1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // fiddled with 2016 Matrix ( sub testing of nonces while collecting )
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // Implements a card only attack based on crypto text (encrypted nonces
10 // received during a nested authentication) only. Unlike other card only
11 // attacks this doesn't rely on implementation errors but only on the
12 // inherent weaknesses of the crypto1 cypher. Described in
13 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15 // Computer and Communications Security, 2015
16 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
20 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
21 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
22 #define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
23 #define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24 #define MAX_BUCKETS 128
26 #define END_OF_LIST_MARKER 0xFFFFFFFF
28 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 typedef struct noncelistentry
{
69 typedef struct noncelist
{
76 noncelistentry_t
*first
;
81 static size_t nonces_to_bruteforce
= 0;
82 static noncelistentry_t
*brute_force_nonces
[256];
83 static uint32_t cuid
= 0;
84 static noncelist_t nonces
[256];
85 static uint8_t best_first_bytes
[256];
86 static uint16_t first_byte_Sum
= 0;
87 static uint16_t first_byte_num
= 0;
88 static uint16_t num_good_first_bytes
= 0;
89 static uint64_t maximum_states
= 0;
90 static uint64_t known_target_key
;
91 static bool write_stats
= false;
92 static FILE *fstats
= NULL
;
100 #define STATELIST_INDEX_WIDTH 16
101 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
106 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
107 } partial_indexed_statelist_t
;
116 static partial_indexed_statelist_t partial_statelist
[17];
117 static partial_indexed_statelist_t statelist_bitflip
;
118 static statelist_t
*candidates
= NULL
;
120 bool field_off
= false;
122 uint64_t foundkey
= 0;
123 size_t keys_found
= 0;
124 size_t bucket_count
= 0;
125 statelist_t
* buckets
[MAX_BUCKETS
];
126 static uint64_t total_states_tested
= 0;
127 size_t thread_count
= 4;
129 // these bitsliced states will hold identical states in all slices
130 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
132 // arrays of bitsliced states with identical values in all slices
133 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
134 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
138 static bool generate_candidates(uint16_t, uint16_t);
139 static bool brute_force(void);
141 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
143 uint8_t first_byte
= nonce_enc
>> 24;
144 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
145 noncelistentry_t
*p2
= NULL
;
147 if (p1
== NULL
) { // first nonce with this 1st byte
149 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
157 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
162 if (p1
== NULL
) { // need to add at the end of the list
163 if (p2
== NULL
) { // list is empty yet. Add first entry.
164 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
165 } else { // add new entry at end of existing list.
166 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
168 if (p2
== NULL
) return 0; // memory allocation failed
170 else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
171 if (p2
== NULL
) { // need to insert at start of list
172 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
174 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
176 if (p2
== NULL
) return 0; // memory allocation failed
178 return 0; // we have seen this 2nd byte before. Nothing to add or insert.
181 // add or insert new data
183 p2
->nonce_enc
= nonce_enc
;
184 p2
->par_enc
= par_enc
;
186 if(nonces_to_bruteforce
< 256){
187 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
188 nonces_to_bruteforce
++;
191 nonces
[first_byte
].num
++;
192 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
193 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
195 return 1; // new nonce added
198 static void init_nonce_memory(void)
200 for (uint16_t i
= 0; i
< 256; i
++) {
203 nonces
[i
].Sum8_guess
= 0;
204 nonces
[i
].Sum8_prob
= 0.0;
205 nonces
[i
].updated
= true;
206 nonces
[i
].first
= NULL
;
210 num_good_first_bytes
= 0;
213 static void free_nonce_list(noncelistentry_t
*p
)
218 free_nonce_list(p
->next
);
223 static void free_nonces_memory(void)
225 for (uint16_t i
= 0; i
< 256; i
++) {
226 free_nonce_list(nonces
[i
].first
);
230 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
233 for (uint16_t j
= 0; j
< 16; j
++) {
235 uint16_t part_sum
= 0;
236 if (odd_even
== ODD_STATE
) {
237 for (uint16_t i
= 0; i
< 5; i
++) {
238 part_sum
^= filter(st
);
239 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
241 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
243 for (uint16_t i
= 0; i
< 4; i
++) {
244 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
245 part_sum
^= filter(st
);
253 // static uint16_t SumProperty(struct Crypto1State *s)
255 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
256 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
257 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
260 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
262 // for efficient computation we are using the recursive definition
264 // P(X=k) = P(X=k-1) * --------------------
267 // (N-K)*(N-K-1)*...*(N-K-n+1)
268 // P(X=0) = -----------------------------
269 // N*(N-1)*...*(N-n+1)
271 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
273 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
274 double log_result
= 0.0;
275 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
276 log_result
+= log(i
);
278 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
279 log_result
-= log(i
);
281 return exp(log_result
);
283 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
284 double log_result
= 0.0;
285 for (int16_t i
= k
+1; i
<= n
; i
++) {
286 log_result
+= log(i
);
288 for (int16_t i
= K
+1; i
<= N
; i
++) {
289 log_result
-= log(i
);
291 return exp(log_result
);
292 } else { // recursion
293 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
298 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
300 const uint16_t N
= 256;
302 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
304 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
305 if (p_T_is_k_when_S_is_K
== 0.0) return 0.0;
307 double p_S_is_K
= p_K
[K
];
308 double p_T_is_k
= 0.0;
309 for (uint16_t i
= 0; i
<= 256; i
++) {
311 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
314 if (p_T_is_k
== 0.0) return 0.0;
315 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
318 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
320 static const uint_fast8_t common_bits_LUT
[256] = {
321 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
334 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
335 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
336 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
339 return common_bits_LUT
[bytes_diff
];
344 // printf("Tests: Partial Statelist sizes\n");
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
348 // for (uint16_t i = 0; i <= 16; i+=2) {
349 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
352 // #define NUM_STATISTICS 100000
353 // uint32_t statistics_odd[17];
354 // uint64_t statistics[257];
355 // uint32_t statistics_even[17];
356 // struct Crypto1State cs;
357 // time_t time1 = clock();
359 // for (uint16_t i = 0; i < 257; i++) {
360 // statistics[i] = 0;
362 // for (uint16_t i = 0; i < 17; i++) {
363 // statistics_odd[i] = 0;
364 // statistics_even[i] = 0;
367 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
368 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
369 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
370 // uint16_t sum_property = SumProperty(&cs);
371 // statistics[sum_property] += 1;
372 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
373 // statistics_even[sum_property]++;
374 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
375 // statistics_odd[sum_property]++;
376 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
379 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
380 // for (uint16_t i = 0; i < 257; i++) {
381 // if (statistics[i] != 0) {
382 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
385 // for (uint16_t i = 0; i <= 16; i++) {
386 // if (statistics_odd[i] != 0) {
387 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
390 // for (uint16_t i = 0; i <= 16; i++) {
391 // if (statistics_odd[i] != 0) {
392 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
396 // printf("Tests: Sum Probabilities based on Partial Sums\n");
397 // for (uint16_t i = 0; i < 257; i++) {
398 // statistics[i] = 0;
400 // uint64_t num_states = 0;
401 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
402 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
403 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
404 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
405 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
408 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
409 // for (uint16_t i = 0; i < 257; i++) {
410 // if (statistics[i] != 0) {
411 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
415 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
416 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
417 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
418 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
419 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
420 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
421 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
423 // struct Crypto1State *pcs;
424 // pcs = crypto1_create(0xffffffffffff);
425 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
427 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
428 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // best_first_bytes[0],
431 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
432 // //test_state_odd = pcs->odd & 0x00ffffff;
433 // //test_state_even = pcs->even & 0x00ffffff;
434 // crypto1_destroy(pcs);
435 // pcs = crypto1_create(0xa0a1a2a3a4a5);
436 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
438 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
439 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
440 // best_first_bytes[0],
442 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
443 // //test_state_odd = pcs->odd & 0x00ffffff;
444 // //test_state_even = pcs->even & 0x00ffffff;
445 // crypto1_destroy(pcs);
446 // pcs = crypto1_create(0xa6b9aa97b955);
447 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
449 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
450 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
451 // best_first_bytes[0],
453 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
454 //test_state_odd = pcs->odd & 0x00ffffff;
455 //test_state_even = pcs->even & 0x00ffffff;
456 // crypto1_destroy(pcs);
459 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
461 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
462 // for (uint16_t i = 0; i < 256; i++) {
463 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
469 // printf("\nTests: Sorted First Bytes:\n");
470 // for (uint16_t i = 0; i < 256; i++) {
471 // uint8_t best_byte = best_first_bytes[i];
472 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
473 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
475 // nonces[best_byte].num,
476 // nonces[best_byte].Sum,
477 // nonces[best_byte].Sum8_guess,
478 // nonces[best_byte].Sum8_prob * 100,
479 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
480 // //nonces[best_byte].score1,
481 // //nonces[best_byte].score2
485 // printf("\nTests: parity performance\n");
486 // time_t time1p = clock();
487 // uint32_t par_sum = 0;
488 // for (uint32_t i = 0; i < 100000000; i++) {
489 // par_sum += parity(i);
491 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
495 // for (uint32_t i = 0; i < 100000000; i++) {
496 // par_sum += evenparity32(i);
498 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
503 static uint16_t sort_best_first_bytes(void)
505 // sort based on probability for correct guess
506 for (uint16_t i
= 0; i
< 256; i
++ ) {
508 float prob1
= nonces
[i
].Sum8_prob
;
509 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
510 while (prob1
< prob2
&& j
< i
) {
511 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
514 for (uint16_t k
= i
; k
> j
; k
--) {
515 best_first_bytes
[k
] = best_first_bytes
[k
-1];
518 best_first_bytes
[j
] = i
;
521 // determine how many are above the CONFIDENCE_THRESHOLD
522 uint16_t num_good_nonces
= 0;
523 for (uint16_t i
= 0; i
< 256; i
++) {
524 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
529 if (num_good_nonces
== 0) return 0;
531 uint16_t best_first_byte
= 0;
533 // select the best possible first byte based on number of common bits with all {b'}
534 // uint16_t max_common_bits = 0;
535 // for (uint16_t i = 0; i < num_good_nonces; i++) {
536 // uint16_t sum_common_bits = 0;
537 // for (uint16_t j = 0; j < num_good_nonces; j++) {
539 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
542 // if (sum_common_bits > max_common_bits) {
543 // max_common_bits = sum_common_bits;
544 // best_first_byte = i;
548 // select best possible first byte {b} based on least likely sum/bitflip property
550 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
551 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
552 float bitflip_prob
= 1.0;
554 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
])
555 bitflip_prob
= 0.09375;
557 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
559 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
)
560 min_p_K
= p_K
[sum8
] * bitflip_prob
;
565 // use number of commmon bits as a tie breaker
566 uint_fast8_t max_common_bits
= 0;
567 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
569 float bitflip_prob
= 1.0;
570 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
])
571 bitflip_prob
= 0.09375;
573 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
574 uint_fast8_t sum_common_bits
= 0;
575 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
576 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
578 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
579 if (sum_common_bits
> max_common_bits
) {
580 max_common_bits
= sum_common_bits
;
586 // swap best possible first byte to the pole position
587 if (best_first_byte
!= 0) {
588 uint16_t temp
= best_first_bytes
[0];
589 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
590 best_first_bytes
[best_first_byte
] = temp
;
593 return num_good_nonces
;
596 static uint16_t estimate_second_byte_sum(void)
598 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
599 float Sum8_prob
= 0.0;
601 if (nonces
[first_byte
].updated
) {
602 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
603 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
604 if (prob
> Sum8_prob
) {
609 nonces
[first_byte
].Sum8_guess
= Sum8
;
610 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
611 nonces
[first_byte
].updated
= false;
614 return sort_best_first_bytes();
617 static int read_nonce_file(void)
619 FILE *fnonces
= NULL
;
620 uint8_t trgBlockNo
= 0;
621 uint8_t trgKeyType
= 0;
623 uint32_t nt_enc1
= 0, nt_enc2
= 0;
625 int total_num_nonces
= 0;
627 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
628 PrintAndLog("Could not open file nonces.bin");
632 PrintAndLog("Reading nonces from file nonces.bin...");
633 memset (read_buf
, 0, sizeof (read_buf
));
634 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
635 if ( bytes_read
== 0) {
636 PrintAndLog("File reading error.");
640 cuid
= bytes_to_num(read_buf
, 4);
641 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
642 trgKeyType
= bytes_to_num(read_buf
+5, 1);
645 memset (read_buf
, 0, sizeof (read_buf
));
646 if ((ret
= fread(read_buf
, 1, 9, fnonces
)) == 9) {
647 nt_enc1
= bytes_to_num(read_buf
, 4);
648 nt_enc2
= bytes_to_num(read_buf
+4, 4);
649 par_enc
= bytes_to_num(read_buf
+8, 1);
650 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
651 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
652 add_nonce(nt_enc1
, par_enc
>> 4);
653 add_nonce(nt_enc2
, par_enc
& 0x0f);
654 total_num_nonces
+= 2;
659 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
663 static void Check_for_FilterFlipProperties(void)
665 printf("Checking for Filter Flip Properties...\n");
666 uint16_t num_bitflips
= 0;
668 for (uint16_t i
= 0; i
< 256; i
++) {
669 nonces
[i
].BitFlip
[ODD_STATE
] = false;
670 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
673 for (uint16_t i
= 0; i
< 256; i
++) {
674 if (!nonces
[i
].first
|| !nonces
[i
^0x80].first
|| !nonces
[i
^0x40].first
) continue;
676 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
677 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
678 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
680 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
681 nonces
[i
].BitFlip
[ODD_STATE
] = true;
683 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
684 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
690 fprintf(fstats
, "%d;", num_bitflips
);
693 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
695 struct Crypto1State sim_cs
= {0, 0};
696 // init cryptostate with key:
697 for(int8_t i
= 47; i
> 0; i
-= 2) {
698 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
699 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
703 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
704 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
705 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
706 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
707 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
708 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
709 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
710 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
715 static void simulate_acquire_nonces()
717 clock_t time1
= clock();
718 bool filter_flip_checked
= false;
719 uint32_t total_num_nonces
= 0;
720 uint32_t next_fivehundred
= 500;
721 uint32_t total_added_nonces
= 0;
723 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
724 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
726 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
727 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
733 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
734 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
735 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
738 if (first_byte_num
== 256 ) {
739 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
740 if (!filter_flip_checked
) {
741 Check_for_FilterFlipProperties();
742 filter_flip_checked
= true;
744 num_good_first_bytes
= estimate_second_byte_sum();
745 if (total_num_nonces
> next_fivehundred
) {
746 next_fivehundred
= (total_num_nonces
/500+1) * 500;
747 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
750 CONFIDENCE_THRESHOLD
* 100.0,
751 num_good_first_bytes
);
755 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
757 time1
= clock() - time1
;
759 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
761 ((float)time1
)/CLOCKS_PER_SEC
,
762 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
764 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
768 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
770 clock_t time1
= clock();
771 bool initialize
= true;
772 bool finished
= false;
773 bool filter_flip_checked
= false;
775 uint8_t write_buf
[9];
776 uint32_t total_num_nonces
= 0;
777 uint32_t next_fivehundred
= 500;
778 uint32_t total_added_nonces
= 0;
780 FILE *fnonces
= NULL
;
783 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {0,0,0} };
784 memcpy(c
.d
.asBytes
, key
, 6);
785 c
.arg
[0] = blockNo
+ (keyType
* 0x100);
786 c
.arg
[1] = trgBlockNo
+ (trgKeyType
* 0x100);
788 printf("Acquiring nonces...\n");
792 flags
|= initialize
? 0x0001 : 0;
793 flags
|= slow
? 0x0002 : 0;
794 flags
|= field_off
? 0x0004 : 0;
797 clearCommandBuffer();
800 if (field_off
) break;
802 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 6000)) {
803 if (fnonces
) fclose(fnonces
);
808 if (fnonces
) fclose(fnonces
);
809 return resp
.arg
[0]; // error during nested_hard
815 if (nonce_file_write
&& fnonces
== NULL
) {
816 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
817 PrintAndLog("Could not create file nonces.bin");
820 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
821 memset (write_buf
, 0, sizeof (write_buf
));
822 num_to_bytes(cuid
, 4, write_buf
);
823 fwrite(write_buf
, 1, 4, fnonces
);
824 fwrite(&trgBlockNo
, 1, 1, fnonces
);
825 fwrite(&trgKeyType
, 1, 1, fnonces
);
831 uint32_t nt_enc1
, nt_enc2
;
833 uint16_t num_acquired_nonces
= resp
.arg
[2];
834 uint8_t *bufp
= resp
.d
.asBytes
;
835 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+= 2) {
836 nt_enc1
= bytes_to_num(bufp
, 4);
837 nt_enc2
= bytes_to_num(bufp
+4, 4);
838 par_enc
= bytes_to_num(bufp
+8, 1);
840 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
841 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
843 if (nonce_file_write
&& fnonces
) {
844 fwrite(bufp
, 1, 9, fnonces
);
849 total_num_nonces
+= num_acquired_nonces
;
851 if (first_byte_num
== 256) {
853 if (!filter_flip_checked
) {
854 Check_for_FilterFlipProperties();
855 filter_flip_checked
= true;
858 num_good_first_bytes
= estimate_second_byte_sum();
860 if (total_num_nonces
> next_fivehundred
) {
861 next_fivehundred
= (total_num_nonces
/500+1) * 500;
862 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
865 NONCES_THRESHOLD
* idx
,
866 CONFIDENCE_THRESHOLD
* 100.0,
871 if (total_added_nonces
>= (NONCES_THRESHOLD
* idx
)) {
872 if (num_good_first_bytes
> 0) {
873 if (generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
) || known_target_key
!= -1) {
874 field_off
= brute_force(); // switch off field with next SendCommand and then finish
882 if (nonce_file_write
&& fnonces
)
885 time1
= clock() - time1
;
887 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
889 ((float)time1
)/CLOCKS_PER_SEC
,
890 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
896 static int init_partial_statelists(void)
898 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
899 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
900 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
902 printf("Allocating memory for partial statelists...\n");
903 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
904 for (uint16_t i
= 0; i
<= 16; i
+=2) {
905 partial_statelist
[i
].len
[odd_even
] = 0;
906 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
907 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
908 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
909 PrintAndLog("Cannot allocate enough memory. Aborting");
912 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
913 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
918 printf("Generating partial statelists...\n");
919 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
921 uint32_t num_of_states
= 1<<20;
922 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
923 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
924 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
925 p
+= partial_statelist
[sum_property
].len
[odd_even
];
927 partial_statelist
[sum_property
].len
[odd_even
]++;
928 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
929 if ((state
& index_mask
) != index
) {
930 index
= state
& index_mask
;
932 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
933 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
936 // add End Of List markers
937 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
938 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
939 p
+= partial_statelist
[i
].len
[odd_even
];
940 *p
= END_OF_LIST_MARKER
;
947 static void init_BitFlip_statelist(void)
949 printf("Generating bitflip statelist...\n");
950 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
952 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
953 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
954 if (filter(state
) != filter(state
^1)) {
955 if ((state
& index_mask
) != index
) {
956 index
= state
& index_mask
;
958 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
959 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
964 // set len and add End Of List marker
965 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
966 *p
= END_OF_LIST_MARKER
;
967 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
970 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
972 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
974 if (p
== NULL
) return NULL
;
975 while (*p
< (state
& mask
)) p
++;
976 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
977 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
978 return NULL
; // no match
981 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
983 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
984 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
985 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
986 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
987 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
988 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
992 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
994 uint_fast8_t j_bit_mask
= 0x01 << bit
;
995 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
996 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
997 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
998 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1002 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1006 switch (num_common_bits
) {
1007 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1008 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1009 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1010 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1011 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1012 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1013 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1014 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1018 switch (num_common_bits
) {
1019 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1020 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1021 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1022 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1023 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1024 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1025 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1029 return true; // valid state
1032 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1034 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1035 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1036 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1037 uint_fast8_t j
= common_bits(bytes_diff
);
1038 uint32_t mask
= 0xfffffff0;
1039 if (odd_even
== ODD_STATE
) {
1045 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1046 bool found_match
= false;
1047 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1048 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1049 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1050 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1051 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1052 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1054 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1055 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1057 // if ((odd_even == ODD_STATE && state == test_state_odd)
1058 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1059 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1060 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1064 // if ((odd_even == ODD_STATE && state == test_state_odd)
1065 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1066 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1067 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1073 // if ((odd_even == ODD_STATE && state == test_state_odd)
1074 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1075 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1076 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1084 // if ((odd_even == ODD_STATE && state == test_state_odd)
1085 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1086 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1095 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1097 for (uint16_t i
= 0; i
< 256; i
++) {
1098 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1099 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1100 uint_fast8_t j
= common_bits(bytes_diff
);
1101 uint32_t mask
= 0xfffffff0;
1102 if (odd_even
== ODD_STATE
) {
1108 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1109 bool found_match
= false;
1110 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1112 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1113 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1115 // if ((odd_even == ODD_STATE && state == test_state_odd)
1116 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1117 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1118 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1122 // if ((odd_even == ODD_STATE && state == test_state_odd)
1123 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1124 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1125 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1131 // if ((odd_even == ODD_STATE && state == test_state_odd)
1132 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1133 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1134 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1138 // if ((odd_even == ODD_STATE && state == test_state_odd)
1139 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1140 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1151 static struct sl_cache_entry
{
1154 } sl_cache
[17][17][2];
1156 static void init_statelist_cache(void)
1158 for (uint16_t i
= 0; i
< 17; i
+=2) {
1159 for (uint16_t j
= 0; j
< 17; j
+=2) {
1160 for (uint16_t k
= 0; k
< 2; k
++) {
1161 sl_cache
[i
][j
][k
].sl
= NULL
;
1162 sl_cache
[i
][j
][k
].len
= 0;
1168 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1170 uint32_t worstcase_size
= 1<<20;
1172 // check cache for existing results
1173 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1174 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1175 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1179 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1180 if (candidates
->states
[odd_even
] == NULL
) {
1181 PrintAndLog("Out of memory error.\n");
1184 uint32_t *add_p
= candidates
->states
[odd_even
];
1185 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1186 uint32_t search_mask
= 0x000ffff0;
1187 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1188 if (p1
!= NULL
&& p2
!= NULL
) {
1189 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1190 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1191 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1192 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1193 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1194 *add_p
++ = (*p1
<< 4) | *p2
;
1203 // set end of list marker and len
1204 *add_p
= END_OF_LIST_MARKER
;
1205 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1207 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1209 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1210 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1215 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1217 statelist_t
*new_candidates
= NULL
;
1218 if (current_candidates
== NULL
) {
1219 if (candidates
== NULL
) {
1220 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1222 new_candidates
= candidates
;
1224 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1226 if (!new_candidates
) return NULL
;
1228 new_candidates
->next
= NULL
;
1229 new_candidates
->len
[ODD_STATE
] = 0;
1230 new_candidates
->len
[EVEN_STATE
] = 0;
1231 new_candidates
->states
[ODD_STATE
] = NULL
;
1232 new_candidates
->states
[EVEN_STATE
] = NULL
;
1233 return new_candidates
;
1236 static bool TestIfKeyExists(uint64_t key
)
1238 struct Crypto1State
*pcs
;
1239 pcs
= crypto1_create(key
);
1240 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1242 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1243 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1244 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1245 printf("Validating key search space\n");
1247 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1248 bool found_odd
= false;
1249 bool found_even
= false;
1250 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1251 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1252 while (*p_odd
!= END_OF_LIST_MARKER
) {
1253 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1259 while (*p_even
!= END_OF_LIST_MARKER
) {
1260 if ((*p_even
& 0x00ffffff) == state_even
)
1265 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1266 if (found_odd
&& found_even
) {
1267 if (known_target_key
!= -1) {
1268 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
1272 log(maximum_states
)/log(2)
1275 fprintf(fstats
, "1\n");
1277 crypto1_destroy(pcs
);
1282 if (known_target_key
!= -1) {
1283 printf("Key NOT found!\n");
1285 fprintf(fstats
, "0\n");
1287 crypto1_destroy(pcs
);
1291 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1293 printf("Generating crypto1 state candidates... \n");
1295 statelist_t
*current_candidates
= NULL
;
1296 // estimate maximum candidate states
1298 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1299 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1300 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1301 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1306 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1308 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2));
1310 init_statelist_cache();
1312 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1313 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1314 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1315 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1316 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1317 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1318 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1319 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1320 current_candidates
= add_more_candidates(current_candidates
);
1321 if (current_candidates
!= NULL
) {
1322 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1323 // and eliminate the need to calculate the other part
1324 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1325 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1326 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1327 if(current_candidates
->len
[ODD_STATE
]) {
1328 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1330 current_candidates
->len
[EVEN_STATE
] = 0;
1331 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1332 *p
= END_OF_LIST_MARKER
;
1335 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1336 if(current_candidates
->len
[EVEN_STATE
]) {
1337 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1339 current_candidates
->len
[ODD_STATE
] = 0;
1340 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1341 *p
= END_OF_LIST_MARKER
;
1344 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1345 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1356 for (statelist_t
*sl
= candidates
; sl
!= NULL
&& n
< MAX_BUCKETS
; sl
= sl
->next
, n
++) {
1357 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1360 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1362 float kcalc
= log(maximum_states
)/log(2);
1363 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1365 fprintf(fstats
, "%1.1f;", (kcalc
!= 0) ? kcalc
: 0.0);
1367 if (kcalc
< CRACKING_THRESHOLD
) return true;
1372 static void free_candidates_memory(statelist_t
*sl
)
1377 free_candidates_memory(sl
->next
);
1382 static void free_statelist_cache(void)
1384 for (uint16_t i
= 0; i
< 17; i
+=2) {
1385 for (uint16_t j
= 0; j
< 17; j
+=2) {
1386 for (uint16_t k
= 0; k
< 2; k
++) {
1387 free(sl_cache
[i
][j
][k
].sl
);
1393 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1394 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1395 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1397 uint8_t bSize
= sizeof(bitslice_t
);
1400 size_t bucket_states_tested
= 0;
1401 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1403 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1406 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1407 size_t bitsliced_blocks
= 0;
1408 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1410 // bitslice all the even states
1411 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1415 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1417 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1421 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1423 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1428 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1432 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1434 // bitslice even half-states
1435 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1437 bucket_size
[bitsliced_blocks
] = max_slices
;
1439 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1440 uint32_t e
= *(p_even
+slice_idx
);
1441 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1444 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1448 // compute the rollback bits
1449 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1450 // inlined crypto1_bs_lfsr_rollback
1451 const bitslice_value_t feedout
= lstate_p
[0].value
;
1453 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1454 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1455 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1456 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1457 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1458 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1459 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1460 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1462 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1465 // bitslice every odd state to every block of even half-states with half-finished rollback
1466 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1472 // set the odd bits and compute rollback
1473 uint64_t o
= (uint64_t) *p_odd
;
1474 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1475 // pre-compute part of the odd feedback bits (minus rollback)
1476 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1478 crypto1_bs_rewind_a0();
1480 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1481 state_p
[state_idx
] = (o
& 1) ? bs_ones
: bs_zeroes
;
1483 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1485 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1486 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1489 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1490 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1492 // set rollback bits
1494 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1495 // set the odd bits and take in the odd rollback bits from the even states
1497 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1499 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1502 // set the even bits and take in the even rollback bits from the odd states
1504 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1506 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1511 bucket_states_tested
+= (bucket_size
[block_idx
] > MAX_BITSLICES
) ? MAX_BITSLICES
: bucket_size
[block_idx
];
1513 // pre-compute first keystream and feedback bit vectors
1514 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1515 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1516 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1517 state_p
[47-24].value
^ state_p
[47-42].value
);
1519 // vector to contain test results (1 = passed, 0 = failed)
1520 bitslice_t results
= bs_ones
;
1522 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1523 size_t parity_bit_idx
= 0;
1524 bitslice_value_t fb_bits
= fbb
;
1525 bitslice_value_t ks_bits
= ksb
;
1526 state_p
= &states
[KEYSTREAM_SIZE
-1];
1527 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1529 // highest bit is transmitted/received first
1530 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1531 // decrypt nonce bits
1532 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1533 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1535 // compute real parity bits on the fly
1536 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1539 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1541 // compute next keystream bit
1542 ks_bits
= crypto1_bs_f20(state_p
);
1545 if((ks_idx
&7) == 0){
1546 // get encrypted parity bits
1547 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1549 // decrypt parity bits
1550 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1552 // compare actual parity bits with decrypted parity bits and take count in results vector
1553 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1555 // make sure we still have a match in our set
1556 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1558 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1559 // the short-circuiting also helps
1560 if(results
.bytes64
[0] == 0
1561 #if MAX_BITSLICES > 64
1562 && results
.bytes64
[1] == 0
1564 #if MAX_BITSLICES > 128
1565 && results
.bytes64
[2] == 0
1566 && results
.bytes64
[3] == 0
1571 // this is about as fast but less portable (requires -std=gnu99)
1572 // asm goto ("ptest %1, %0\n\t"
1573 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1574 parity_bit_vector
= bs_zeroes
.value
;
1576 // compute next feedback bit vector
1577 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1578 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1579 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1580 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1581 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1582 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1585 // all nonce tests were successful: we've found the key in this block!
1586 state_t keys
[MAX_BITSLICES
];
1587 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1588 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1589 if(get_vector_bit(results_idx
, results
)){
1590 key
= keys
[results_idx
].value
;
1595 // prepare to set new states
1596 crypto1_bs_rewind_a0();
1602 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1606 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1608 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1611 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1615 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1619 static void* crack_states_thread(void* x
){
1620 const size_t thread_id
= (size_t)x
;
1621 size_t current_bucket
= thread_id
;
1622 statelist_t
*bucket
= NULL
;
1624 while(current_bucket
< bucket_count
){
1625 if (keys_found
) break;
1627 if ((bucket
= buckets
[current_bucket
])) {
1628 const uint64_t key
= crack_states_bitsliced(bucket
);
1630 if (keys_found
) break;
1631 else if(key
!= -1) {
1632 if (TestIfKeyExists(key
)) {
1633 __sync_fetch_and_add(&keys_found
, 1);
1634 __sync_fetch_and_add(&foundkey
, key
);
1646 current_bucket
+= thread_count
;
1651 static bool brute_force(void) {
1653 if (known_target_key
!= -1) {
1654 PrintAndLog("Looking for known target key in remaining key space...");
1655 ret
= TestIfKeyExists(known_target_key
);
1657 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1659 PrintAndLog("Brute force phase starting.");
1661 clock_t time1
= clock();
1666 memset (bitsliced_rollback_byte
, 0, sizeof (bitsliced_rollback_byte
));
1667 memset (bitsliced_encrypted_nonces
, 0, sizeof (bitsliced_encrypted_nonces
));
1668 memset (bitsliced_encrypted_parity_bits
, 0, sizeof (bitsliced_encrypted_parity_bits
));
1670 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1671 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes
[0]^(cuid
>>24));
1672 // convert to 32 bit little-endian
1673 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1675 PrintAndLog("Bitslicing nonces...");
1676 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1677 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1678 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1679 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1680 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1681 // convert to 32 bit little-endian
1682 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1684 total_states_tested
= 0;
1686 // count number of states to go
1688 buckets
[MAX_BUCKETS
-1] = NULL
;
1689 for (statelist_t
*p
= candidates
; p
!= NULL
&& bucket_count
< MAX_BUCKETS
; p
= p
->next
) {
1690 buckets
[bucket_count
] = p
;
1693 if (bucket_count
< MAX_BUCKETS
) buckets
[bucket_count
] = NULL
;
1696 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1697 if ( thread_count
< 1)
1701 pthread_t threads
[thread_count
];
1703 // enumerate states using all hardware threads, each thread handles one bucket
1704 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1706 for(size_t i
= 0; i
< thread_count
; i
++){
1707 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1709 for(size_t i
= 0; i
< thread_count
; i
++){
1710 pthread_join(threads
[i
], 0);
1713 time1
= clock() - time1
;
1714 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1
)/CLOCKS_PER_SEC
);
1717 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1720 // reset this counter for the next call
1721 nonces_to_bruteforce
= 0;
1726 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1728 // initialize Random number generator
1730 srand((unsigned) time(&t
));
1732 if (trgkey
!= NULL
) {
1733 known_target_key
= bytes_to_num(trgkey
, 6);
1735 known_target_key
= -1;
1738 init_partial_statelists();
1739 init_BitFlip_statelist();
1740 write_stats
= false;
1743 // set the correct locale for the stats printing
1744 setlocale(LC_ALL
, "");
1746 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1747 PrintAndLog("Could not create/open file hardnested_stats.txt");
1750 for (uint32_t i
= 0; i
< tests
; i
++) {
1751 init_nonce_memory();
1752 simulate_acquire_nonces();
1754 printf("Sum(a0) = %d\n", first_byte_Sum
);
1755 fprintf(fstats
, "%d;", first_byte_Sum
);
1756 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1758 free_nonces_memory();
1759 free_statelist_cache();
1760 free_candidates_memory(candidates
);
1766 init_nonce_memory();
1767 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1768 if (read_nonce_file() != 0) {
1771 Check_for_FilterFlipProperties();
1772 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1773 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1775 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1776 if (cracking
|| known_target_key
!= -1) {
1780 } else { // acquire nonces.
1781 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1788 free_nonces_memory();
1789 free_statelist_cache();
1790 free_candidates_memory(candidates
);