1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // LEGIC RF simulation code
10 //-----------------------------------------------------------------------------
13 static struct legic_frame
{
24 static crc_t legic_crc
;
25 static int legic_read_count
;
26 static uint32_t legic_prng_bc
;
27 static uint32_t legic_prng_iv
;
29 static int legic_phase_drift
;
30 static int legic_frame_drift
;
31 static int legic_reqresp_drift
;
37 static void setup_timer(void) {
38 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
39 // this it won't be terribly accurate but should be good enough.
41 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
42 timer = AT91C_BASE_TC1;
43 timer->TC_CCR = AT91C_TC_CLKDIS;
44 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
45 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
48 // Set up Timer 2 to use for measuring time between frames in
49 // tag simulation mode. Runs 4x faster as Timer 1
51 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
52 prng_timer = AT91C_BASE_TC2;
53 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
54 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
55 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
58 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
59 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
62 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
63 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
64 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
65 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
66 AT91C_BASE_TC0->TC_RA = 1;
67 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
71 // At TIMER_CLOCK3 (MCK/32)
72 // testing calculating in (us) microseconds.
73 #define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
74 #define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
75 #define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
76 #define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
77 #define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
79 #define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
81 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
82 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
84 #define OFFSET_LOG 1024
86 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
89 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
92 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
95 # define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
97 // Pause pulse, off in 20us / 30ticks,
98 // ONE / ZERO bit pulse,
99 // one == 80us / 120ticks
100 // zero == 40us / 60ticks
102 # define COIL_PULSE(x) \
105 WaitTicks( (RWD_TIME_PAUSE) ); \
111 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
112 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
113 #define LEGIC_CARD_MEMSIZE 1024
114 static uint8_t* cardmem
;
116 static void frame_append_bit(struct legic_frame
* const f
, uint8_t bit
) {
117 // Overflow, won't happen
118 if (f
->bits
>= 31) return;
120 f
->data
|= (bit
<< f
->bits
);
124 static void frame_clean(struct legic_frame
* const f
) {
129 // Prng works when waiting in 99.1us cycles.
130 // and while sending/receiving in bit frames (100, 60)
131 /*static void CalibratePrng( uint32_t time){
132 // Calculate Cycles based on timer 100us
133 uint32_t i = (time - sendFrameStop) / 100 ;
135 // substract cycles of finished frames
136 int k = i - legic_prng_count()+1;
138 // substract current frame length, rewind to beginning
140 legic_prng_forward(k);
144 /* Generate Keystream */
145 uint32_t get_key_stream(int skip
, int count
) {
149 // Use int to enlarge timer tc to 32bit
150 legic_prng_bc
+= prng_timer
->TC_CV
;
152 // reset the prng timer.
154 /* If skip == -1, forward prng time based */
156 i
= (legic_prng_bc
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */
157 i
-= legic_prng_count(); /* substract cycles of finished frames */
158 i
-= count
; /* substract current frame length, rewind to beginning */
159 legic_prng_forward(i
);
161 legic_prng_forward(skip
);
164 i
= (count
== 6) ? -1 : legic_read_count
;
166 /* Generate KeyStream */
167 return legic_prng_get_bits(count
);
170 /* Send a frame in tag mode, the FPGA must have been set up by
173 void frame_send_tag(uint16_t response
, uint8_t bits
) {
177 /* Bitbang the response */
179 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
180 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
182 /* TAG_FRAME_WAIT -> shift by 2 */
183 legic_prng_forward(2);
184 response
^= legic_prng_get_bits(bits
);
186 /* Wait for the frame start */
187 WaitTicks( TAG_FRAME_WAIT
);
189 for (; mask
< BITMASK(bits
); mask
<<= 1) {
194 WaitTicks(TAG_BIT_PERIOD
);
199 /* Send a frame in reader mode, the FPGA must have been set up by
202 void frame_sendAsReader(uint32_t data
, uint8_t bits
){
204 uint32_t starttime
= GET_TICKS
, send
= 0, mask
= 1;
206 // xor lsfr onto data.
207 send
= data
^ legic_prng_get_bits(bits
);
209 for (; mask
< BITMASK(bits
); mask
<<= 1) {
211 COIL_PULSE(RWD_TIME_1
)
213 COIL_PULSE(RWD_TIME_0
)
216 // Final pause to mark the end of the frame
220 uint8_t cmdbytes
[] = {bits
, BYTEx(data
,0), BYTEx(data
,1), BYTEx(data
,2) , BYTEx(send
,0), BYTEx(send
,1)};
221 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, TRUE
);
224 /* Receive a frame from the card in reader emulation mode, the FPGA and
225 * timer must have been set up by LegicRfReader and frame_sendAsReader.
227 * The LEGIC RF protocol from card to reader does not include explicit
228 * frame start/stop information or length information. The reader must
229 * know beforehand how many bits it wants to receive. (Notably: a card
230 * sending a stream of 0-bits is indistinguishable from no card present.)
232 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
233 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
234 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
235 * for edges. Count the edges in each bit interval. If they are approximately
236 * 0 this was a 0-bit, if they are approximately equal to the number of edges
237 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
238 * timer that's still running from frame_sendAsReader in order to get a synchronization
239 * with the frame that we just sent.
241 * FIXME: Because we're relying on the hysteresis to just do the right thing
242 * the range is severely reduced (and you'll probably also need a good antenna).
243 * So this should be fixed some time in the future for a proper receiver.
245 static void frame_receiveAsReader(struct legic_frame
* const f
, uint8_t bits
) {
247 if ( bits
> 32 ) return;
249 uint8_t i
= bits
, edges
= 0;
250 uint32_t the_bit
= 1, next_bit_at
= 0, data
= 0;
251 uint32_t old_level
= 0;
252 volatile uint32_t level
= 0;
256 // calibrate the prng.
257 legic_prng_forward(2);
258 data
= legic_prng_get_bits(bits
);
260 //FIXED time between sending frame and now listening frame. 330us
261 uint32_t starttime
= GET_TICKS
;
262 // its about 9+9 ticks delay from end-send to here.
265 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
269 while ( GET_TICKS
< next_bit_at
) {
271 level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
273 if (level
!= old_level
)
279 next_bit_at
+= TAG_BIT_PERIOD
;
281 // We expect 42 edges (ONE)
293 uint8_t cmdbytes
[] = {bits
, BYTEx(data
, 0), BYTEx(data
, 1)};
294 LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GET_TICKS
, NULL
, FALSE
);
297 // Setup pm3 as a Legic Reader
298 static uint32_t setup_phase_reader(uint8_t iv
) {
300 // Switch on carrier and let the tag charge for 1ms
310 frame_sendAsReader(iv
, 7);
312 // Now both tag and reader has same IV. Prng can start.
315 frame_receiveAsReader(¤t_frame
, 6);
317 // 292us (438t) - fixed delay before sending ack.
318 // minus log and stuff 100tick?
320 legic_prng_forward(3);
322 // Send obsfuscated acknowledgment frame.
323 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
324 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
325 switch ( current_frame
.data
) {
326 case 0x0D: frame_sendAsReader(0x19, 6); break;
328 case 0x3D: frame_sendAsReader(0x39, 6); break;
332 legic_prng_forward(2);
333 return current_frame
.data
;
336 static void LegicCommonInit(void) {
338 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
339 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
);
340 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
342 /* Bitbang the transmitter */
344 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
346 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_DIN
;
348 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
349 cardmem
= BigBuf_get_EM_addr();
350 memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
);
354 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
359 // Switch off carrier, make sure tag is reset
360 static void switch_off_tag_rwd(void) {
366 // calculate crc4 for a legic READ command
367 static uint32_t legic4Crc(uint8_t cmd
, uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) {
368 crc_clear(&legic_crc
);
369 uint32_t temp
= (value
<< cmd_sz
) | (byte_index
<< 1) | cmd
;
370 crc_update(&legic_crc
, temp
, cmd_sz
+ 8 );
371 return crc_finish(&legic_crc
);
374 int legic_read_byte( uint16_t index
, uint8_t cmd_sz
) {
376 uint8_t byte
, crc
, calcCrc
= 0;
377 uint32_t cmd
= (index
<< 1) | LEGIC_READ
;
379 // 90ticks = 60us (should be 100us but crc calc takes time.)
380 //WaitTicks(330); // 330ticks prng(4) - works
381 WaitTicks(240); // 240ticks prng(3) - works
383 frame_sendAsReader(cmd
, cmd_sz
);
384 frame_receiveAsReader(¤t_frame
, 12);
387 byte
= BYTEx(current_frame
.data
, 0);
388 crc
= BYTEx(current_frame
.data
, 1);
389 calcCrc
= legic4Crc(LEGIC_READ
, index
, byte
, cmd_sz
);
391 if( calcCrc
!= crc
) {
392 Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc
, crc
);
396 legic_prng_forward(3);
401 * - assemble a write_cmd_frame with crc and send it
402 * - wait until the tag sends back an ACK ('1' bit unencrypted)
403 * - forward the prng based on the timing
405 bool legic_write_byte(uint16_t index
, uint8_t byte
, uint8_t addr_sz
) {
410 uint8_t cmd_sz
= addr_sz
+1+8+4; //crc+data+cmd;
411 uint32_t steps
= 0, next_bit_at
, start
, crc
, old_level
= 0;
414 crc_clear(&legic_crc);
415 crc_update(&legic_crc, 0, 1); // CMD_WRITE
416 crc_update(&legic_crc, index, addr_sz);
417 crc_update(&legic_crc, byte, 8);
418 crc = crc_finish(&legic_crc);
420 crc
= legic4Crc(LEGIC_WRITE
, index
, byte
, addr_sz
+1);
422 // send write command
423 uint32_t cmd
= LEGIC_WRITE
;
424 cmd
|= index
<< 1; // index
425 cmd
|= byte
<< (addr_sz
+1); // Data
426 cmd
|= (crc
& 0xF ) << (addr_sz
+1+8); // CRC
428 /* Bitbang the response */
429 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
431 legic_prng_forward(2);
434 frame_sendAsReader(cmd
, cmd_sz
);
440 // ACK, - one single "1" bit after 3.6ms
441 // 3.6ms = 3600us * 1.5 = 5400ticks.
444 next_bit_at
= GET_TICKS
+ TAG_BIT_PERIOD
;
449 while ( GET_TICKS
< next_bit_at
) {
451 volatile uint32_t level
= (AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
453 if (level
!= old_level
)
459 next_bit_at
+= TAG_BIT_PERIOD
;
461 // We expect 42 edges (ONE)
463 steps
= ( (GET_TICKS
- start
) / TAG_BIT_PERIOD
);
464 legic_prng_forward(steps
);
470 Dbprintf("ice: i == %d",i
);
474 uint8_t cmdbytes
[] = {1, isOK
, BYTEx(steps
, 0), BYTEx(steps
, 1) };
475 LogTrace(cmdbytes
, sizeof(cmdbytes
), start
, GET_TICKS
, NULL
, FALSE
);
479 int LegicRfReader(uint16_t offset
, uint16_t len
, uint8_t iv
) {
483 legic_card_select_t card
;
487 if ( legic_select_card_iv(&card
, iv
) ) {
492 if (len
+ offset
>= card
.cardsize
)
493 len
= card
.cardsize
- offset
;
497 int r
= legic_read_byte(offset
+ i
, card
.cmdsize
);
499 if (r
== -1 || BUTTON_PRESS()) {
500 if ( MF_DBGLEVEL
>= 2) DbpString("operation aborted");
510 switch_off_tag_rwd();
512 cmd_send(CMD_ACK
, isOK
, len
, 0, cardmem
, len
);
516 void LegicRfWriter(uint16_t offset
, uint16_t len
, uint8_t iv
, uint8_t *data
) {
520 legic_card_select_t card
;
522 // uid NOT is writeable.
523 if ( offset
<= LOWERLIMIT
) {
530 if ( legic_select_card_iv(&card
, iv
) ) {
535 if ( len
+ offset
+ LOWERLIMIT
>= card
.cardsize
) {
543 if ( !legic_write_byte( len
+ offset
, data
[len
], card
.addrsize
) ) {
544 Dbprintf("operation failed | %d | %d | %d", len
+ offset
, len
, data
[len
] );
551 cmd_send(CMD_ACK
, isOK
, 0,0,0,0);
552 switch_off_tag_rwd();
556 int legic_select_card_iv(legic_card_select_t
*p_card
, uint8_t iv
){
558 if ( p_card
== NULL
) return 1;
560 p_card
->tagtype
= setup_phase_reader(iv
);
562 switch(p_card
->tagtype
) {
565 p_card
->addrsize
= 5;
566 p_card
->cardsize
= 22;
570 p_card
->addrsize
= 8;
571 p_card
->cardsize
= 256;
574 p_card
->cmdsize
= 11;
575 p_card
->addrsize
= 10;
576 p_card
->cardsize
= 1024;
580 p_card
->addrsize
= 0;
581 p_card
->cardsize
= 0;
586 int legic_select_card(legic_card_select_t
*p_card
){
587 return legic_select_card_iv(p_card
, 0x01);
590 //-----------------------------------------------------------------------------
591 // Work with emulator memory
593 // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
594 // involved in dealing with emulator memory. But if it is called later, it might
595 // destroy the Emulator Memory.
596 //-----------------------------------------------------------------------------
598 // arg1 = num of bytes
599 void LegicEMemSet(uint32_t arg0
, uint32_t arg1
, uint8_t *data
) {
600 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
601 legic_emlset_mem(data
, arg0
, arg1
);
604 // arg1 = num of bytes
605 void LegicEMemGet(uint32_t arg0
, uint32_t arg1
) {
606 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
607 uint8_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
608 legic_emlget_mem(buf
, arg0
, arg1
);
610 cmd_send(CMD_ACK
, arg0
, arg1
, 0, buf
, USB_CMD_DATA_SIZE
);
613 void legic_emlset_mem(uint8_t *data
, int offset
, int numofbytes
) {
614 cardmem
= BigBuf_get_EM_addr();
615 memcpy(cardmem
+ offset
, data
, numofbytes
);
617 void legic_emlget_mem(uint8_t *data
, int offset
, int numofbytes
) {
618 cardmem
= BigBuf_get_EM_addr();
619 memcpy(data
, cardmem
+ offset
, numofbytes
);
622 void LegicRfInfo(void){
626 uint8_t buf
[sizeof(legic_card_select_t
)] = {0x00};
627 legic_card_select_t
*card
= (legic_card_select_t
*) buf
;
631 if ( legic_select_card(card
) ) {
632 cmd_send(CMD_ACK
,0,0,0,0,0);
637 for ( uint8_t i
= 0; i
< sizeof(card
->uid
); ++i
) {
638 r
= legic_read_byte(i
, card
->cmdsize
);
640 cmd_send(CMD_ACK
,0,0,0,0,0);
643 card
->uid
[i
] = r
& 0xFF;
647 r
= legic_read_byte(4, card
->cmdsize
);
648 uint32_t calc_mcc
= CRC8Legic(card
->uid
, 4);;
649 if ( r
!= calc_mcc
) {
650 cmd_send(CMD_ACK
,0,0,0,0,0);
655 cmd_send(CMD_ACK
, 1, 0, 0, buf
, sizeof(legic_card_select_t
));
658 switch_off_tag_rwd();
662 /* Handle (whether to respond) a frame in tag mode
663 * Only called when simulating a tag.
665 static void frame_handle_tag(struct legic_frame
const * const f
)
668 //uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
669 //LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
671 cardmem
= BigBuf_get_EM_addr();
673 /* First Part of Handshake (IV) */
679 ResetTimer(prng_timer
);
682 legic_prng_init(f
->data
);
684 // We should have three tagtypes with three different answers.
685 frame_send_tag(0x3d, 6); /* 0x3d^0x26 = 0x1B */
687 legic_state
= STATE_IV
;
688 legic_read_count
= 0;
690 legic_prng_iv
= f
->data
;
699 if(legic_state
== STATE_IV
) {
700 uint32_t local_key
= get_key_stream(3, 6);
701 int xored
= 0x39 ^ local_key
;
702 if((f
->bits
== 6) && (f
->data
== xored
)) {
703 legic_state
= STATE_CON
;
710 legic_state
= STATE_DISCON
;
712 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
);
719 if(legic_state
== STATE_CON
) {
720 uint32_t key
= get_key_stream(2, 11); //legic_phase_drift, 11);
721 uint16_t addr
= f
->data
^ key
;
723 uint8_t data
= cardmem
[addr
];
724 int hash
= legic4Crc(LEGIC_READ
, addr
, data
, 11) << 8;
727 legic_prng_forward(legic_reqresp_drift
);
729 frame_send_tag(hash
| data
, 12);
731 legic_prng_forward(2);
739 uint32_t key
= get_key_stream(-1, 23); //legic_frame_drift, 23);
740 uint16_t addr
= f
->data
^ key
;
743 uint32_t data
= f
->data
^ key
;
747 cardmem
[addr
] = data
;
749 legic_state
= STATE_DISCON
;
751 Dbprintf("write - addr: %x, data: %x", addr
, data
);
752 // should send a ACK within 3.5ms too
756 if(legic_state
!= STATE_DISCON
) {
757 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
);
758 Dbprintf("IV: %03.3x", legic_prng_iv
);
761 legic_state
= STATE_DISCON
;
762 legic_read_count
= 0;
768 /* Read bit by bit untill full frame is received
769 * Call to process frame end answer
771 static void emit(int bit
) {
775 frame_append_bit(¤t_frame
, 1);
778 frame_append_bit(¤t_frame
, 0);
781 if(current_frame
.bits
<= 4) {
782 frame_clean(¤t_frame
);
784 frame_handle_tag(¤t_frame
);
785 frame_clean(¤t_frame
);
792 void LegicRfSimulate(int phase
, int frame
, int reqresp
)
794 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
795 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
796 * envelope waveform on DIN and should send our response on DOUT.
798 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
799 * measure the time between two rising edges on DIN, and no encoding on the
800 * subcarrier from card to reader, so we'll just shift out our verbatim data
801 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
802 * seems to be 300us-ish.
805 int old_level
= 0, active
= 0;
806 legic_state
= STATE_DISCON
;
808 legic_phase_drift
= phase
;
809 legic_frame_drift
= frame
;
810 legic_reqresp_drift
= reqresp
;
812 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
813 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K
);
816 /* Bitbang the receiver */
819 // need a way to determine which tagtype we are simulating
821 // hook up emulator memory
822 cardmem
= BigBuf_get_EM_addr();
827 crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);
832 DbpString("Starting Legic emulator, press button to end");
834 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
835 volatile uint32_t level
= !!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_DIN
);
837 uint32_t time
= GET_TICKS
;
839 if (level
!= old_level
) {
845 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) {
850 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) {
865 if(time
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) {
872 * Disable the counter, Then wait for the clock to acknowledge the
873 * shutdown in its status register. Reading the SR has the
874 * side-effect of clearing any pending state in there.
876 if(time
>= (20*RWD_TIME_1
) && (timer
->TC_SR
& AT91C_TC_CLKSTA
))
884 switch_off_tag_rwd();
886 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
889 //-----------------------------------------------------------------------------
890 // Code up a string of octets at layer 2 (including CRC, we don't generate
891 // that here) so that they can be transmitted to the reader. Doesn't transmit
892 // them yet, just leaves them ready to send in ToSend[].
893 //-----------------------------------------------------------------------------
894 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
900 // // Transmit a burst of ones, as the initial thing that lets the
901 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
902 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
904 // for(i = 0; i < 20; i++) {
905 // ToSendStuffBit(1);
906 // ToSendStuffBit(1);
907 // ToSendStuffBit(1);
908 // ToSendStuffBit(1);
912 // for(i = 0; i < 10; i++) {
913 // ToSendStuffBit(0);
914 // ToSendStuffBit(0);
915 // ToSendStuffBit(0);
916 // ToSendStuffBit(0);
918 // for(i = 0; i < 2; i++) {
919 // ToSendStuffBit(1);
920 // ToSendStuffBit(1);
921 // ToSendStuffBit(1);
922 // ToSendStuffBit(1);
925 // for(i = 0; i < len; i++) {
927 // uint8_t b = cmd[i];
930 // ToSendStuffBit(0);
931 // ToSendStuffBit(0);
932 // ToSendStuffBit(0);
933 // ToSendStuffBit(0);
936 // for(j = 0; j < 8; j++) {
938 // ToSendStuffBit(1);
939 // ToSendStuffBit(1);
940 // ToSendStuffBit(1);
941 // ToSendStuffBit(1);
943 // ToSendStuffBit(0);
944 // ToSendStuffBit(0);
945 // ToSendStuffBit(0);
946 // ToSendStuffBit(0);
952 // ToSendStuffBit(1);
953 // ToSendStuffBit(1);
954 // ToSendStuffBit(1);
955 // ToSendStuffBit(1);
959 // for(i = 0; i < 10; i++) {
960 // ToSendStuffBit(0);
961 // ToSendStuffBit(0);
962 // ToSendStuffBit(0);
963 // ToSendStuffBit(0);
965 // for(i = 0; i < 2; i++) {
966 // ToSendStuffBit(1);
967 // ToSendStuffBit(1);
968 // ToSendStuffBit(1);
969 // ToSendStuffBit(1);
972 // // Convert from last byte pos to length
976 //-----------------------------------------------------------------------------
977 // The software UART that receives commands from the reader, and its state
979 //-----------------------------------------------------------------------------
984 STATE_GOT_FALLING_EDGE_OF_SOF,
985 STATE_AWAITING_START_BIT,
996 /* Receive & handle a bit coming from the reader.
998 * This function is called 4 times per bit (every 2 subcarrier cycles).
999 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1002 * LED A -> ON once we have received the SOF and are expecting the rest.
1003 * LED A -> OFF once we have received EOF or are in error state or unsynced
1005 * Returns: true if we received a EOF
1006 * false if we are still waiting for some more
1008 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1010 // switch(Uart.state) {
1011 // case STATE_UNSYNCD:
1013 // // we went low, so this could be the beginning of an SOF
1014 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1020 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1022 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1024 // if(Uart.bitCnt > 9) {
1025 // // we've seen enough consecutive
1026 // // zeros that it's a valid SOF
1028 // Uart.byteCnt = 0;
1029 // Uart.state = STATE_AWAITING_START_BIT;
1030 // LED_A_ON(); // Indicate we got a valid SOF
1032 // // didn't stay down long enough
1033 // // before going high, error
1034 // Uart.state = STATE_UNSYNCD;
1037 // // do nothing, keep waiting
1041 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1042 // if(Uart.bitCnt > 12) {
1043 // // Give up if we see too many zeros without
1046 // Uart.state = STATE_UNSYNCD;
1050 // case STATE_AWAITING_START_BIT:
1053 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1054 // // stayed high for too long between
1055 // // characters, error
1056 // Uart.state = STATE_UNSYNCD;
1059 // // falling edge, this starts the data byte
1062 // Uart.shiftReg = 0;
1063 // Uart.state = STATE_RECEIVING_DATA;
1067 // case STATE_RECEIVING_DATA:
1069 // if(Uart.posCnt == 2) {
1070 // // time to sample a bit
1071 // Uart.shiftReg >>= 1;
1073 // Uart.shiftReg |= 0x200;
1077 // if(Uart.posCnt >= 4) {
1080 // if(Uart.bitCnt == 10) {
1081 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1083 // // this is a data byte, with correct
1084 // // start and stop bits
1085 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1088 // if(Uart.byteCnt >= Uart.byteCntMax) {
1089 // // Buffer overflowed, give up
1091 // Uart.state = STATE_UNSYNCD;
1093 // // so get the next byte now
1095 // Uart.state = STATE_AWAITING_START_BIT;
1097 // } else if (Uart.shiftReg == 0x000) {
1098 // // this is an EOF byte
1099 // LED_A_OFF(); // Finished receiving
1100 // Uart.state = STATE_UNSYNCD;
1101 // if (Uart.byteCnt != 0) {
1105 // // this is an error
1107 // Uart.state = STATE_UNSYNCD;
1114 // Uart.state = STATE_UNSYNCD;
1122 static void UartReset() {
1123 Uart.byteCntMax = 3;
1124 Uart.state = STATE_UNSYNCD;
1128 memset(Uart.output, 0x00, 3);
1131 // static void UartInit(uint8_t *data) {
1132 // Uart.output = data;
1136 //=============================================================================
1137 // An LEGIC reader. We take layer two commands, code them
1138 // appropriately, and then send them to the tag. We then listen for the
1139 // tag's response, which we leave in the buffer to be demodulated on the
1141 //=============================================================================
1146 DEMOD_PHASE_REF_TRAINING,
1147 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1148 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1149 DEMOD_AWAITING_START_BIT,
1150 DEMOD_RECEIVING_DATA
1163 * Handles reception of a bit from the tag
1165 * This function is called 2 times per bit (every 4 subcarrier cycles).
1166 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1169 * LED C -> ON once we have received the SOF and are expecting the rest.
1170 * LED C -> OFF once we have received EOF or are unsynced
1172 * Returns: true if we received a EOF
1173 * false if we are still waiting for some more
1178 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1183 int halfci = (ai >> 1);
1184 int halfcq = (aq >> 1);
1186 switch(Demod.state) {
1189 CHECK_FOR_SUBCARRIER()
1191 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1192 Demod.state = DEMOD_PHASE_REF_TRAINING;
1199 case DEMOD_PHASE_REF_TRAINING:
1200 if(Demod.posCount < 8) {
1202 CHECK_FOR_SUBCARRIER()
1204 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1205 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1206 // note: synchronization time > 80 1/fs
1212 Demod.state = DEMOD_UNSYNCD;
1215 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1219 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1221 MAKE_SOFT_DECISION()
1223 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1224 // logic '0' detected
1227 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1229 // start of SOF sequence
1232 // maximum length of TR1 = 200 1/fs
1233 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1238 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1241 MAKE_SOFT_DECISION()
1244 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1245 if(Demod.posCount < 10*2) {
1246 Demod.state = DEMOD_UNSYNCD;
1248 LED_C_ON(); // Got SOF
1249 Demod.state = DEMOD_AWAITING_START_BIT;
1254 // low phase of SOF too long (> 12 etu)
1255 if(Demod.posCount > 13*2) {
1256 Demod.state = DEMOD_UNSYNCD;
1262 case DEMOD_AWAITING_START_BIT:
1265 MAKE_SOFT_DECISION()
1268 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1269 if(Demod.posCount > 3*2) {
1270 Demod.state = DEMOD_UNSYNCD;
1274 // start bit detected
1276 Demod.posCount = 1; // this was the first half
1279 Demod.state = DEMOD_RECEIVING_DATA;
1283 case DEMOD_RECEIVING_DATA:
1285 MAKE_SOFT_DECISION()
1287 if(Demod.posCount == 0) {
1288 // first half of bit
1292 // second half of bit
1294 Demod.shiftReg >>= 1;
1296 if(Demod.thisBit > 0)
1297 Demod.shiftReg |= 0x200;
1301 if(Demod.bitCount == 10) {
1303 uint16_t s = Demod.shiftReg;
1305 if((s & 0x200) && !(s & 0x001)) {
1306 // stop bit == '1', start bit == '0'
1307 uint8_t b = (s >> 1);
1308 Demod.output[Demod.len] = b;
1310 Demod.state = DEMOD_AWAITING_START_BIT;
1312 Demod.state = DEMOD_UNSYNCD;
1316 // This is EOF (start, stop and all data bits == '0'
1326 Demod.state = DEMOD_UNSYNCD;
1334 // Clear out the state of the "UART" that receives from the tag.
1335 static void DemodReset() {
1337 Demod.state = DEMOD_UNSYNCD;
1344 memset(Demod.output, 0x00, 3);
1347 static void DemodInit(uint8_t *data) {
1348 Demod.output = data;
1354 * Demodulate the samples we received from the tag, also log to tracebuffer
1355 * quiet: set to 'TRUE' to disable debug output
1359 #define LEGIC_DMA_BUFFER_SIZE 256
1361 static void GetSamplesForLegicDemod(int n, bool quiet)
1364 bool gotFrame = FALSE;
1365 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1366 int ci, cq, samples = 0;
1370 // And put the FPGA in the appropriate mode
1371 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1373 // The response (tag -> reader) that we're receiving.
1374 // Set up the demodulator for tag -> reader responses.
1375 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1377 // The DMA buffer, used to stream samples from the FPGA
1378 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1379 int8_t *upTo = dmaBuf;
1381 // Setup and start DMA.
1382 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1383 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1387 // Signal field is ON with the appropriate LED:
1390 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1391 if(behindBy > max) max = behindBy;
1393 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1397 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1399 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1400 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1403 if(lastRxCounter <= 0)
1404 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1408 gotFrame = HandleLegicSamplesDemod(ci , cq );
1413 if(samples > n || gotFrame)
1417 FpgaDisableSscDma();
1419 if (!quiet && Demod.len == 0) {
1420 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1431 if (Demod.len > 0) {
1432 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1433 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1439 //-----------------------------------------------------------------------------
1440 // Transmit the command (to the tag) that was placed in ToSend[].
1441 //-----------------------------------------------------------------------------
1443 static void TransmitForLegic(void)
1449 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1450 AT91C_BASE_SSC->SSC_THR = 0xff;
1452 // Signal field is ON with the appropriate Red LED
1455 // Signal we are transmitting with the Green LED
1457 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1459 for(c = 0; c < 10;) {
1460 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1461 AT91C_BASE_SSC->SSC_THR = 0xff;
1464 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1465 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1473 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1474 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1475 legic_prng_forward(1); // forward the lfsr
1477 if(c >= ToSendMax) {
1481 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1482 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1491 //-----------------------------------------------------------------------------
1492 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1493 // so that it is ready to transmit to the tag using TransmitForLegic().
1494 //-----------------------------------------------------------------------------
1496 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1504 for(i = 0; i < 7; i++)
1508 for(i = 0; i < cmdlen; i++) {
1514 for(j = 0; j < bits; j++) {
1524 // Convert from last character reference to length
1529 Convenience function to encode, transmit and trace Legic comms
1532 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1534 CodeLegicBitsAsReader(cmd, cmdlen, bits);
1537 uint8_t parity[1] = {0x00};
1538 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
1543 // Set up LEGIC communication
1545 void ice_legic_setup() {
1548 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1549 BigBuf_free(); BigBuf_Clear_ext(false);
1555 // Set up the synchronous serial port
1558 // connect Demodulated Signal to ADC:
1559 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1561 // Signal field is on with the appropriate LED
1563 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1566 //StartCountSspClk();
1569 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);