1 //-----------------------------------------------------------------------------
 
   3 // Jonathan Westhues, April 2006
 
   4 //-----------------------------------------------------------------------------
 
   8     pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
 
  10     ssp_frame, ssp_din, ssp_dout, ssp_clk,
 
  12     subcarrier_frequency, minor_mode
 
  15     output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
 
  19     output ssp_frame, ssp_din, ssp_clk;
 
  21     input [1:0] subcarrier_frequency;
 
  22         input [2:0] minor_mode;
 
  24 assign adc_clk = ck_1356meg;  // sample frequency is 13,56 MHz
 
  26 // When we're a reader, we just need to do the BPSK demod; but when we're an
 
  27 // eavesdropper, we also need to pick out the commands sent by the reader,
 
  28 // using AM. Do this the same way that we do it for the simulated tag.
 
  29 reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
 
  30 reg [11:0] has_been_low_for;
 
  31 always @(negedge adc_clk)
 
  33     if(& adc_d[7:0]) after_hysteresis <= 1'b1;
 
  34     else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
 
  38         has_been_low_for <= 7'b0;
 
  42         if(has_been_low_for == 12'd4095)
 
  44             has_been_low_for <= 12'd0;
 
  45             after_hysteresis <= 1'b1;
 
  48             has_been_low_for <= has_been_low_for + 1;
 
  53 // Let us report a correlation every 64 samples. I.e.
 
  54 // one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier,
 
  55 // one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers,
 
  56 // one Q/I pair for each subcarrier cyle for the 212kHz subcarrier.
 
  57 // We need a 6-bit counter for the timing.
 
  59 always @(negedge adc_clk)
 
  61         corr_i_cnt <= corr_i_cnt + 1;
 
  65 // A couple of registers in which to accumulate the correlations. From the 64 samples
 
  66 // we would add at most 32 times the difference between unmodulated and modulated signal. It should
 
  67 // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
 
  68 // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
 
  69 // Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
 
  70 // maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. 
 
  71 // Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
 
  72 reg signed [13:0] corr_i_accum;
 
  73 reg signed [13:0] corr_q_accum;
 
  74 // we will report maximum 8 significant bits
 
  75 reg signed [7:0] corr_i_out;
 
  76 reg signed [7:0] corr_q_out;
 
  79 // the amplitude of the subcarrier is sqrt(ci^2 + cq^2).
 
  80 // approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
 
  81 reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq;
 
  82 reg [12:0] min_ci_cq_2; // min_ci_cq / 2
 
  86         if (corr_i_accum[13] == 1'b0)
 
  87                 abs_ci <= corr_i_accum;
 
  89                 abs_ci <= -corr_i_accum;
 
  91         if (corr_q_accum[13] == 1'b0)
 
  92                 abs_cq <= corr_q_accum;
 
  94                 abs_cq <= -corr_q_accum;
 
  99                 min_ci_cq_2 <= abs_cq / 2;
 
 104                 min_ci_cq_2 <= abs_ci / 2;
 
 107         corr_amplitude <= max_ci_cq + min_ci_cq_2;
 
 112 // The subcarrier reference signals
 
 118         if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_848_KHZ)
 
 120                         subcarrier_I = ~corr_i_cnt[3];
 
 121                         subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
 
 123         else if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_212_KHZ)    
 
 125                         subcarrier_I = ~corr_i_cnt[5];
 
 126                         subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
 
 130                         subcarrier_I = ~corr_i_cnt[4];
 
 131                         subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]);
 
 136 // ADC data appears on the rising edge, so sample it on the falling edge
 
 137 always @(negedge adc_clk)
 
 139     // These are the correlators: we correlate against in-phase and quadrature
 
 140     // versions of our reference signal, and keep the (signed) results or the
 
 141     // resulting amplitude to send out later over the SSP.
 
 142     if(corr_i_cnt == 6'd0)
 
 144         if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE)
 
 146                         // send amplitude plus 2 bits reader signal
 
 147                         corr_i_out <= corr_amplitude[13:6];
 
 148                         corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev};
 
 150                 else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ)
 
 152                         // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal
 
 153                         if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) 
 
 154                                 corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
 
 155                         else // truncate to maximum value
 
 156                                 if (corr_i_accum[13] == 1'b0)
 
 157                                         corr_i_out <= {7'b0111111, after_hysteresis_prev_prev};
 
 159                                         corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
 
 160                         // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal
 
 161                         if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) 
 
 162                                 corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
 
 163                         else // truncate to maximum value
 
 164                                 if (corr_q_accum[13] == 1'b0)
 
 165                                         corr_q_out <= {7'b0111111, after_hysteresis_prev};
 
 167                                         corr_q_out <= {7'b1000000, after_hysteresis_prev};
 
 169         else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE)
 
 172                         corr_i_out <= {2'b00, corr_amplitude[13:8]};
 
 173                         corr_q_out <= corr_amplitude[7:0];
 
 175                 else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ)
 
 177                         // Send 8 bits of in phase tag signal
 
 178                         if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) 
 
 179                                 corr_i_out <= corr_i_accum[11:4];
 
 180                         else // truncate to maximum value
 
 181                                 if (corr_i_accum[13] == 1'b0)
 
 182                                         corr_i_out <= 8'b01111111;
 
 184                                         corr_i_out <= 8'b10000000;
 
 185                         // Send 8 bits of quadrature phase tag signal
 
 186                         if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) 
 
 187                                 corr_q_out <= corr_q_accum[11:4];
 
 188                         else // truncate to maximum value
 
 189                                 if (corr_q_accum[13] == 1'b0)
 
 190                                         corr_q_out <= 8'b01111111;
 
 192                                         corr_q_out <= 8'b10000000;
 
 195                 // for each Q/I pair report two reader signal samples when sniffing. Store the 1st.
 
 196                 after_hysteresis_prev_prev <= after_hysteresis;
 
 197                 // Initialize next correlation. 
 
 198                 // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
 
 199         corr_i_accum <= $signed({1'b0,adc_d});
 
 200         corr_q_accum <= $signed({1'b0,adc_d});
 
 205             corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d});
 
 207             corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d});
 
 210             corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d});
 
 212             corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d});
 
 215         // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd.
 
 216     if(corr_i_cnt == 6'd32)
 
 217         after_hysteresis_prev <= after_hysteresis;
 
 219     // Then the result from last time is serialized and send out to the ARM.
 
 220     // We get one report each cycle, and each report is 16 bits, so the
 
 221     // ssp_clk should be the adc_clk divided by 64/16 = 4. 
 
 222         // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz
 
 224     if(corr_i_cnt[1:0] == 2'b00)
 
 226         // Don't shift if we just loaded new data, obviously.
 
 227         if(corr_i_cnt != 6'd0)
 
 229             corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
 
 230             corr_q_out[7:1] <= corr_q_out[6:0];
 
 237 // ssp clock and frame signal for communication to and from ARM
 
 241 always @(negedge adc_clk)
 
 243     if (corr_i_cnt[1:0] == 2'b00)
 
 245     if (corr_i_cnt[1:0] == 2'b10)
 
 248         // set ssp_frame signal for corr_i_cnt = 1..3
 
 249         // (send one frame with 16 Bits)
 
 250     if (corr_i_cnt == 6'd2)
 
 252     if (corr_i_cnt == 6'd14)
 
 257 assign ssp_din = corr_i_out[7];
 
 265     if (minor_mode == `FPGA_HF_READER_MODE_SEND_SHALLOW_MOD)
 
 270     else if (minor_mode == `FPGA_HF_READER_MODE_SEND_FULL_MOD)
 
 272         pwr_hi  = ck_1356meg & ~ssp_dout;
 
 275         else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ        
 
 276                   || minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE
 
 277                   || minor_mode == `FPGA_HF_READER_MODE_SNIFF_PHASE)
 
 282         else // receiving from tag
 
 290 assign pwr_oe1 = 1'b0;
 
 291 assign pwr_oe3 = 1'b0;
 
 294 assign pwr_lo = 1'b0;
 
 295 assign pwr_oe2 = 1'b0;
 
 298 assign dbg = corr_i_cnt[3];