if(BUTTON_PRESS()) {
1512 int EmSend4bitEx(uint8_t resp
, int correctionNeeded
){
1513 Code4bitAnswerAsTag(resp
);
1514 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1515 if (tracing
) LogTrace(&resp
, 1, GetDeltaCountUS(), GetParity(&resp
, 1), FALSE
);
1519 int EmSend4bit(uint8_t resp
){
1520 return EmSend4bitEx(resp
, 0);
1523 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
){
1524 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1525 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1526 if (tracing
) LogTrace(resp
, respLen
, GetDeltaCountUS(), par
, FALSE
);
1530 int EmSendCmdEx(uint8_t *resp
, int respLen
, int correctionNeeded
){
1531 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1534 int EmSendCmd(uint8_t *resp
, int respLen
){
1535 return EmSendCmdExPar(resp
, respLen
, 0, GetParity(resp
, respLen
));
1538 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1539 return EmSendCmdExPar(resp
, respLen
, 0, par
);
1542 //-----------------------------------------------------------------------------
1543 // Wait a certain time for tag response
1544 // If a response is captured return TRUE
1545 // If it takes to long return FALSE
1546 //-----------------------------------------------------------------------------
1547 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1549 // buffer needs to be 512 bytes
1552 // Set FPGA mode to "reader listen mode", no modulation (listen
1553 // only, since we are receiving, not transmitting).
1554 // Signal field is on with the appropriate LED
1556 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1558 // Now get the answer from the card
1559 Demod
.output
= receivedResponse
;
1561 Demod
.state
= DEMOD_UNSYNCD
;
1564 if (elapsed
) *elapsed
= 0;
1570 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1571 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1572 if (elapsed
) (*elapsed
)++;
1574 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1575 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1576 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1577 if(ManchesterDecoding((b
>>4) & 0xf)) {
1578 *samples
= ((c
- 1) << 3) + 4;
1581 if(ManchesterDecoding(b
& 0x0f)) {
1589 void ReaderTransmitShort(const uint8_t* bt
)
1594 ShortFrameFromReader(*bt
);
1597 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1599 // Store reader command in buffer
1600 if (tracing
) LogTrace(bt
,1,0,GetParity(bt
,1),TRUE
);
1603 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
)
1608 // This is tied to other size changes
1609 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1610 CodeIso14443aAsReaderPar(frame
,len
,par
);
1613 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1617 // Store reader command in buffer
1618 if (tracing
) LogTrace(frame
,len
,0,par
,TRUE
);
1622 void ReaderTransmit(uint8_t* frame
, int len
)
1624 // Generate parity and redirect
1625 ReaderTransmitPar(frame
,len
,GetParity(frame
,len
));
1628 int ReaderReceive(uint8_t* receivedAnswer
)
1631 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1632 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1633 if(samples
== 0) return FALSE
;
1637 int ReaderReceivePar(uint8_t* receivedAnswer
, uint32_t * parptr
)
1640 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1641 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1642 *parptr
= Demod
.parityBits
;
1643 if(samples
== 0) return FALSE
;
1647 /* performs iso14443a anticolision procedure
1648 * fills the uid pointer unless NULL
1649 * fills resp_data unless NULL */
1650 int iso14443a_select_card(uint8_t * uid_ptr
, iso14a_card_select_t
* resp_data
, uint32_t * cuid_ptr
) {
1651 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1652 uint8_t sel_all
[] = { 0x93,0x20 };
1653 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1654 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1656 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1658 uint8_t sak
= 0x04; // cascade uid
1659 int cascade_level
= 0;
1664 memset(uid_ptr
, 0, 8);
1666 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1667 ReaderTransmitShort(wupa
);
1669 if(!ReaderReceive(resp
)) return 0;
1672 memcpy(resp_data
->atqa
, resp
, 2);
1674 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1675 // which case we need to make a cascade 2 request and select - this is a long UID
1676 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1677 for(; sak
& 0x04; cascade_level
++)
1679 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1680 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1683 ReaderTransmit(sel_all
,sizeof(sel_all
));
1684 if (!ReaderReceive(resp
)) return 0;
1685 if(uid_ptr
) memcpy(uid_ptr
+ cascade_level
*4, resp
, 4);
1687 // calculate crypto UID
1688 if(cuid_ptr
) *cuid_ptr
= bytes_to_num(resp
, 4);
1690 // Construct SELECT UID command
1691 memcpy(sel_uid
+2,resp
,5);
1692 AppendCrc14443a(sel_uid
,7);
1693 ReaderTransmit(sel_uid
,sizeof(sel_uid
));
1696 if (!ReaderReceive(resp
)) return 0;
1700 resp_data
->sak
= sak
;
1701 resp_data
->ats_len
= 0;
1703 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1704 if (uid_ptr
[0] == 0x88) {
1705 memcpy(uid_ptr
, uid_ptr
+ 1, 7);
1709 if( (sak
& 0x20) == 0)
1710 return 2; // non iso14443a compliant tag
1712 // Request for answer to select
1713 if(resp_data
) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1714 AppendCrc14443a(rats
, 2);
1715 ReaderTransmit(rats
, sizeof(rats
));
1717 if (!(len
= ReaderReceive(resp
))) return 0;
1719 memcpy(resp_data
->ats
, resp
, sizeof(resp_data
->ats
));
1720 resp_data
->ats_len
= len
;
1726 void iso14443a_setup() {
1729 // Start from off (no field generated)
1730 // Signal field is off with the appropriate LED
1732 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1735 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1737 // Now give it time to spin up.
1738 // Signal field is on with the appropriate LED
1740 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1743 iso14a_timeout
= 2048; //default
1746 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1747 uint8_t real_cmd
[cmd_len
+4];
1748 real_cmd
[0] = 0x0a; //I-Block
1749 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1750 memcpy(real_cmd
+2, cmd
, cmd_len
);
1751 AppendCrc14443a(real_cmd
,cmd_len
+2);
1753 ReaderTransmit(real_cmd
, cmd_len
+4);
1754 size_t len
= ReaderReceive(data
);
1756 return -1; //DATA LINK ERROR
1762 //-----------------------------------------------------------------------------
1763 // Read an ISO 14443a tag. Send out commands and store answers.
1765 //-----------------------------------------------------------------------------
1766 void ReaderIso14443a(UsbCommand
* c
, UsbCommand
* ack
)
1768 iso14a_command_t param
= c
->arg
[0];
1769 uint8_t * cmd
= c
->d
.asBytes
;
1770 size_t len
= c
->arg
[1];
1772 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(1);
1774 if(param
& ISO14A_CONNECT
) {
1776 ack
->arg
[0] = iso14443a_select_card(ack
->d
.asBytes
, (iso14a_card_select_t
*) (ack
->d
.asBytes
+12), NULL
);
1777 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1780 if(param
& ISO14A_SET_TIMEOUT
) {
1781 iso14a_timeout
= c
->arg
[2];
1784 if(param
& ISO14A_SET_TIMEOUT
) {
1785 iso14a_timeout
= c
->arg
[2];
1788 if(param
& ISO14A_APDU
) {
1789 ack
->arg
[0] = iso14_apdu(cmd
, len
, ack
->d
.asBytes
);
1790 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1793 if(param
& ISO14A_RAW
) {
1794 if(param
& ISO14A_APPEND_CRC
) {
1795 AppendCrc14443a(cmd
,len
);
1798 ReaderTransmit(cmd
,len
);
1799 ack
->arg
[0] = ReaderReceive(ack
->d
.asBytes
);
1800 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1803 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(0);
1805 if(param
& ISO14A_NO_DISCONNECT
)
1808 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1811 //-----------------------------------------------------------------------------
1812 // Read an ISO 14443a tag. Send out commands and store answers.
1814 //-----------------------------------------------------------------------------
1815 void ReaderMifare(uint32_t parameter
)
1818 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1819 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1821 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1834 //byte_t par_mask = 0xff;
1841 byte_t nt
[4] = {0,0,0,0};
1842 byte_t nt_attacked
[4], nt_noattack
[4];
1843 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1844 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1845 num_to_bytes(parameter
, 4, nt_noattack
);
1846 int isOK
= 0, isNULL
= 0;
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1853 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1856 // Test if the action was cancelled
1857 if(BUTTON_PRESS()) {
1861 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) continue;
1863 // Transmit MIFARE_CLASSIC_AUTH
1864 ReaderTransmit(mf_auth
, sizeof(mf_auth
));
1866 // Receive the (16 bit) "random" nonce
1867 if (!ReaderReceive(receivedAnswer
)) continue;
1868 memcpy(nt
, receivedAnswer
, 4);
1870 // Transmit reader nonce and reader answer
1871 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
),par
);
1873 // Receive 4 bit answer
1874 if (ReaderReceive(receivedAnswer
))
1876 if ( (parameter
!= 0) && (memcmp(nt
, nt_noattack
, 4) == 0) ) continue;
1878 isNULL
= !(nt_attacked
[0] == 0) && (nt_attacked
[1] == 0) && (nt_attacked
[2] == 0) && (nt_attacked
[3] == 0);
1879 if ( (isNULL
!= 0 ) && (memcmp(nt
, nt_attacked
, 4) != 0) ) continue;
1884 memcpy(nt_attacked
, nt
, 4);
1886 par_low
= par
& 0x07;
1890 if(led_on
) LED_B_ON(); else LED_B_OFF();
1891 par_list
[nt_diff
] = par
;
1892 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
1894 // Test if the information is complete
1895 if (nt_diff
== 0x07) {
1900 nt_diff
= (nt_diff
+ 1) & 0x07;
1901 mf_nr_ar
[3] = nt_diff
<< 5;
1908 par
= (((par
>> 3) + 1) << 3) | par_low
;
1913 LogTrace(nt
, 4, 0, GetParity(nt
, 4), TRUE
);
1914 LogTrace(par_list
, 8, 0, GetParity(par_list
, 8), TRUE
);
1915 LogTrace(ks_list
, 8, 0, GetParity(ks_list
, 8), TRUE
);
1917 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1918 memcpy(ack
.d
.asBytes
+ 0, uid
, 4);
1919 memcpy(ack
.d
.asBytes
+ 4, nt
, 4);
1920 memcpy(ack
.d
.asBytes
+ 8, par_list
, 8);
1921 memcpy(ack
.d
.asBytes
+ 16, ks_list
, 8);
1924 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1928 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1932 if (MF_DBGLEVEL
>= 1) DbpString("COMMAND mifare FINISHED");
1936 //-----------------------------------------------------------------------------
1937 // MIFARE 1K simulate.
1939 //-----------------------------------------------------------------------------
1940 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1942 int cardSTATE
= MFEMUL_NOFIELD
;
1944 int vHf
= 0; // in mV
1945 //int nextCycleTimeout = 0;
1947 // uint32_t timer = 0;
1948 uint32_t selTimer
= 0;
1949 uint32_t authTimer
= 0;
1952 uint8_t cardWRBL
= 0;
1953 uint8_t cardAUTHSC
= 0;
1954 uint8_t cardAUTHKEY
= 0xff; // no authentication
1955 //uint32_t cardRn = 0;
1956 uint32_t cardRr
= 0;
1958 //uint32_t rn_enc = 0;
1960 uint32_t cardINTREG
= 0;
1961 uint8_t cardINTBLOCK
= 0;
1962 struct Crypto1State mpcs
= {0, 0};
1963 struct Crypto1State
*pcs
;
1966 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
1967 uint8_t *response
= eml_get_bigbufptr_sendbuf();
1969 static uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
1971 static uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
1972 static uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
1974 static uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
1975 static uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
1977 static uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
1978 // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
1979 static uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
1985 // Authenticate response - nonce
1986 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
1988 // get UID from emul memory
1989 emlGetMemBt(receivedCmd
, 7, 1);
1990 _7BUID
= !(receivedCmd
[0] == 0x00);
1991 if (!_7BUID
) { // ---------- 4BUID
1994 emlGetMemBt(rUIDBCC1
, 0, 4);
1995 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
1996 } else { // ---------- 7BUID
2000 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2001 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2002 emlGetMemBt(rUIDBCC2
, 3, 4);
2003 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2006 // -------------------------------------- test area
2008 // -------------------------------------- END test area
2009 // start mkseconds counter
2012 // We need to listen to the high-frequency, peak-detected path.
2013 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2016 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2019 if (MF_DBGLEVEL
>= 1) Dbprintf("Started. 7buid=%d", _7BUID
);
2020 // calibrate mkseconds counter
2025 if(BUTTON_PRESS()) {
2029 // find reader field
2030 // Vref = 3300mV, and an 10:1 voltage divider on the input
2031 // can measure voltages up to 33000 mV
2032 if (cardSTATE
== MFEMUL_NOFIELD
) {
2033 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2034 if (vHf
> MF_MINFIELDV
) {
2035 cardSTATE_TO_IDLE();
2040 if (cardSTATE
!= MFEMUL_NOFIELD
) {
2041 res
= EmGetCmd(receivedCmd
, &len
, RECV_CMD_SIZE
); // (+ nextCycleTimeout)
2043 cardSTATE
= MFEMUL_NOFIELD
;
2050 //nextCycleTimeout = 0;
2052 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2054 if (len
!= 4 && cardSTATE
!= MFEMUL_NOFIELD
) { // len != 4 <---- speed up the code 4 authentication
2055 // REQ or WUP request in ANY state and WUP in HALTED state
2056 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2057 selTimer
= GetTickCount();
2058 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2059 cardSTATE
= MFEMUL_SELECT1
;
2061 // init crypto block
2064 crypto1_destroy(pcs
);
2069 switch (cardSTATE
) {
2070 case MFEMUL_NOFIELD
:{
2073 case MFEMUL_HALTED
:{
2079 case MFEMUL_SELECT1
:{
2081 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2082 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2088 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2090 EmSendCmd(rSAK
, sizeof(rSAK
));
2092 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2094 cuid
= bytes_to_num(rUIDBCC1
, 4);
2096 cardSTATE
= MFEMUL_WORK
;
2098 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2101 cardSTATE
= MFEMUL_SELECT2
;
2108 case MFEMUL_SELECT2
:{
2111 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2112 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2118 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2119 EmSendCmd(rSAK
, sizeof(rSAK
));
2121 cuid
= bytes_to_num(rUIDBCC2
, 4);
2122 cardSTATE
= MFEMUL_WORK
;
2124 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2128 // i guess there is a command). go into the work state.
2129 if (len
!= 4) break;
2130 cardSTATE
= MFEMUL_WORK
;
2136 //rn_enc = bytes_to_num(receivedCmd, 4);
2137 //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
2138 cardRr
= bytes_to_num(&receivedCmd
[4], 4) ^ crypto1_word(pcs
, 0, 0);
2140 if (cardRr
!= prng_successor(nonce
, 64)){
2141 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr
, prng_successor(nonce
, 64));
2142 cardSTATE_TO_IDLE();
2145 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2146 num_to_bytes(ans
, 4, rAUTH_AT
);
2148 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2149 cardSTATE
= MFEMUL_AUTH2
;
2151 cardSTATE_TO_IDLE();
2153 if (cardSTATE
!= MFEMUL_AUTH2
) break;
2157 cardSTATE
= MFEMUL_WORK
;
2158 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2162 lbWORK
: if (len
== 0) break;
2164 if (cardAUTHKEY
== 0xff) {
2165 // first authentication
2166 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2167 authTimer
= GetTickCount();
2169 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2170 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2173 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2174 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2175 num_to_bytes(nonce
, 4, rAUTH_AT
);
2176 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2179 // last working revision
2180 // EmSendCmd14443aRaw(resp1, resp1Len, 0);
2181 // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
2183 cardSTATE
= MFEMUL_AUTH1
;
2184 //nextCycleTimeout = 10;
2189 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2191 // nested authentication
2192 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2193 authTimer
= GetTickCount();
2195 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2196 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2199 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2200 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2201 num_to_bytes(ans
, 4, rAUTH_AT
);
2202 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2205 cardSTATE
= MFEMUL_AUTH1
;
2206 //nextCycleTimeout = 10;
2211 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2212 // BUT... ACK --> NACK
2213 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2214 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2218 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2219 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2220 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2225 if (len
== 4 && receivedCmd
[0] == 0x30) {
2226 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2227 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2230 emlGetMem(response
, receivedCmd
[1], 1);
2231 AppendCrc14443a(response
, 16);
2232 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2233 EmSendCmdPar(response
, 18, par
);
2238 if (len
== 4 && receivedCmd
[0] == 0xA0) {
2239 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2240 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2243 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2244 //nextCycleTimeout = 50;
2245 cardSTATE
= MFEMUL_WRITEBL2
;
2246 cardWRBL
= receivedCmd
[1];
2250 // works with cardINTREG
2252 // increment, decrement, restore
2253 if (len
== 4 && (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2)) {
2254 if (receivedCmd
[1] >= 16 * 4 ||
2255 receivedCmd
[1] / 4 != cardAUTHSC
||
2256 emlCheckValBl(receivedCmd
[1])) {
2257 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2260 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2261 if (receivedCmd
[0] == 0xC1)
2262 cardSTATE
= MFEMUL_INTREG_INC
;
2263 if (receivedCmd
[0] == 0xC0)
2264 cardSTATE
= MFEMUL_INTREG_DEC
;
2265 if (receivedCmd
[0] == 0xC2)
2266 cardSTATE
= MFEMUL_INTREG_REST
;
2267 cardWRBL
= receivedCmd
[1];
2274 if (len
== 4 && receivedCmd
[0] == 0xB0) {
2275 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2276 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2280 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2281 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2283 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2289 if (len
== 4 && (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00)) {
2292 cardSTATE
= MFEMUL_HALTED
;
2293 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2297 // command not allowed
2299 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2306 case MFEMUL_WRITEBL2
:{
2308 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2309 emlSetMem(receivedCmd
, cardWRBL
, 1);
2310 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2311 cardSTATE
= MFEMUL_WORK
;
2314 cardSTATE_TO_IDLE();
2320 case MFEMUL_INTREG_INC
:{
2321 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2322 memcpy(&ans
, receivedCmd
, 4);
2323 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2324 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2325 cardSTATE_TO_IDLE();
2328 cardINTREG
= cardINTREG
+ ans
;
2329 cardSTATE
= MFEMUL_WORK
;
2332 case MFEMUL_INTREG_DEC
:{
2333 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2334 memcpy(&ans
, receivedCmd
, 4);
2335 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2336 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2337 cardSTATE_TO_IDLE();
2340 cardINTREG
= cardINTREG
- ans
;
2341 cardSTATE
= MFEMUL_WORK
;
2344 case MFEMUL_INTREG_REST
:{
2345 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2346 memcpy(&ans
, receivedCmd
, 4);
2347 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2348 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2349 cardSTATE_TO_IDLE();
2352 cardSTATE
= MFEMUL_WORK
;
2358 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2361 // add trace trailer
2362 memset(rAUTH_NT
, 0x44, 4);
2363 LogTrace(rAUTH_NT
, 4, 0, 0, TRUE
);
2365 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2368 //-----------------------------------------------------------------------------
2371 //-----------------------------------------------------------------------------
2372 void RAMFUNC
SniffMifare(void) {
2374 // init trace buffer
2376 memset(trace
, 0x44, TRACE_SIZE
);
2378 // We won't start recording the frames that we acquire until we trigger;
2379 // a good trigger condition to get started is probably when we see a
2380 // response from the tag.
2381 int triggered
= FALSE
; // FALSE to wait first for card
2383 // The command (reader -> tag) that we're receiving.
2384 // The length of a received command will in most cases be no more than 18 bytes.
2385 // So 32 should be enough!
2386 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2387 // The response (tag -> reader) that we're receiving.
2388 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2390 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2391 // into trace, along with its length and other annotations.
2392 //uint8_t *trace = (uint8_t *)BigBuf;
2394 // The DMA buffer, used to stream samples from the FPGA
2395 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2399 int maxBehindBy
= 0;
2401 // Set up the demodulator for tag -> reader responses.
2402 Demod
.output
= receivedResponse
;
2404 Demod
.state
= DEMOD_UNSYNCD
;
2406 // Set up the demodulator for the reader -> tag commands
2407 memset(&Uart
, 0, sizeof(Uart
));
2408 Uart
.output
= receivedCmd
;
2409 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
2410 Uart
.state
= STATE_UNSYNCD
;
2412 // Setup for the DMA.
2415 lastRxCounter
= DMA_BUFFER_SIZE
;
2416 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
2418 // And put the FPGA in the appropriate mode
2419 // Signal field is off with the appropriate LED
2421 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
2422 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2424 // Count of samples received so far, so that we can include timing
2425 // information in the trace buffer.
2427 // And now we loop, receiving samples.
2431 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
2432 (DMA_BUFFER_SIZE
-1);
2433 if(behindBy
> maxBehindBy
) {
2434 maxBehindBy
= behindBy
;
2435 if(behindBy
> 400) {
2436 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
2440 if(behindBy
< 1) continue;
2447 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
2448 upTo
-= DMA_BUFFER_SIZE
;
2449 lastRxCounter
+= DMA_BUFFER_SIZE
;
2450 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
2451 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2455 if(MillerDecoding((smpl
& 0xF0) >> 4)) {
2458 if (!LogTrace(receivedCmd
, Uart
.byteCnt
, -1 * Uart
.samples
, Uart
.parityBits
, TRUE
)) break;
2460 /* And ready to receive another command. */
2461 Uart
.state
= STATE_UNSYNCD
;
2462 /* And also reset the demod code, which might have been */
2463 /* false-triggered by the commands from the reader. */
2464 Demod
.state
= DEMOD_UNSYNCD
;
2468 if(ManchesterDecoding(smpl
& 0x0F)) {
2471 if (!LogTrace(receivedResponse
, Demod
.len
, -1 * Demod
.samples
, Demod
.parityBits
, FALSE
)) break;
2475 // And ready to receive another response.
2476 memset(&Demod
, 0, sizeof(Demod
));
2477 Demod
.output
= receivedResponse
;
2478 Demod
.state
= DEMOD_UNSYNCD
;
2482 if(BUTTON_PRESS()) {
2483 DbpString("button cancelled");
2488 DbpString("COMMAND FINISHED");
2491 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
2492 Dbprintf("maxBehindBy=%x, Uart.state=%x, Uart.byteCnt=%x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
2493 Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);