1 //----------------------------------------------------------------------------- 
   2 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   3 // at your option, any later version. See the LICENSE.txt file for the text of 
   5 //----------------------------------------------------------------------------- 
   6 // Miscellaneous routines for low frequency tag operations. 
   7 // Tags supported here so far are Texas Instruments (TI), HID 
   8 // Also routines for raw mode reading/simulating of LF waveform 
   9 //----------------------------------------------------------------------------- 
  11 #include "proxmark3.h" 
  18 #include "lfsampling.h" 
  23  * Function to do a modulation and then get samples. 
  29 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
) 
  32     int divisor_used 
= 95; // 125 KHz 
  33     // see if 'h' was specified 
  35     if (command
[strlen((char *) command
) - 1] == 'h') 
  36         divisor_used 
= 88; // 134.8 KHz 
  38         sample_config sc 
= { 0,0,1, divisor_used
, 0}; 
  39         setSamplingConfig(&sc
); 
  41     /* Make sure the tag is reset */ 
  42     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
  43     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  46         LFSetupFPGAForADC(sc
.divisor
, 1); 
  48     // And a little more time for the tag to fully power up 
  51     // now modulate the reader field 
  52     while(*command 
!= '\0' && *command 
!= ' ') { 
  53         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  55         SpinDelayUs(delay_off
); 
  56                 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  58         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  60         if(*(command
++) == '0') 
  61             SpinDelayUs(period_0
); 
  63             SpinDelayUs(period_1
); 
  65     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
  67     SpinDelayUs(delay_off
); 
  68         FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
); 
  70     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
  73         DoAcquisition_config(false); 
  76 /* blank r/w tag data stream 
  77 ...0000000000000000 01111111 
  78 1010101010101010101010101010101010101010101010101010101010101010 
  81 101010101010101[0]000... 
  83 [5555fe852c5555555555555555fe0000] 
  87     // some hardcoded initial params 
  88     // when we read a TI tag we sample the zerocross line at 2Mhz 
  89     // TI tags modulate a 1 as 16 cycles of 123.2Khz 
  90     // TI tags modulate a 0 as 16 cycles of 134.2Khz 
  91  #define FSAMPLE 2000000 
  95     signed char *dest 
= (signed char *)BigBuf_get_addr(); 
  96     uint16_t n 
= BigBuf_max_traceLen(); 
  97     // 128 bit shift register [shift3:shift2:shift1:shift0] 
  98     uint32_t shift3 
= 0, shift2 
= 0, shift1 
= 0, shift0 
= 0; 
 100     int i
, cycles
=0, samples
=0; 
 101     // how many sample points fit in 16 cycles of each frequency 
 102     uint32_t sampleslo 
= (FSAMPLE
<<4)/FREQLO
, sampleshi 
= (FSAMPLE
<<4)/FREQHI
; 
 103     // when to tell if we're close enough to one freq or another 
 104     uint32_t threshold 
= (sampleslo 
- sampleshi 
+ 1)>>1; 
 106     // TI tags charge at 134.2Khz 
 107     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 108     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 110     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 111     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 112     // whether we're modulating the antenna (high) 
 113     // or listening to the antenna (low) 
 114     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 116     // get TI tag data into the buffer 
 119     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 121     for (i
=0; i
<n
-1; i
++) { 
 122         // count cycles by looking for lo to hi zero crossings 
 123         if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) { 
 125             // after 16 cycles, measure the frequency 
 128                 samples
=i
-samples
; // number of samples in these 16 cycles 
 130                 // TI bits are coming to us lsb first so shift them 
 131                 // right through our 128 bit right shift register 
 132                 shift0 
= (shift0
>>1) | (shift1 
<< 31); 
 133                 shift1 
= (shift1
>>1) | (shift2 
<< 31); 
 134                 shift2 
= (shift2
>>1) | (shift3 
<< 31); 
 137                 // check if the cycles fall close to the number 
 138                 // expected for either the low or high frequency 
 139                 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) { 
 140                     // low frequency represents a 1 
 142                 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) { 
 143                     // high frequency represents a 0 
 145                     // probably detected a gay waveform or noise 
 146                     // use this as gaydar or discard shift register and start again 
 147                     shift3 
= shift2 
= shift1 
= shift0 
= 0; 
 151                 // for each bit we receive, test if we've detected a valid tag 
 153                 // if we see 17 zeroes followed by 6 ones, we might have a tag 
 154                 // remember the bits are backwards 
 155                 if ( ((shift0 
& 0x7fffff) == 0x7e0000) ) { 
 156                     // if start and end bytes match, we have a tag so break out of the loop 
 157                     if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) { 
 158                         cycles 
= 0xF0B; //use this as a flag (ugly but whatever) 
 166     // if flag is set we have a tag 
 168         DbpString("Info: No valid tag detected."); 
 170         // put 64 bit data into shift1 and shift0 
 171         shift0 
= (shift0
>>24) | (shift1 
<< 8); 
 172         shift1 
= (shift1
>>24) | (shift2 
<< 8); 
 174         // align 16 bit crc into lower half of shift2 
 175         shift2 
= ((shift2
>>24) | (shift3 
<< 8)) & 0x0ffff; 
 177         // if r/w tag, check ident match 
 178                 if (shift3 
& (1<<15) ) { 
 179             DbpString("Info: TI tag is rewriteable"); 
 180             // only 15 bits compare, last bit of ident is not valid 
 181                         if (((shift3 
>> 16) ^ shift0
) & 0x7fff ) { 
 182                 DbpString("Error: Ident mismatch!"); 
 184                 DbpString("Info: TI tag ident is valid"); 
 187             DbpString("Info: TI tag is readonly"); 
 190         // WARNING the order of the bytes in which we calc crc below needs checking 
 191         // i'm 99% sure the crc algorithm is correct, but it may need to eat the 
 192         // bytes in reverse or something 
 196         crc 
= update_crc16(crc
, (shift0
)&0xff); 
 197         crc 
= update_crc16(crc
, (shift0
>>8)&0xff); 
 198         crc 
= update_crc16(crc
, (shift0
>>16)&0xff); 
 199         crc 
= update_crc16(crc
, (shift0
>>24)&0xff); 
 200         crc 
= update_crc16(crc
, (shift1
)&0xff); 
 201         crc 
= update_crc16(crc
, (shift1
>>8)&0xff); 
 202         crc 
= update_crc16(crc
, (shift1
>>16)&0xff); 
 203         crc 
= update_crc16(crc
, (shift1
>>24)&0xff); 
 205         Dbprintf("Info: Tag data: %x%08x, crc=%x", 
 206                  (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2 
& 0xFFFF); 
 207         if (crc 
!= (shift2
&0xffff)) { 
 208             Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
); 
 210             DbpString("Info: CRC is good"); 
 215 void WriteTIbyte(uint8_t b
) 
 219     // modulate 8 bits out to the antenna 
 223             // stop modulating antenna 
 230             // stop modulating antenna 
 240 void AcquireTiType(void) 
 243     // tag transmission is <20ms, sampling at 2M gives us 40K samples max 
 244     // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t 
 245  #define TIBUFLEN 1250 
 248         uint32_t *BigBuf 
= (uint32_t *)BigBuf_get_addr(); 
 249     memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t)); 
 251     // Set up the synchronous serial port 
 252     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DIN
; 
 253     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN
; 
 255     // steal this pin from the SSP and use it to control the modulation 
 256     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 257     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 259     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_SWRST
; 
 260     AT91C_BASE_SSC
->SSC_CR 
= AT91C_SSC_RXEN 
| AT91C_SSC_TXEN
; 
 262     // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long 
 263     // 48/2 = 24 MHz clock must be divided by 12 
 264     AT91C_BASE_SSC
->SSC_CMR 
= 12; 
 266     AT91C_BASE_SSC
->SSC_RCMR 
= SSC_CLOCK_MODE_SELECT(0); 
 267     AT91C_BASE_SSC
->SSC_RFMR 
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
; 
 268     AT91C_BASE_SSC
->SSC_TCMR 
= 0; 
 269     AT91C_BASE_SSC
->SSC_TFMR 
= 0; 
 276     // Charge TI tag for 50ms. 
 279     // stop modulating antenna and listen 
 286         if(AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
 287             BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
;        // store 32 bit values in buffer 
 288             i
++; if(i 
>= TIBUFLEN
) break; 
 293     // return stolen pin to SSP 
 294     AT91C_BASE_PIOA
->PIO_PDR 
= GPIO_SSC_DOUT
; 
 295     AT91C_BASE_PIOA
->PIO_ASR 
= GPIO_SSC_DIN 
| GPIO_SSC_DOUT
; 
 297     char *dest 
= (char *)BigBuf_get_addr(); 
 300     for (i
=TIBUFLEN
-1; i
>=0; i
--) { 
 301         for (j
=0; j
<32; j
++) { 
 302             if(BigBuf
[i
] & (1 << j
)) { 
 311 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc 
 312 // if crc provided, it will be written with the data verbatim (even if bogus) 
 313 // if not provided a valid crc will be computed from the data and written. 
 314 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
) 
 316     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 318         crc 
= update_crc16(crc
, (idlo
)&0xff); 
 319         crc 
= update_crc16(crc
, (idlo
>>8)&0xff); 
 320         crc 
= update_crc16(crc
, (idlo
>>16)&0xff); 
 321         crc 
= update_crc16(crc
, (idlo
>>24)&0xff); 
 322         crc 
= update_crc16(crc
, (idhi
)&0xff); 
 323         crc 
= update_crc16(crc
, (idhi
>>8)&0xff); 
 324         crc 
= update_crc16(crc
, (idhi
>>16)&0xff); 
 325         crc 
= update_crc16(crc
, (idhi
>>24)&0xff); 
 327     Dbprintf("Writing to tag: %x%08x, crc=%x", 
 328              (unsigned int) idhi
, (unsigned int) idlo
, crc
); 
 330     // TI tags charge at 134.2Khz 
 331     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz 
 332     // Place FPGA in passthrough mode, in this mode the CROSS_LO line 
 333     // connects to SSP_DIN and the SSP_DOUT logic level controls 
 334     // whether we're modulating the antenna (high) 
 335     // or listening to the antenna (low) 
 336     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
); 
 339     // steal this pin from the SSP and use it to control the modulation 
 340     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 341     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 343     // writing algorithm: 
 344     // a high bit consists of a field off for 1ms and field on for 1ms 
 345     // a low bit consists of a field off for 0.3ms and field on for 1.7ms 
 346     // initiate a charge time of 50ms (field on) then immediately start writing bits 
 347     // start by writing 0xBB (keyword) and 0xEB (password) 
 348     // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) 
 349     // finally end with 0x0300 (write frame) 
 350     // all data is sent lsb firts 
 351     // finish with 15ms programming time 
 355     SpinDelay(50);      // charge time 
 357     WriteTIbyte(0xbb); // keyword 
 358     WriteTIbyte(0xeb); // password 
 359     WriteTIbyte( (idlo    
)&0xff ); 
 360     WriteTIbyte( (idlo
>>8 )&0xff ); 
 361     WriteTIbyte( (idlo
>>16)&0xff ); 
 362     WriteTIbyte( (idlo
>>24)&0xff ); 
 363     WriteTIbyte( (idhi    
)&0xff ); 
 364     WriteTIbyte( (idhi
>>8 )&0xff ); 
 365     WriteTIbyte( (idhi
>>16)&0xff ); 
 366     WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo 
 367     WriteTIbyte( (crc     
)&0xff ); // crc lo 
 368     WriteTIbyte( (crc
>>8  )&0xff ); // crc hi 
 369     WriteTIbyte(0x00); // write frame lo 
 370     WriteTIbyte(0x03); // write frame hi 
 372     SpinDelay(50);      // programming time 
 376     // get TI tag data into the buffer 
 379     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
 380     DbpString("Now use tiread to check"); 
 383 void SimulateTagLowFrequency(uint16_t period
, uint32_t gap
, uint8_t ledcontrol
) 
 386     uint8_t *tab 
= BigBuf_get_addr(); 
 388     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
 389     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
); 
 391     AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT 
| GPIO_SSC_CLK
; 
 393     AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 394     AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_CLK
; 
 396  #define SHORT_COIL()   LOW(GPIO_SSC_DOUT) 
 397  #define OPEN_COIL()            HIGH(GPIO_SSC_DOUT) 
 401         //wait until SSC_CLK goes HIGH 
 402         while(!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
)) { 
 403                         if(BUTTON_PRESS() || usb_poll()) { 
 404                 DbpString("Stopped"); 
 419         //wait until SSC_CLK goes LOW 
 420         while(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_CLK
) { 
 422                 DbpString("Stopped"); 
 440 #define DEBUG_FRAME_CONTENTS 1 
 441 void SimulateTagLowFrequencyBidir(int divisor
, int t0
) 
 445 // compose fc/8 fc/10 waveform (FSK2) 
 446 static void fc(int c
, int *n
) 
 448     uint8_t *dest 
= BigBuf_get_addr(); 
 451     // for when we want an fc8 pattern every 4 logical bits 
 463     //  an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples 
 465         for (idx
=0; idx
<6; idx
++) { 
 477     //  an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples 
 479         for (idx
=0; idx
<5; idx
++) { 
 493 // compose fc/X fc/Y waveform (FSKx) 
 494 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)  
 496     uint8_t *dest 
= BigBuf_get_addr(); 
 497     uint8_t halfFC 
= fc
/2; 
 498     uint8_t wavesPerClock 
= clock
/fc
; 
 499     uint8_t mod 
= clock 
% fc
;    //modifier 
 500     uint8_t modAdj 
= fc
/mod
;     //how often to apply modifier 
 501     bool modAdjOk 
= !(fc 
% mod
); //if (fc % mod==0) modAdjOk=TRUE; 
 502     // loop through clock - step field clock 
 503     for (uint8_t idx
=0; idx 
< wavesPerClock
; idx
++){ 
 504         // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) 
 505         memset(dest
+(*n
), 0, fc
-halfFC
);  //in case of odd number use extra here 
 506         memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 509     if (mod
>0) (*modCnt
)++; 
 510     if ((mod
>0) && modAdjOk
){  //fsk2  
 511         if ((*modCnt 
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave 
 512             memset(dest
+(*n
), 0, fc
-halfFC
); 
 513             memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
); 
 517     if (mod
>0 && !modAdjOk
){  //fsk1 
 518         memset(dest
+(*n
), 0, mod
-(mod
/2)); 
 519         memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2); 
 524 // prepare a waveform pattern in the buffer based on the ID given then 
 525 // simulate a HID tag until the button is pressed 
 526 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
) 
 530      HID tag bitstream format 
 531      The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits 
 532      A 1 bit is represented as 6 fc8 and 5 fc10 patterns 
 533      A 0 bit is represented as 5 fc10 and 6 fc8 patterns 
 534      A fc8 is inserted before every 4 bits 
 535      A special start of frame pattern is used consisting a0b0 where a and b are neither 0 
 536      nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) 
 540         DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); 
 544     // special start of frame marker containing invalid bit sequences 
 545     fc(8,  &n
); fc(8,  &n
);     // invalid 
 546     fc(8,  &n
); fc(10, &n
); // logical 0 
 547     fc(10, &n
); fc(10, &n
); // invalid 
 548     fc(8,  &n
); fc(10, &n
); // logical 0 
 551     // manchester encode bits 43 to 32 
 552     for (i
=11; i
>=0; i
--) { 
 553         if ((i%4
)==3) fc(0,&n
); 
 555             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 557             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 562     // manchester encode bits 31 to 0 
 563     for (i
=31; i
>=0; i
--) { 
 564         if ((i%4
)==3) fc(0,&n
); 
 566             fc(10, &n
); fc(8,  &n
);             // low-high transition 
 568             fc(8,  &n
); fc(10, &n
);             // high-low transition 
 574     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 580 // prepare a waveform pattern in the buffer based on the ID given then 
 581 // simulate a FSK tag until the button is pressed 
 582 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock 
 583 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 587     uint8_t fcHigh 
= arg1 
>> 8; 
 588     uint8_t fcLow 
= arg1 
& 0xFF; 
 590     uint8_t clk 
= arg2 
& 0xFF; 
 591     uint8_t invert 
= (arg2 
>> 8) & 1; 
 593     for (i
=0; i
<size
; i
++){ 
 594         if (BitStream
[i
] == invert
){ 
 595             fcAll(fcLow
, &n
, clk
, &modCnt
); 
 597             fcAll(fcHigh
, &n
, clk
, &modCnt
); 
 600     Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
); 
 601     /*Dbprintf("DEBUG: First 32:"); 
 602     uint8_t *dest = BigBuf_get_addr(); 
 604     Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 606     Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 611     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 617 // compose ask waveform for one bit(ASK) 
 618 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)  
 620     uint8_t *dest 
= BigBuf_get_addr(); 
 621     uint8_t halfClk 
= clock
/2; 
 622     // c = current bit 1 or 0 
 624         memset(dest
+(*n
), c
, halfClk
); 
 625         memset(dest
+(*n
) + halfClk
, c
^1, halfClk
); 
 627         memset(dest
+(*n
), c
, clock
); 
 632 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
) 
 634     uint8_t *dest 
= BigBuf_get_addr(); 
 635     uint8_t halfClk 
= clock
/2; 
 637         memset(dest
+(*n
), c 
^ 1 ^ *phase
, halfClk
); 
 638         memset(dest
+(*n
) + halfClk
, c 
^ *phase
, halfClk
);         
 640         memset(dest
+(*n
), c 
^ *phase
, clock
); 
 646 // args clock, ask/man or askraw, invert, transmission separator 
 647 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 651     uint8_t clk 
= (arg1 
>> 8) & 0xFF; 
 652     uint8_t encoding 
= arg1 
& 1; 
 653     uint8_t separator 
= arg2 
& 1; 
 654     uint8_t invert 
= (arg2 
>> 8) & 1; 
 656     if (encoding
==2){  //biphase 
 658     for (i
=0; i
<size
; i
++){ 
 659             biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 661         if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check 
 662         for (i
=0; i
<size
; i
++){ 
 663                 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
); 
 666     } else {  // ask/manchester || ask/raw 
 667         for (i
=0; i
<size
; i
++){ 
 668             askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
); 
 670         if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase) 
 671             for (i
=0; i
<size
; i
++){ 
 672                 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
); 
 677     if (separator
==1) Dbprintf("sorry but separator option not yet available");  
 679     Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
); 
 681     //Dbprintf("First 32:"); 
 682     //uint8_t *dest = BigBuf_get_addr(); 
 684     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 686     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 691     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 697 //carrier can be 2,4 or 8 
 698 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
) 
 700     uint8_t *dest 
= BigBuf_get_addr(); 
 701     uint8_t halfWave 
= waveLen
/2; 
 705         // write phase change 
 706         memset(dest
+(*n
), *curPhase
^1, halfWave
); 
 707         memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
); 
 712     //write each normal clock wave for the clock duration 
 713     for (; i 
< clk
; i
+=waveLen
){ 
 714         memset(dest
+(*n
), *curPhase
, halfWave
); 
 715         memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
); 
 720 // args clock, carrier, invert, 
 721 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
) 
 725     uint8_t clk 
= arg1 
>> 8; 
 726     uint8_t carrier 
= arg1 
& 0xFF; 
 727     uint8_t invert 
= arg2 
& 0xFF; 
 728     uint8_t curPhase 
= 0; 
 729     for (i
=0; i
<size
; i
++){ 
 730         if (BitStream
[i
] == curPhase
){ 
 731             pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
); 
 733             pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
); 
 736     Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
); 
 737     //Dbprintf("DEBUG: First 32:"); 
 738     //uint8_t *dest = BigBuf_get_addr(); 
 740     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 742     //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); 
 746     SimulateTagLowFrequency(n
, 0, ledcontrol
); 
 752 // loop to get raw HID waveform then FSK demodulate the TAG ID from it 
 753 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 755     uint8_t *dest 
= BigBuf_get_addr(); 
 756     const size_t sizeOfBigBuff 
= BigBuf_max_traceLen(); 
 758     uint32_t hi2
=0, hi
=0, lo
=0; 
 760     // Configure to go in 125Khz listen mode 
 761     LFSetupFPGAForADC(95, true); 
 763     while(!BUTTON_PRESS()) { 
 766         if (ledcontrol
) LED_A_ON(); 
 768                 DoAcquisition_default(-1,true); 
 770         size 
= sizeOfBigBuff
;  //variable size will change after demod so re initialize it before use 
 771                 idx 
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
); 
 774             // final loop, go over previously decoded manchester data and decode into usable tag ID 
 775             // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 
 776             if (hi2 
!= 0){ //extra large HID tags 
 777                 Dbprintf("TAG ID: %x%08x%08x (%d)", 
 778                          (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF); 
 779             }else {  //standard HID tags <38 bits 
 780                 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd 
 783                 uint32_t cardnum 
= 0; 
 784                                 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used 
 786                     lo2
=(((hi 
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit 
 788                                         while(lo2 
> 1){ //find last bit set to 1 (format len bit) 
 796                         cardnum 
= (lo
>>1)&0xFFFF; 
 800                         cardnum 
= (lo
>>1)&0x7FFFF; 
 801                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 804                         cardnum 
= (lo
>>1)&0xFFFF; 
 805                         fc
= ((hi
&1)<<15)|(lo
>>17); 
 808                         cardnum 
= (lo
>>1)&0xFFFFF; 
 809                         fc 
= ((hi
&1)<<11)|(lo
>>21); 
 812                 else { //if bit 38 is not set then 37 bit format is used 
 817                         cardnum 
= (lo
>>1)&0x7FFFF; 
 818                         fc 
= ((hi
&0xF)<<12)|(lo
>>20); 
 821                 //Dbprintf("TAG ID: %x%08x (%d)", 
 822                 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); 
 823                 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", 
 824                          (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF, 
 825                          (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
); 
 828                 if (ledcontrol
) LED_A_OFF(); 
 838     DbpString("Stopped"); 
 839     if (ledcontrol
) LED_A_OFF(); 
 842 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
) 
 844     uint8_t *dest 
= BigBuf_get_addr(); 
 846         size_t size
=0, idx
=0; 
 847     int clk
=0, invert
=0, errCnt
=0, maxErr
=20; 
 850     // Configure to go in 125Khz listen mode 
 851     LFSetupFPGAForADC(95, true); 
 853     while(!BUTTON_PRESS()) { 
 856         if (ledcontrol
) LED_A_ON(); 
 858                 DoAcquisition_default(-1,true); 
 859         size  
= BigBuf_max_traceLen(); 
 860         //Dbprintf("DEBUG: Buffer got"); 
 861                 //askdemod and manchester decode 
 862                 errCnt 
= askmandemod(dest
, &size
, &clk
, &invert
, maxErr
); 
 863         //Dbprintf("DEBUG: ASK Got"); 
 867             errCnt 
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
); 
 868             //Dbprintf("DEBUG: EM GOT"); 
 871                     Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", 
 875                         (uint32_t)(lo
&0xFFFF), 
 876                         (uint32_t)((lo
>>16LL) & 0xFF), 
 877                         (uint32_t)(lo 
& 0xFFFFFF)); 
 879                                 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", 
 882                                     (uint32_t)(lo
&0xFFFF), 
 883                                     (uint32_t)((lo
>>16LL) & 0xFF), 
 884                                     (uint32_t)(lo 
& 0xFFFFFF)); 
 888                 if (ledcontrol
) LED_A_OFF(); 
 890                 *low
=lo 
& 0xFFFFFFFF; 
 894             //Dbprintf("DEBUG: No Tag"); 
 903     DbpString("Stopped"); 
 904     if (ledcontrol
) LED_A_OFF(); 
 907 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
) 
 909     uint8_t *dest 
= BigBuf_get_addr(); 
 911     uint32_t code
=0, code2
=0; 
 913     uint8_t facilitycode
=0; 
 915     // Configure to go in 125Khz listen mode 
 916     LFSetupFPGAForADC(95, true); 
 918     while(!BUTTON_PRESS()) { 
 920         if (ledcontrol
) LED_A_ON(); 
 921                 DoAcquisition_default(-1,true); 
 922         //fskdemod and get start index 
 924         idx 
= IOdemodFSK(dest
, BigBuf_max_traceLen()); 
 929             //0           10          20          30          40          50          60 
 931             //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 
 932             //----------------------------------------------------------------------------- 
 933             //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 
 935             //XSF(version)facility:codeone+codetwo 
 937             if(findone
){ //only print binary if we are doing one 
 938                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
],   dest
[idx
+1],   dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]); 
 939                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]); 
 940                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]); 
 941                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]); 
 942                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]); 
 943                 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]); 
 944                 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]); 
 946             code 
= bytebits_to_byte(dest
+idx
,32); 
 947             code2 
= bytebits_to_byte(dest
+idx
+32,32); 
 948             version 
= bytebits_to_byte(dest
+idx
+27,8); //14,4 
 949             facilitycode 
= bytebits_to_byte(dest
+idx
+18,8) ; 
 950             number 
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9 
 952             Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
); 
 953             // if we're only looking for one tag 
 955                 if (ledcontrol
) LED_A_OFF(); 
 962             version
=facilitycode
=0; 
 968     DbpString("Stopped"); 
 969     if (ledcontrol
) LED_A_OFF(); 
 972 /*------------------------------ 
 973  * T5555/T5557/T5567 routines 
 974  *------------------------------ 
 977 /* T55x7 configuration register definitions */ 
 978 #define T55x7_POR_DELAY                 0x00000001 
 979 #define T55x7_ST_TERMINATOR             0x00000008 
 980 #define T55x7_PWD                       0x00000010 
 981 #define T55x7_MAXBLOCK_SHIFT            5 
 982 #define T55x7_AOR                       0x00000200 
 983 #define T55x7_PSKCF_RF_2                0 
 984 #define T55x7_PSKCF_RF_4                0x00000400 
 985 #define T55x7_PSKCF_RF_8                0x00000800 
 986 #define T55x7_MODULATION_DIRECT         0 
 987 #define T55x7_MODULATION_PSK1           0x00001000 
 988 #define T55x7_MODULATION_PSK2           0x00002000 
 989 #define T55x7_MODULATION_PSK3           0x00003000 
 990 #define T55x7_MODULATION_FSK1           0x00004000 
 991 #define T55x7_MODULATION_FSK2           0x00005000 
 992 #define T55x7_MODULATION_FSK1a          0x00006000 
 993 #define T55x7_MODULATION_FSK2a          0x00007000 
 994 #define T55x7_MODULATION_MANCHESTER     0x00008000 
 995 #define T55x7_MODULATION_BIPHASE        0x00010000 
 996 #define T55x7_BITRATE_RF_8              0 
 997 #define T55x7_BITRATE_RF_16             0x00040000 
 998 #define T55x7_BITRATE_RF_32             0x00080000 
 999 #define T55x7_BITRATE_RF_40             0x000C0000 
1000 #define T55x7_BITRATE_RF_50             0x00100000 
1001 #define T55x7_BITRATE_RF_64             0x00140000 
1002 #define T55x7_BITRATE_RF_100            0x00180000 
1003 #define T55x7_BITRATE_RF_128            0x001C0000 
1005 /* T5555 (Q5) configuration register definitions */ 
1006 #define T5555_ST_TERMINATOR             0x00000001 
1007 #define T5555_MAXBLOCK_SHIFT            0x00000001 
1008 #define T5555_MODULATION_MANCHESTER     0 
1009 #define T5555_MODULATION_PSK1           0x00000010 
1010 #define T5555_MODULATION_PSK2           0x00000020 
1011 #define T5555_MODULATION_PSK3           0x00000030 
1012 #define T5555_MODULATION_FSK1           0x00000040 
1013 #define T5555_MODULATION_FSK2           0x00000050 
1014 #define T5555_MODULATION_BIPHASE        0x00000060 
1015 #define T5555_MODULATION_DIRECT         0x00000070 
1016 #define T5555_INVERT_OUTPUT             0x00000080 
1017 #define T5555_PSK_RF_2                  0 
1018 #define T5555_PSK_RF_4                  0x00000100 
1019 #define T5555_PSK_RF_8                  0x00000200 
1020 #define T5555_USE_PWD                   0x00000400 
1021 #define T5555_USE_AOR                   0x00000800 
1022 #define T5555_BITRATE_SHIFT             12 
1023 #define T5555_FAST_WRITE                0x00004000 
1024 #define T5555_PAGE_SELECT               0x00008000 
1027  * Relevant times in microsecond 
1028  * To compensate antenna falling times shorten the write times 
1029  * and enlarge the gap ones. 
1031 #define START_GAP 50*8 // 10 - 50fc 250 
1032 #define WRITE_GAP 20*8 //  8 - 30fc 
1033 #define WRITE_0   24*8 // 16 - 31fc 24fc 192 
1034 #define WRITE_1   54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 
1036 //  VALUES TAKEN FROM EM4x function: SendForward 
1037 //  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle) 
1038 //  WRITE_GAP = 128;       (16*8) 
1039 //  WRITE_1   = 256 32*8;  (32*8)  
1041 //  These timings work for 4469/4269/4305 (with the 55*8 above) 
1042 //  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8);  
1044 #define T55xx_SAMPLES_SIZE              12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..) 
1046 // Write one bit to card 
1047 void T55xxWriteBit(int bit
) 
1049     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1050     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1051     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1053         SpinDelayUs(WRITE_0
); 
1055         SpinDelayUs(WRITE_1
); 
1056     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1057     SpinDelayUs(WRITE_GAP
); 
1060 // Write one card block in page 0, no lock 
1061 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1065         // Set up FPGA, 125kHz 
1066         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1067         LFSetupFPGAForADC(0, true); 
1069     // Now start writting 
1070     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1071     SpinDelayUs(START_GAP
); 
1075     T55xxWriteBit(0); //Page 0 
1078         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1079             T55xxWriteBit(Pwd 
& i
); 
1085     for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1086         T55xxWriteBit(Data 
& i
); 
1089     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1090         T55xxWriteBit(Block 
& i
); 
1092     // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, 
1093     // so wait a little more) 
1094     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1095     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1097     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1100 // Read one card block in page 0 
1101 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
) 
1104     uint8_t *dest 
= BigBuf_get_addr(); 
1105     uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1106         if ( bufferlength 
> T55xx_SAMPLES_SIZE 
) 
1107                 bufferlength 
= T55xx_SAMPLES_SIZE
; 
1109         memset(dest
, 0x80, bufferlength
); 
1111         // Set up FPGA, 125kHz 
1112         // Wait for config.. (192+8190xPOW)x8 == 67ms 
1113         LFSetupFPGAForADC(0, true); 
1114     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1115     SpinDelayUs(START_GAP
); 
1119     T55xxWriteBit(0); //Page 0 
1122         for (i 
= 0x80000000; i 
!= 0; i 
>>= 1) 
1123             T55xxWriteBit(Pwd 
& i
); 
1128     for (i 
= 0x04; i 
!= 0; i 
>>= 1) 
1129         T55xxWriteBit(Block 
& i
); 
1131     // Turn field on to read the response 
1134     // Now do the acquisition 
1137         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1138             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1141         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1142             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1145                         if (i 
>= bufferlength
) break; 
1149         cmd_send(CMD_ACK
,0,0,0,0,0); 
1150     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1154 // Read card traceability data (page 1) 
1155 void T55xxReadTrace(void){ 
1158     uint8_t *dest 
= BigBuf_get_addr(); 
1159     uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1160         if ( bufferlength 
> T55xx_SAMPLES_SIZE 
) 
1161                 bufferlength 
= T55xx_SAMPLES_SIZE
; 
1163         memset(dest
, 0x80, bufferlength
);   
1165         LFSetupFPGAForADC(0, true); 
1166     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1167     SpinDelayUs(START_GAP
); 
1171     T55xxWriteBit(1); //Page 1 
1173     // Turn field on to read the response 
1176     // Now do the acquisition 
1178         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1179             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1182         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1183             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1187                         if (i 
>= bufferlength
) break; 
1191         cmd_send(CMD_ACK
,0,0,0,0,0); 
1192     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1196 void TurnReadLFOn(){ 
1197         //FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz 
1198         FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1199         // Give it a bit of time for the resonant antenna to settle. 
1204 /*-------------- Cloning routines -----------*/ 
1205 // Copy HID id to card and setup block 0 config 
1206 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1208     int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format 
1212         // Ensure no more than 84 bits supplied 
1214             DbpString("Tags can only have 84 bits."); 
1217         // Build the 6 data blocks for supplied 84bit ID 
1219         data1 
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) 
1220         for (int i
=0;i
<4;i
++) { 
1221             if (hi2 
& (1<<(19-i
))) 
1222                 data1 
|= (1<<(((3-i
)*2)+1)); // 1 -> 10 
1224                 data1 
|= (1<<((3-i
)*2)); // 0 -> 01 
1228         for (int i
=0;i
<16;i
++) { 
1229             if (hi2 
& (1<<(15-i
))) 
1230                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1232                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1236         for (int i
=0;i
<16;i
++) { 
1237             if (hi 
& (1<<(31-i
))) 
1238                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1240                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1244         for (int i
=0;i
<16;i
++) { 
1245             if (hi 
& (1<<(15-i
))) 
1246                 data4 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1248                 data4 
|= (1<<((15-i
)*2)); // 0 -> 01 
1252         for (int i
=0;i
<16;i
++) { 
1253             if (lo 
& (1<<(31-i
))) 
1254                 data5 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1256                 data5 
|= (1<<((15-i
)*2)); // 0 -> 01 
1260         for (int i
=0;i
<16;i
++) { 
1261             if (lo 
& (1<<(15-i
))) 
1262                 data6 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1264                 data6 
|= (1<<((15-i
)*2)); // 0 -> 01 
1268         // Ensure no more than 44 bits supplied 
1270             DbpString("Tags can only have 44 bits."); 
1274         // Build the 3 data blocks for supplied 44bit ID 
1277         data1 
= 0x1D000000; // load preamble 
1279         for (int i
=0;i
<12;i
++) { 
1280             if (hi 
& (1<<(11-i
))) 
1281                 data1 
|= (1<<(((11-i
)*2)+1)); // 1 -> 10 
1283                 data1 
|= (1<<((11-i
)*2)); // 0 -> 01 
1287         for (int i
=0;i
<16;i
++) { 
1288             if (lo 
& (1<<(31-i
))) 
1289                 data2 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1291                 data2 
|= (1<<((15-i
)*2)); // 0 -> 01 
1295         for (int i
=0;i
<16;i
++) { 
1296             if (lo 
& (1<<(15-i
))) 
1297                 data3 
|= (1<<(((15-i
)*2)+1)); // 1 -> 10 
1299                 data3 
|= (1<<((15-i
)*2)); // 0 -> 01 
1304     // Program the data blocks for supplied ID 
1305     // and the block 0 for HID format 
1306     T55xxWriteBlock(data1
,1,0,0); 
1307     T55xxWriteBlock(data2
,2,0,0); 
1308     T55xxWriteBlock(data3
,3,0,0); 
1310     if (longFMT
) { // if long format there are 6 blocks 
1311         T55xxWriteBlock(data4
,4,0,0); 
1312         T55xxWriteBlock(data5
,5,0,0); 
1313         T55xxWriteBlock(data6
,6,0,0); 
1316     // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) 
1317     T55xxWriteBlock(T55x7_BITRATE_RF_50    
| 
1318                     T55x7_MODULATION_FSK2a 
| 
1319                     last_block 
<< T55x7_MAXBLOCK_SHIFT
, 
1327 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
) 
1329     int data1
=0, data2
=0; //up to six blocks for long format 
1331     data1 
= hi
;  // load preamble 
1335     // Program the data blocks for supplied ID 
1336     // and the block 0 for HID format 
1337     T55xxWriteBlock(data1
,1,0,0); 
1338     T55xxWriteBlock(data2
,2,0,0); 
1341     T55xxWriteBlock(0x00147040,0,0,0); 
1347 // Define 9bit header for EM410x tags 
1348 #define EM410X_HEADER           0x1FF 
1349 #define EM410X_ID_LENGTH        40 
1351 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) 
1354     uint64_t id 
= EM410X_HEADER
; 
1355     uint64_t rev_id 
= 0;        // reversed ID 
1356     int c_parity
[4];    // column parity 
1357     int r_parity 
= 0;   // row parity 
1360     // Reverse ID bits given as parameter (for simpler operations) 
1361     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1363             rev_id 
= (rev_id 
<< 1) | (id_lo 
& 1); 
1366             rev_id 
= (rev_id 
<< 1) | (id_hi 
& 1); 
1371     for (i 
= 0; i 
< EM410X_ID_LENGTH
; ++i
) { 
1372         id_bit 
= rev_id 
& 1; 
1375             // Don't write row parity bit at start of parsing 
1377                 id 
= (id 
<< 1) | r_parity
; 
1378             // Start counting parity for new row 
1385         // First elements in column? 
1387             // Fill out first elements 
1388             c_parity
[i
] = id_bit
; 
1390             // Count column parity 
1391             c_parity
[i 
% 4] ^= id_bit
; 
1394         id 
= (id 
<< 1) | id_bit
; 
1398     // Insert parity bit of last row 
1399     id 
= (id 
<< 1) | r_parity
; 
1401     // Fill out column parity at the end of tag 
1402     for (i 
= 0; i 
< 4; ++i
) 
1403         id 
= (id 
<< 1) | c_parity
[i
]; 
1408     Dbprintf("Started writing %s tag ...", card 
? "T55x7":"T5555"); 
1412     T55xxWriteBlock((uint32_t)(id 
>> 32), 1, 0, 0); 
1413     T55xxWriteBlock((uint32_t)id
, 2, 0, 0); 
1415     // Config for EM410x (RF/64, Manchester, Maxblock=2) 
1417         // Clock rate is stored in bits 8-15 of the card value 
1418         clock 
= (card 
& 0xFF00) >> 8; 
1419         Dbprintf("Clock rate: %d", clock
); 
1423             clock 
= T55x7_BITRATE_RF_32
; 
1426             clock 
= T55x7_BITRATE_RF_16
; 
1429             // A value of 0 is assumed to be 64 for backwards-compatibility 
1432             clock 
= T55x7_BITRATE_RF_64
; 
1435             Dbprintf("Invalid clock rate: %d", clock
); 
1439         // Writing configuration for T55x7 tag 
1440         T55xxWriteBlock(clock       
| 
1441                         T55x7_MODULATION_MANCHESTER 
| 
1442                         2 << T55x7_MAXBLOCK_SHIFT
, 
1446         // Writing configuration for T5555(Q5) tag 
1447         T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT 
| 
1448                         T5555_MODULATION_MANCHESTER   
| 
1449                         2 << T5555_MAXBLOCK_SHIFT
, 
1453     Dbprintf("Tag %s written with 0x%08x%08x\n", card 
? "T55x7":"T5555", 
1454              (uint32_t)(id 
>> 32), (uint32_t)id
); 
1457 // Clone Indala 64-bit tag by UID to T55x7 
1458 void CopyIndala64toT55x7(int hi
, int lo
) 
1461     //Program the 2 data blocks for supplied 64bit UID 
1462     // and the block 0 for Indala64 format 
1463     T55xxWriteBlock(hi
,1,0,0); 
1464     T55xxWriteBlock(lo
,2,0,0); 
1465     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) 
1466     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1467                     T55x7_MODULATION_PSK1 
| 
1468                     2 << T55x7_MAXBLOCK_SHIFT
, 
1470     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) 
1471     //  T5567WriteBlock(0x603E1042,0); 
1477 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
) 
1480     //Program the 7 data blocks for supplied 224bit UID 
1481     // and the block 0 for Indala224 format 
1482     T55xxWriteBlock(uid1
,1,0,0); 
1483     T55xxWriteBlock(uid2
,2,0,0); 
1484     T55xxWriteBlock(uid3
,3,0,0); 
1485     T55xxWriteBlock(uid4
,4,0,0); 
1486     T55xxWriteBlock(uid5
,5,0,0); 
1487     T55xxWriteBlock(uid6
,6,0,0); 
1488     T55xxWriteBlock(uid7
,7,0,0); 
1489     //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) 
1490     T55xxWriteBlock(T55x7_BITRATE_RF_32    
| 
1491                     T55x7_MODULATION_PSK1 
| 
1492                     7 << T55x7_MAXBLOCK_SHIFT
, 
1494     //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) 
1495     //  T5567WriteBlock(0x603E10E2,0); 
1502 #define abs(x) ( ((x)<0) ? -(x) : (x) ) 
1503 #define max(x,y) ( x<y ? y:x) 
1505 int DemodPCF7931(uint8_t **outBlocks
) { 
1507     uint8_t BitStream
[256] = {0x00}; 
1508         uint8_t Blocks
[8][16]; 
1509     uint8_t *dest 
= BigBuf_get_addr(); 
1510     int GraphTraceLen 
= BigBuf_max_traceLen(); 
1511     int i
, j
, lastval
, bitidx
, half_switch
; 
1513     int tolerance 
= clock 
/ 8; 
1514     int pmc
, block_done
; 
1515     int lc
, warnings 
= 0; 
1517     int lmin
=128, lmax
=128; 
1520         LFSetupFPGAForADC(95, true); 
1521         DoAcquisition_default(0, true); 
1528     /* Find first local max/min */ 
1529     if(dest
[1] > dest
[0]) { 
1530         while(i 
< GraphTraceLen
) { 
1531             if( !(dest
[i
] > dest
[i
-1]) && dest
[i
] > lmax
) 
1538         while(i 
< GraphTraceLen
) { 
1539             if( !(dest
[i
] < dest
[i
-1]) && dest
[i
] < lmin
) 
1551     for (bitidx 
= 0; i 
< GraphTraceLen
; i
++) 
1553         if ( (dest
[i
-1] > dest
[i
] && dir 
== 1 && dest
[i
] > lmax
) || (dest
[i
-1] < dest
[i
] && dir 
== 0 && dest
[i
] < lmin
)) 
1558             // Switch depending on lc length: 
1559             // Tolerance is 1/8 of clock rate (arbitrary) 
1560             if (abs(lc
-clock
/4) < tolerance
) { 
1562                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1564                     i 
+= (128+127+16+32+33+16)-1; 
1572             } else if (abs(lc
-clock
/2) < tolerance
) { 
1574                 if((i 
- pmc
) == lc
) { /* 16T0 was previous one */ 
1576                     i 
+= (128+127+16+32+33)-1; 
1581                 else if(half_switch 
== 1) { 
1582                     BitStream
[bitidx
++] = 0; 
1587             } else if (abs(lc
-clock
) < tolerance
) { 
1589                 BitStream
[bitidx
++] = 1; 
1595                     Dbprintf("Error: too many detection errors, aborting."); 
1600             if(block_done 
== 1) { 
1602                     for(j
=0; j
<16; j
++) { 
1603                         Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+ 
1604                                 64*BitStream
[j
*8+6]+ 
1605                                 32*BitStream
[j
*8+5]+ 
1606                                 16*BitStream
[j
*8+4]+ 
1618             if(i 
< GraphTraceLen
) 
1620                 if (dest
[i
-1] > dest
[i
]) dir
=0; 
1627         if(num_blocks 
== 4) break; 
1629     memcpy(outBlocks
, Blocks
, 16*num_blocks
); 
1633 int IsBlock0PCF7931(uint8_t *Block
) { 
1634     // Assume RFU means 0 :) 
1635     if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled 
1637     if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ? 
1642 int IsBlock1PCF7931(uint8_t *Block
) { 
1643     // Assume RFU means 0 :) 
1644     if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0) 
1645         if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9) 
1653 void ReadPCF7931() { 
1654     uint8_t Blocks
[8][17]; 
1655     uint8_t tmpBlocks
[4][16]; 
1656     int i
, j
, ind
, ind2
, n
; 
1663     memset(Blocks
, 0, 8*17*sizeof(uint8_t)); 
1666         memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t)); 
1667         n 
= DemodPCF7931((uint8_t**)tmpBlocks
); 
1670         if(error
==10 && num_blocks 
== 0) { 
1671             Dbprintf("Error, no tag or bad tag"); 
1674         else if (tries
==20 || error
==10) { 
1675             Dbprintf("Error reading the tag"); 
1676             Dbprintf("Here is the partial content"); 
1681             Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1682                      tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7], 
1683                     tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]); 
1685             for(i
=0; i
<n
; i
++) { 
1686                 if(IsBlock0PCF7931(tmpBlocks
[i
])) { 
1688                     if(i 
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) { 
1692                         memcpy(Blocks
[0], tmpBlocks
[i
], 16); 
1693                         Blocks
[0][ALLOC
] = 1; 
1694                         memcpy(Blocks
[1], tmpBlocks
[i
+1], 16); 
1695                         Blocks
[1][ALLOC
] = 1; 
1696                         max_blocks 
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1; 
1698                         Dbprintf("(dbg) Max blocks: %d", max_blocks
); 
1700                         // Handle following blocks 
1701                         for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) { 
1704                             memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16); 
1705                             Blocks
[ind2
][ALLOC
] = 1; 
1713             for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks 
1714                 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 
1715                     for(j
=0; j
<max_blocks
; j
++) { 
1716                         if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) { 
1717                             // Found an identical block 
1718                             for(ind
=i
-1,ind2
=j
-1; ind 
>= 0; ind
--,ind2
--) { 
1721                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1722                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1723                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1724                                     Blocks
[ind2
][ALLOC
] = 1; 
1726                                     if(num_blocks 
== max_blocks
) goto end
; 
1729                             for(ind
=i
+1,ind2
=j
+1; ind 
< n
; ind
++,ind2
++) { 
1730                                 if(ind2 
> max_blocks
) 
1732                                 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found 
1733                                     // Dbprintf("Tmp %d -> Block %d", ind, ind2); 
1734                                     memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16); 
1735                                     Blocks
[ind2
][ALLOC
] = 1; 
1737                                     if(num_blocks 
== max_blocks
) goto end
; 
1746         if (BUTTON_PRESS()) return; 
1747     } while (num_blocks 
!= max_blocks
); 
1749     Dbprintf("-----------------------------------------"); 
1750     Dbprintf("Memory content:"); 
1751     Dbprintf("-----------------------------------------"); 
1752     for(i
=0; i
<max_blocks
; i
++) { 
1753         if(Blocks
[i
][ALLOC
]==1) 
1754             Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", 
1755                      Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7], 
1756                     Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]); 
1758             Dbprintf("<missing block %d>", i
); 
1760     Dbprintf("-----------------------------------------"); 
1766 //----------------------------------- 
1767 // EM4469 / EM4305 routines 
1768 //----------------------------------- 
1769 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored 
1770 #define FWD_CMD_WRITE 0xA 
1771 #define FWD_CMD_READ 0x9 
1772 #define FWD_CMD_DISABLE 0x5 
1775 uint8_t forwardLink_data
[64]; //array of forwarded bits 
1776 uint8_t * forward_ptr
; //ptr for forward message preparation 
1777 uint8_t fwd_bit_sz
; //forwardlink bit counter 
1778 uint8_t * fwd_write_ptr
; //forwardlink bit pointer 
1780 //==================================================================== 
1781 // prepares command bits 
1783 //==================================================================== 
1784 //-------------------------------------------------------------------- 
1785 uint8_t Prepare_Cmd( uint8_t cmd 
) { 
1786     //-------------------------------------------------------------------- 
1788     *forward_ptr
++ = 0; //start bit 
1789     *forward_ptr
++ = 0; //second pause for 4050 code 
1791     *forward_ptr
++ = cmd
; 
1793     *forward_ptr
++ = cmd
; 
1795     *forward_ptr
++ = cmd
; 
1797     *forward_ptr
++ = cmd
; 
1799     return 6; //return number of emited bits 
1802 //==================================================================== 
1803 // prepares address bits 
1805 //==================================================================== 
1807 //-------------------------------------------------------------------- 
1808 uint8_t Prepare_Addr( uint8_t addr 
) { 
1809     //-------------------------------------------------------------------- 
1811     register uint8_t line_parity
; 
1816         *forward_ptr
++ = addr
; 
1817         line_parity 
^= addr
; 
1821     *forward_ptr
++ = (line_parity 
& 1); 
1823     return 7; //return number of emited bits 
1826 //==================================================================== 
1827 // prepares data bits intreleaved with parity bits 
1829 //==================================================================== 
1831 //-------------------------------------------------------------------- 
1832 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) { 
1833     //-------------------------------------------------------------------- 
1835     register uint8_t line_parity
; 
1836     register uint8_t column_parity
; 
1837     register uint8_t i
, j
; 
1838     register uint16_t data
; 
1843     for(i
=0; i
<4; i
++) { 
1845         for(j
=0; j
<8; j
++) { 
1846             line_parity 
^= data
; 
1847             column_parity 
^= (data 
& 1) << j
; 
1848             *forward_ptr
++ = data
; 
1851         *forward_ptr
++ = line_parity
; 
1856     for(j
=0; j
<8; j
++) { 
1857         *forward_ptr
++ = column_parity
; 
1858         column_parity 
>>= 1; 
1862     return 45; //return number of emited bits 
1865 //==================================================================== 
1866 // Forward Link send function 
1867 // Requires: forwarLink_data filled with valid bits (1 bit per byte) 
1868 // fwd_bit_count set with number of bits to be sent 
1869 //==================================================================== 
1870 void SendForward(uint8_t fwd_bit_count
) { 
1872     fwd_write_ptr 
= forwardLink_data
; 
1873     fwd_bit_sz 
= fwd_bit_count
; 
1878     FpgaDownloadAndGo(FPGA_BITSTREAM_LF
); 
1879     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1880     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
); 
1882     // Give it a bit of time for the resonant antenna to settle. 
1883     // And for the tag to fully power up 
1886     // force 1st mod pulse (start gap must be longer for 4305) 
1887     fwd_bit_sz
--; //prepare next bit modulation 
1889     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1890     SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 
1891     FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1892     FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1893     SpinDelayUs(16*8); //16 cycles on (8us each) 
1895     // now start writting 
1896     while(fwd_bit_sz
-- > 0) { //prepare next bit modulation 
1897         if(((*fwd_write_ptr
++) & 1) == 1) 
1898             SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) 
1900             //These timings work for 4469/4269/4305 (with the 55*8 above) 
1901             FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1902             SpinDelayUs(23*8); //16-4 cycles off (8us each) 
1903             FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz 
1904             FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC 
| FPGA_LF_ADC_READER_FIELD
);//field on 
1905             SpinDelayUs(9*8); //16 cycles on (8us each) 
1910 void EM4xLogin(uint32_t Password
) { 
1912     uint8_t fwd_bit_count
; 
1914     forward_ptr 
= forwardLink_data
; 
1915     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_LOGIN 
); 
1916     fwd_bit_count 
+= Prepare_Data( Password
&0xFFFF, Password
>>16 ); 
1918     SendForward(fwd_bit_count
); 
1920     //Wait for command to complete 
1925 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1927         uint8_t *dest 
=  BigBuf_get_addr(); 
1928         uint16_t bufferlength 
= BigBuf_max_traceLen(); 
1931         // Clear destination buffer before sending the command  0x80 = average. 
1932         memset(dest
, 0x80, bufferlength
); 
1934     uint8_t fwd_bit_count
; 
1936     //If password mode do login 
1937     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1939     forward_ptr 
= forwardLink_data
; 
1940     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_READ 
); 
1941     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1943     // Connect the A/D to the peak-detected low-frequency path. 
1944     SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); 
1945     // Now set up the SSC to get the ADC samples that are now streaming at us. 
1948     SendForward(fwd_bit_count
); 
1950     // Now do the acquisition 
1953         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_TXRDY
) { 
1954             AT91C_BASE_SSC
->SSC_THR 
= 0x43; 
1956         if (AT91C_BASE_SSC
->SSC_SR 
& AT91C_SSC_RXRDY
) { 
1957             dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
; 
1959                         if (i 
>= bufferlength
) break; 
1963         cmd_send(CMD_ACK
,0,0,0,0,0); 
1964     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off 
1968 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) { 
1970     uint8_t fwd_bit_count
; 
1972     //If password mode do login 
1973     if (PwdMode 
== 1) EM4xLogin(Pwd
); 
1975     forward_ptr 
= forwardLink_data
; 
1976     fwd_bit_count 
= Prepare_Cmd( FWD_CMD_WRITE 
); 
1977     fwd_bit_count 
+= Prepare_Addr( Address 
); 
1978     fwd_bit_count 
+= Prepare_Data( Data
&0xFFFF, Data
>>16 ); 
1980     SendForward(fwd_bit_count
); 
1982     //Wait for write to complete 
1984     FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off