1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" //test
23 * Function to do a modulation and then get samples.
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
32 int divisor_used
= 95; // 125 KHz
33 // see if 'h' was specified
35 if (command
[strlen((char *) command
) - 1] == 'h')
36 divisor_used
= 88; // 134.8 KHz
38 sample_config sc
= { 0,0,1, divisor_used
, 0};
39 setSamplingConfig(&sc
);
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
46 LFSetupFPGAForADC(sc
.divisor
, 1);
48 // And a little more time for the tag to fully power up
51 // now modulate the reader field
52 while(*command
!= '\0' && *command
!= ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
55 SpinDelayUs(delay_off
);
56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
60 if(*(command
++) == '0')
61 SpinDelayUs(period_0
);
63 SpinDelayUs(period_1
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
67 SpinDelayUs(delay_off
);
68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
73 DoAcquisition_config(false);
76 /* blank r/w tag data stream
77 ...0000000000000000 01111111
78 1010101010101010101010101010101010101010101010101010101010101010
81 101010101010101[0]000...
83 [5555fe852c5555555555555555fe0000]
87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
91 #define FSAMPLE 2000000
95 signed char *dest
= (signed char *)BigBuf_get_addr();
96 uint16_t n
= BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
100 int i
, cycles
=0, samples
=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
116 // get TI tag data into the buffer
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
121 for (i
=0; i
<n
-1; i
++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
125 // after 16 cycles, measure the frequency
128 samples
=i
-samples
; // number of samples in these 16 cycles
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0
= (shift0
>>1) | (shift1
<< 31);
133 shift1
= (shift1
>>1) | (shift2
<< 31);
134 shift2
= (shift2
>>1) | (shift3
<< 31);
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
140 // low frequency represents a 1
142 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
143 // high frequency represents a 0
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3
= shift2
= shift1
= shift0
= 0;
151 // for each bit we receive, test if we've detected a valid tag
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
158 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
166 // if flag is set we have a tag
168 DbpString("Info: No valid tag detected.");
170 // put 64 bit data into shift1 and shift0
171 shift0
= (shift0
>>24) | (shift1
<< 8);
172 shift1
= (shift1
>>24) | (shift2
<< 8);
174 // align 16 bit crc into lower half of shift2
175 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
177 // if r/w tag, check ident match
178 if (shift3
& (1<<15) ) {
179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
181 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
182 DbpString("Error: Ident mismatch!");
184 DbpString("Info: TI tag ident is valid");
187 DbpString("Info: TI tag is readonly");
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
196 crc
= update_crc16(crc
, (shift0
)&0xff);
197 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
200 crc
= update_crc16(crc
, (shift1
)&0xff);
201 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
205 Dbprintf("Info: Tag data: %x%08x, crc=%x",
206 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
207 if (crc
!= (shift2
&0xffff)) {
208 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
210 DbpString("Info: CRC is good");
215 void WriteTIbyte(uint8_t b
)
219 // modulate 8 bits out to the antenna
223 // stop modulating antenna
230 // stop modulating antenna
240 void AcquireTiType(void)
243 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
244 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
245 #define TIBUFLEN 1250
248 uint32_t *buf
= (uint32_t *)BigBuf_get_addr();
250 //clear buffer now so it does not interfere with timing later
251 BigBuf_Clear_ext(false);
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
255 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
259 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
261 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC
->SSC_CMR
= 12;
268 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
270 AT91C_BASE_SSC
->SSC_TCMR
= 0;
271 AT91C_BASE_SSC
->SSC_TFMR
= 0;
278 // Charge TI tag for 50ms.
281 // stop modulating antenna and listen
288 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
289 buf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
290 i
++; if(i
>= TIBUFLEN
) break;
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
297 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
299 char *dest
= (char *)BigBuf_get_addr();
303 for (i
= TIBUFLEN
-1; i
>= 0; i
--) {
304 for (j
= 0; j
< 32; j
++) {
305 if(buf
[i
] & (1 << j
)) {
314 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
315 // if crc provided, it will be written with the data verbatim (even if bogus)
316 // if not provided a valid crc will be computed from the data and written.
317 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
319 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
321 crc
= update_crc16(crc
, (idlo
)&0xff);
322 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
323 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
324 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
325 crc
= update_crc16(crc
, (idhi
)&0xff);
326 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
327 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
328 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
330 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi
, (unsigned int) idlo
, crc
);
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
357 SpinDelay(50); // charge time
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo
)&0xff );
362 WriteTIbyte( (idlo
>>8 )&0xff );
363 WriteTIbyte( (idlo
>>16)&0xff );
364 WriteTIbyte( (idlo
>>24)&0xff );
365 WriteTIbyte( (idhi
)&0xff );
366 WriteTIbyte( (idhi
>>8 )&0xff );
367 WriteTIbyte( (idhi
>>16)&0xff );
368 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc
)&0xff ); // crc lo
370 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
374 SpinDelay(50); // programming time
378 // get TI tag data into the buffer
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
382 DbpString("Now use 'lf ti read' to check");
385 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
388 uint8_t *tab
= BigBuf_get_addr();
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
393 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
394 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
395 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
402 //wait until SSC_CLK goes HIGH
403 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
404 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
405 DbpString("Stopped");
410 if (ledcontrol
) LED_D_ON();
417 if (ledcontrol
) LED_D_OFF();
419 //wait until SSC_CLK goes LOW
420 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
422 DbpString("Stopped");
440 #define DEBUG_FRAME_CONTENTS 1
441 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
445 // compose fc/8 fc/10 waveform (FSK2)
446 static void fc(int c
, int *n
)
448 uint8_t *dest
= BigBuf_get_addr();
451 // for when we want an fc8 pattern every 4 logical bits
463 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
465 for (idx
=0; idx
<6; idx
++) {
477 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
479 for (idx
=0; idx
<5; idx
++) {
493 // compose fc/X fc/Y waveform (FSKx)
494 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
496 uint8_t *dest
= BigBuf_get_addr();
497 uint8_t halfFC
= fc
/2;
498 uint8_t wavesPerClock
= clock
/fc
;
499 uint8_t mod
= clock
% fc
; //modifier
500 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
501 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
502 // loop through clock - step field clock
503 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
504 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
505 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
506 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
509 if (mod
>0) (*modCnt
)++;
510 if ((mod
>0) && modAdjOk
){ //fsk2
511 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
512 memset(dest
+(*n
), 0, fc
-halfFC
);
513 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
517 if (mod
>0 && !modAdjOk
){ //fsk1
518 memset(dest
+(*n
), 0, mod
-(mod
/2));
519 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
524 // prepare a waveform pattern in the buffer based on the ID given then
525 // simulate a HID tag until the button is pressed
526 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
530 HID tag bitstream format
531 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
532 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
533 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
534 A fc8 is inserted before every 4 bits
535 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
536 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
540 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
544 // special start of frame marker containing invalid bit sequences
545 fc(8, &n
); fc(8, &n
); // invalid
546 fc(8, &n
); fc(10, &n
); // logical 0
547 fc(10, &n
); fc(10, &n
); // invalid
548 fc(8, &n
); fc(10, &n
); // logical 0
551 // manchester encode bits 43 to 32
552 for (i
=11; i
>=0; i
--) {
553 if ((i
%4)==3) fc(0,&n
);
555 fc(10, &n
); fc(8, &n
); // low-high transition
557 fc(8, &n
); fc(10, &n
); // high-low transition
562 // manchester encode bits 31 to 0
563 for (i
=31; i
>=0; i
--) {
564 if ((i
%4)==3) fc(0,&n
);
566 fc(10, &n
); fc(8, &n
); // low-high transition
568 fc(8, &n
); fc(10, &n
); // high-low transition
572 if (ledcontrol
) LED_A_ON();
573 SimulateTagLowFrequency(n
, 0, ledcontrol
);
574 if (ledcontrol
) LED_A_OFF();
577 // prepare a waveform pattern in the buffer based on the ID given then
578 // simulate a FSK tag until the button is pressed
579 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
580 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
584 uint8_t fcHigh
= arg1
>> 8;
585 uint8_t fcLow
= arg1
& 0xFF;
587 uint8_t clk
= arg2
& 0xFF;
588 uint8_t invert
= (arg2
>> 8) & 1;
590 for (i
=0; i
<size
; i
++){
591 if (BitStream
[i
] == invert
){
592 fcAll(fcLow
, &n
, clk
, &modCnt
);
594 fcAll(fcHigh
, &n
, clk
, &modCnt
);
597 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
598 /*Dbprintf("DEBUG: First 32:");
599 uint8_t *dest = BigBuf_get_addr();
601 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
603 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
608 SimulateTagLowFrequency(n
, 0, ledcontrol
);
614 // compose ask waveform for one bit(ASK)
615 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
617 uint8_t *dest
= BigBuf_get_addr();
618 uint8_t halfClk
= clock
/2;
619 // c = current bit 1 or 0
621 memset(dest
+(*n
), c
, halfClk
);
622 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
624 memset(dest
+(*n
), c
, clock
);
629 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
631 uint8_t *dest
= BigBuf_get_addr();
632 uint8_t halfClk
= clock
/2;
634 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
635 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
637 memset(dest
+(*n
), c
^ *phase
, clock
);
643 // args clock, ask/man or askraw, invert, transmission separator
644 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
648 uint8_t clk
= (arg1
>> 8) & 0xFF;
649 uint8_t encoding
= arg1
& 0xFF;
650 uint8_t separator
= arg2
& 1;
651 uint8_t invert
= (arg2
>> 8) & 1;
653 if (encoding
==2){ //biphase
655 for (i
=0; i
<size
; i
++){
656 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
658 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
659 for (i
=0; i
<size
; i
++){
660 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
663 } else { // ask/manchester || ask/raw
664 for (i
=0; i
<size
; i
++){
665 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
667 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
668 for (i
=0; i
<size
; i
++){
669 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
674 if (separator
==1) Dbprintf("sorry but separator option not yet available");
676 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
678 if (ledcontrol
) LED_A_ON();
679 SimulateTagLowFrequency(n
, 0, ledcontrol
);
680 if (ledcontrol
) LED_A_OFF();
683 //carrier can be 2,4 or 8
684 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
686 uint8_t *dest
= BigBuf_get_addr();
687 uint8_t halfWave
= waveLen
/2;
691 // write phase change
692 memset(dest
+(*n
), *curPhase
^1, halfWave
);
693 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
698 //write each normal clock wave for the clock duration
699 for (; i
< clk
; i
+=waveLen
){
700 memset(dest
+(*n
), *curPhase
, halfWave
);
701 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
706 // args clock, carrier, invert,
707 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
711 uint8_t clk
= arg1
>> 8;
712 uint8_t carrier
= arg1
& 0xFF;
713 uint8_t invert
= arg2
& 0xFF;
714 uint8_t curPhase
= 0;
715 for (i
=0; i
<size
; i
++){
716 if (BitStream
[i
] == curPhase
){
717 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
719 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
722 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
724 if (ledcontrol
) LED_A_ON();
725 SimulateTagLowFrequency(n
, 0, ledcontrol
);
726 if (ledcontrol
) LED_A_OFF();
729 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
730 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
732 uint8_t *dest
= BigBuf_get_addr();
734 uint32_t hi2
=0, hi
=0, lo
=0;
736 // Configure to go in 125Khz listen mode
737 LFSetupFPGAForADC(95, true);
739 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
742 if (ledcontrol
) LED_A_ON();
744 DoAcquisition_default(-1,true);
746 size
= 50*128*2; //big enough to catch 2 sequences of largest format
747 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
749 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
750 // go over previously decoded manchester data and decode into usable tag ID
751 if (hi2
!= 0){ //extra large HID tags 88/192 bits
752 Dbprintf("TAG ID: %x%08x%08x (%d)",
756 (unsigned int) (lo
>>1) & 0xFFFF
758 }else { //standard HID tags 44/96 bits
761 uint32_t cardnum
= 0;
763 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
765 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
767 while(lo2
> 1){ //find last bit set to 1 (format len bit)
775 cardnum
= (lo
>>1)&0xFFFF;
779 cardnum
= (lo
>>1)&0x7FFFF;
780 fc
= ((hi
&0xF)<<12)|(lo
>>20);
783 cardnum
= (lo
>>1)&0xFFFF;
784 fc
= ((hi
&1)<<15)|(lo
>>17);
787 cardnum
= (lo
>>1)&0xFFFFF;
788 fc
= ((hi
&1)<<11)|(lo
>>21);
791 else { //if bit 38 is not set then 37 bit format is used
796 cardnum
= (lo
>>1)&0x7FFFF;
797 fc
= ((hi
&0xF)<<12)|(lo
>>20);
800 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
803 (unsigned int) (lo
>>1) & 0xFFFF,
804 (unsigned int) bitlen
,
806 (unsigned int) cardnum
);
809 if (ledcontrol
) LED_A_OFF();
816 hi2
= hi
= lo
= idx
= 0;
819 DbpString("Stopped");
820 if (ledcontrol
) LED_A_OFF();
823 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
824 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
826 uint8_t *dest
= BigBuf_get_addr();
829 // Configure to go in 125Khz listen mode
830 LFSetupFPGAForADC(95, true);
832 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
835 if (ledcontrol
) LED_A_ON();
837 DoAcquisition_default(-1,true);
839 size
= 50*128*2; //big enough to catch 2 sequences of largest format
840 idx
= AWIDdemodFSK(dest
, &size
);
842 if (idx
>0 && size
==96){
844 // 0 10 20 30 40 50 60
846 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
847 // -----------------------------------------------------------------------------
848 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
849 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
850 // |---26 bit---| |-----117----||-------------142-------------|
851 // b = format bit len, o = odd parity of last 3 bits
852 // f = facility code, c = card number
853 // w = wiegand parity
854 // (26 bit format shown)
856 //get raw ID before removing parities
857 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
858 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
859 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
861 size
= removeParity(dest
, idx
+8, 4, 1, 88);
862 // ok valid card found!
865 // 0 10 20 30 40 50 60
867 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
868 // -----------------------------------------------------------------------------
869 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
870 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
871 // |26 bit| |-117--| |-----142------|
872 // b = format bit len, o = odd parity of last 3 bits
873 // f = facility code, c = card number
874 // w = wiegand parity
875 // (26 bit format shown)
878 uint32_t cardnum
= 0;
881 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
883 fc
= bytebits_to_byte(dest
+9, 8);
884 cardnum
= bytebits_to_byte(dest
+17, 16);
885 code1
= bytebits_to_byte(dest
+8,fmtLen
);
886 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
888 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
890 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
891 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
892 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
894 code1
= bytebits_to_byte(dest
+8,fmtLen
);
895 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
899 if (ledcontrol
) LED_A_OFF();
907 DbpString("Stopped");
908 if (ledcontrol
) LED_A_OFF();
911 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
913 uint8_t *dest
= BigBuf_get_addr();
915 size_t size
=0, idx
=0;
916 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
919 // Configure to go in 125Khz listen mode
920 LFSetupFPGAForADC(95, true);
922 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
925 if (ledcontrol
) LED_A_ON();
927 DoAcquisition_default(-1,true);
928 size
= BigBuf_max_traceLen();
929 //askdemod and manchester decode
930 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
931 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
934 if (errCnt
<0) continue;
936 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
939 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
943 (uint32_t)(lo
&0xFFFF),
944 (uint32_t)((lo
>>16LL) & 0xFF),
945 (uint32_t)(lo
& 0xFFFFFF));
947 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
950 (uint32_t)(lo
&0xFFFF),
951 (uint32_t)((lo
>>16LL) & 0xFF),
952 (uint32_t)(lo
& 0xFFFFFF));
956 if (ledcontrol
) LED_A_OFF();
958 *low
=lo
& 0xFFFFFFFF;
963 hi
= lo
= size
= idx
= 0;
964 clk
= invert
= errCnt
= 0;
966 DbpString("Stopped");
967 if (ledcontrol
) LED_A_OFF();
970 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
972 uint8_t *dest
= BigBuf_get_addr();
974 uint32_t code
=0, code2
=0;
976 uint8_t facilitycode
=0;
979 uint16_t calccrc
= 0;
980 // Configure to go in 125Khz listen mode
981 LFSetupFPGAForADC(95, true);
983 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
985 if (ledcontrol
) LED_A_ON();
986 DoAcquisition_default(-1,true);
987 //fskdemod and get start index
989 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
994 //0 10 20 30 40 50 60
996 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
997 //-----------------------------------------------------------------------------
998 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
1001 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1002 //preamble F0 E0 01 03 B6 75
1003 // How to calc checksum,
1004 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1005 // F0 + E0 + 01 + 03 + B6 = 28A
1009 //XSF(version)facility:codeone+codetwo
1011 if(findone
){ //only print binary if we are doing one
1012 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1013 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1014 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1015 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1016 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1017 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1018 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1020 code
= bytebits_to_byte(dest
+idx
,32);
1021 code2
= bytebits_to_byte(dest
+idx
+32,32);
1022 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1023 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1024 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1026 crc
= bytebits_to_byte(dest
+idx
+54,8);
1027 for (uint8_t i
=1; i
<6; ++i
)
1028 calccrc
+= bytebits_to_byte(dest
+idx
+9*i
,8);
1030 calccrc
= 0xff - calccrc
;
1032 char *crcStr
= (crc
== calccrc
) ? "ok":"!crc";
1034 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version
,facilitycode
,number
,code
,code2
, crc
, crcStr
);
1035 // if we're only looking for one tag
1037 if (ledcontrol
) LED_A_OFF();
1043 version
=facilitycode
=0;
1049 DbpString("Stopped");
1050 if (ledcontrol
) LED_A_OFF();
1053 /*------------------------------
1054 * T5555/T5557/T5567/T5577 routines
1055 *------------------------------
1056 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1058 * Relevant communication times in microsecond
1059 * To compensate antenna falling times shorten the write times
1060 * and enlarge the gap ones.
1061 * Q5 tags seems to have issues when these values changes.
1064 #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1065 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1066 #define WRITE_0 16*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1067 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1068 #define READ_GAP 52*8
1070 // VALUES TAKEN FROM EM4x function: SendForward
1071 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1072 // WRITE_GAP = 128; (16*8)
1073 // WRITE_1 = 256 32*8; (32*8)
1075 // These timings work for 4469/4269/4305 (with the 55*8 above)
1076 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1078 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1079 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1080 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1081 // T0 = TIMER_CLOCK1 / 125000 = 192
1082 // 1 Cycle = 8 microseconds(us) == 1 field clock
1084 void TurnReadLFOn(int delay
) {
1085 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1086 // Give it a bit of time for the resonant antenna to settle.
1088 // measure antenna strength.
1089 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1095 // Write one bit to card
1096 void T55xxWriteBit(int bit
) {
1098 TurnReadLFOn(WRITE_0
);
1100 TurnReadLFOn(WRITE_1
);
1101 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1102 SpinDelayUs(WRITE_GAP
);
1105 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1106 void T55xxResetRead(void) {
1108 //clear buffer now so it does not interfere with timing later
1109 BigBuf_Clear_ext(false);
1111 // Set up FPGA, 125kHz
1112 LFSetupFPGAForADC(95, true);
1114 // Trigger T55x7 in mode.
1115 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1116 SpinDelayUs(START_GAP
);
1118 // reset tag - op code 00
1122 // Turn field on to read the response
1123 TurnReadLFOn(READ_GAP
);
1126 doT55x7Acquisition(BigBuf_max_traceLen());
1128 // Turn the field off
1129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1130 cmd_send(CMD_ACK
,0,0,0,0,0);
1134 // Write one card block in page 0, no lock
1135 void T55xxWriteBlockExt(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1137 bool PwdMode
= arg
& 0x1;
1138 uint8_t Page
= (arg
& 0x2)>>1;
1141 // Set up FPGA, 125kHz
1142 LFSetupFPGAForADC(95, true);
1144 // Trigger T55x7 in mode.
1145 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1146 SpinDelayUs(START_GAP
);
1150 T55xxWriteBit(Page
); //Page 0
1153 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1154 T55xxWriteBit(Pwd
& i
);
1160 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1161 T55xxWriteBit(Data
& i
);
1163 // Send Block number
1164 for (i
= 0x04; i
!= 0; i
>>= 1)
1165 T55xxWriteBit(Block
& i
);
1167 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1168 // so wait a little more)
1169 TurnReadLFOn(20 * 1000);
1170 //could attempt to do a read to confirm write took
1171 // as the tag should repeat back the new block
1172 // until it is reset, but to confirm it we would
1173 // need to know the current block 0 config mode
1176 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1180 // Write one card block in page 0, no lock
1181 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1182 T55xxWriteBlockExt(Data
, Block
, Pwd
, arg
);
1183 cmd_send(CMD_ACK
,0,0,0,0,0);
1186 // Read one card block in page 0
1187 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1189 bool PwdMode
= arg0
& 0x1;
1190 uint8_t Page
= (arg0
& 0x2) >> 1;
1192 bool RegReadMode
= (Block
== 0xFF);
1194 //clear buffer now so it does not interfere with timing later
1195 BigBuf_Clear_ext(false);
1197 //make sure block is at max 7
1200 // Set up FPGA, 125kHz to power up the tag
1201 LFSetupFPGAForADC(95, true);
1203 // Trigger T55x7 Direct Access Mode with start gap
1204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1205 SpinDelayUs(START_GAP
);
1209 T55xxWriteBit(Page
); //Page 0
1213 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1214 T55xxWriteBit(Pwd
& i
);
1216 // Send a zero bit separation
1219 // Send Block number (if direct access mode)
1221 for (i
= 0x04; i
!= 0; i
>>= 1)
1222 T55xxWriteBit(Block
& i
);
1224 // Turn field on to read the response
1225 TurnReadLFOn(READ_GAP
);
1228 doT55x7Acquisition(12000);
1230 // Turn the field off
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1232 cmd_send(CMD_ACK
,0,0,0,0,0);
1236 void T55xxWakeUp(uint32_t Pwd
){
1240 // Set up FPGA, 125kHz
1241 LFSetupFPGAForADC(95, true);
1243 // Trigger T55x7 Direct Access Mode
1244 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1245 SpinDelayUs(START_GAP
);
1249 T55xxWriteBit(0); //Page 0
1252 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1253 T55xxWriteBit(Pwd
& i
);
1255 // Turn and leave field on to let the begin repeating transmission
1256 TurnReadLFOn(20*1000);
1259 /*-------------- Cloning routines -----------*/
1261 void WriteT55xx(uint32_t *blockdata
, uint8_t startblock
, uint8_t numblocks
) {
1262 // write last block first and config block last (if included)
1263 for (uint8_t i
= numblocks
+startblock
; i
> startblock
; i
--) {
1264 //Dbprintf("write- Blk: %d, d:%08X",i-1,blockdata[i-1]);
1265 T55xxWriteBlockExt(blockdata
[i
-1],i
-1,0,0);
1269 // Copy HID id to card and setup block 0 config
1270 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
) {
1271 uint32_t data
[] = {0,0,0,0,0,0,0};
1272 //int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1273 uint8_t last_block
= 0;
1276 // Ensure no more than 84 bits supplied
1278 DbpString("Tags can only have 84 bits.");
1281 // Build the 6 data blocks for supplied 84bit ID
1283 // load preamble (1D) & long format identifier (9E manchester encoded)
1284 data
[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2
>> 16) & 0xF) & 0xFF);
1285 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1286 data
[2] = manchesterEncode2Bytes(hi2
& 0xFFFF);
1287 data
[3] = manchesterEncode2Bytes(hi
>> 16);
1288 data
[4] = manchesterEncode2Bytes(hi
& 0xFFFF);
1289 data
[5] = manchesterEncode2Bytes(lo
>> 16);
1290 data
[6] = manchesterEncode2Bytes(lo
& 0xFFFF);
1292 // Ensure no more than 44 bits supplied
1294 DbpString("Tags can only have 44 bits.");
1297 // Build the 3 data blocks for supplied 44bit ID
1300 data
[1] = 0x1D000000 | (manchesterEncode2Bytes(hi
) & 0xFFFFFF);
1301 data
[2] = manchesterEncode2Bytes(lo
>> 16);
1302 data
[3] = manchesterEncode2Bytes(lo
& 0xFFFF);
1304 // load chip config block
1305 data
[0] = T55x7_BITRATE_RF_50
| T55x7_MODULATION_FSK2a
| last_block
<< T55x7_MAXBLOCK_SHIFT
;
1308 // Program the data blocks for supplied ID
1309 // and the block 0 for HID format
1310 WriteT55xx(data
, 0, last_block
+1);
1317 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
) {
1318 uint32_t data
[] = {T55x7_BITRATE_RF_64
| T55x7_MODULATION_FSK2a
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1321 // Program the data blocks for supplied ID
1322 // and the block 0 config
1323 WriteT55xx(data
, 0, 3);
1330 // Clone Indala 64-bit tag by UID to T55x7
1331 void CopyIndala64toT55x7(uint32_t hi
, uint32_t lo
) {
1332 //Program the 2 data blocks for supplied 64bit UID
1333 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1334 uint32_t data
[] = { T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (2 << T55x7_MAXBLOCK_SHIFT
), hi
, lo
};
1335 WriteT55xx(data
, 0, 3);
1336 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1337 // T5567WriteBlock(0x603E1042,0);
1340 // Clone Indala 224-bit tag by UID to T55x7
1341 void CopyIndala224toT55x7(uint32_t uid1
, uint32_t uid2
, uint32_t uid3
, uint32_t uid4
, uint32_t uid5
, uint32_t uid6
, uint32_t uid7
) {
1342 //Program the 7 data blocks for supplied 224bit UID
1343 uint32_t data
[] = {0, uid1
, uid2
, uid3
, uid4
, uid5
, uid6
, uid7
};
1344 // and the block 0 for Indala224 format
1345 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1346 data
[0] = T55x7_BITRATE_RF_32
| T55x7_MODULATION_PSK1
| (7 << T55x7_MAXBLOCK_SHIFT
);
1347 WriteT55xx(data
, 0, 8);
1348 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1349 // T5567WriteBlock(0x603E10E2,0);
1353 // Define 9bit header for EM410x tags
1354 #define EM410X_HEADER 0x1FF
1355 #define EM410X_ID_LENGTH 40
1357 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
) {
1359 uint64_t id
= EM410X_HEADER
;
1360 uint64_t rev_id
= 0; // reversed ID
1361 int c_parity
[4]; // column parity
1362 int r_parity
= 0; // row parity
1365 // Reverse ID bits given as parameter (for simpler operations)
1366 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1368 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1371 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1376 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1377 id_bit
= rev_id
& 1;
1380 // Don't write row parity bit at start of parsing
1382 id
= (id
<< 1) | r_parity
;
1383 // Start counting parity for new row
1390 // First elements in column?
1392 // Fill out first elements
1393 c_parity
[i
] = id_bit
;
1395 // Count column parity
1396 c_parity
[i
% 4] ^= id_bit
;
1399 id
= (id
<< 1) | id_bit
;
1403 // Insert parity bit of last row
1404 id
= (id
<< 1) | r_parity
;
1406 // Fill out column parity at the end of tag
1407 for (i
= 0; i
< 4; ++i
)
1408 id
= (id
<< 1) | c_parity
[i
];
1413 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1417 uint32_t data
[] = {0, id
>>32, id
& 0xFFFFFFFF};
1419 clock
= (card
& 0xFF00) >> 8;
1420 clock
= (clock
== 0) ? 64 : clock
;
1421 Dbprintf("Clock rate: %d", clock
);
1422 clock
= GetT55xxClockBit(clock
);
1424 Dbprintf("Invalid clock rate: %d", clock
);
1428 data
[0] = clock
| T55x7_MODULATION_MANCHESTER
| (2 << T55x7_MAXBLOCK_SHIFT
);
1430 data
[0] = (0x1F << T5555_BITRATE_SHIFT
) | T5555_MODULATION_MANCHESTER
| (2 << T5555_MAXBLOCK_SHIFT
);
1433 WriteT55xx(data
, 0, 3);
1436 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1437 (uint32_t)(id
>> 32), (uint32_t)id
);
1440 //-----------------------------------
1441 // EM4469 / EM4305 routines
1442 //-----------------------------------
1443 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1444 #define FWD_CMD_WRITE 0xA
1445 #define FWD_CMD_READ 0x9
1446 #define FWD_CMD_DISABLE 0x5
1448 uint8_t forwardLink_data
[64]; //array of forwarded bits
1449 uint8_t * forward_ptr
; //ptr for forward message preparation
1450 uint8_t fwd_bit_sz
; //forwardlink bit counter
1451 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1453 //====================================================================
1454 // prepares command bits
1456 //====================================================================
1457 uint8_t Prepare_Cmd( uint8_t cmd
) {
1459 *forward_ptr
++ = 0; //start bit
1460 *forward_ptr
++ = 0; //second pause for 4050 code
1462 *forward_ptr
++ = cmd
;
1464 *forward_ptr
++ = cmd
;
1466 *forward_ptr
++ = cmd
;
1468 *forward_ptr
++ = cmd
;
1470 return 6; //return number of emited bits
1473 //====================================================================
1474 // prepares address bits
1476 //====================================================================
1477 uint8_t Prepare_Addr( uint8_t addr
) {
1479 register uint8_t line_parity
;
1484 *forward_ptr
++ = addr
;
1485 line_parity
^= addr
;
1489 *forward_ptr
++ = (line_parity
& 1);
1491 return 7; //return number of emited bits
1494 //====================================================================
1495 // prepares data bits intreleaved with parity bits
1497 //====================================================================
1498 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1500 register uint8_t line_parity
;
1501 register uint8_t column_parity
;
1502 register uint8_t i
, j
;
1503 register uint16_t data
;
1508 for(i
=0; i
<4; i
++) {
1510 for(j
=0; j
<8; j
++) {
1511 line_parity
^= data
;
1512 column_parity
^= (data
& 1) << j
;
1513 *forward_ptr
++ = data
;
1516 *forward_ptr
++ = line_parity
;
1521 for(j
=0; j
<8; j
++) {
1522 *forward_ptr
++ = column_parity
;
1523 column_parity
>>= 1;
1527 return 45; //return number of emited bits
1530 //====================================================================
1531 // Forward Link send function
1532 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1533 // fwd_bit_count set with number of bits to be sent
1534 //====================================================================
1535 void SendForward(uint8_t fwd_bit_count
) {
1537 fwd_write_ptr
= forwardLink_data
;
1538 fwd_bit_sz
= fwd_bit_count
;
1542 // Set up FPGA, 125kHz
1543 LFSetupFPGAForADC(95, true);
1545 // force 1st mod pulse (start gap must be longer for 4305)
1546 fwd_bit_sz
--; //prepare next bit modulation
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1549 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1550 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1551 SpinDelayUs(16*8); //16 cycles on (8us each)
1553 // now start writting
1554 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1555 if(((*fwd_write_ptr
++) & 1) == 1)
1556 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1558 //These timings work for 4469/4269/4305 (with the 55*8 above)
1559 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1560 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1561 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1562 SpinDelayUs(9*8); //16 cycles on (8us each)
1567 void EM4xLogin(uint32_t Password
) {
1569 uint8_t fwd_bit_count
;
1571 forward_ptr
= forwardLink_data
;
1572 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1573 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1575 SendForward(fwd_bit_count
);
1577 //Wait for command to complete
1581 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1583 uint8_t fwd_bit_count
;
1584 uint8_t *dest
= BigBuf_get_addr();
1585 uint16_t bufsize
= BigBuf_max_traceLen();
1588 //clear buffer now so it does not interfere with timing later
1589 BigBuf_Clear_ext(false);
1591 //If password mode do login
1592 if (PwdMode
== 1) EM4xLogin(Pwd
);
1594 forward_ptr
= forwardLink_data
;
1595 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1596 fwd_bit_count
+= Prepare_Addr( Address
);
1598 // Connect the A/D to the peak-detected low-frequency path.
1599 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1600 // Now set up the SSC to get the ADC samples that are now streaming at us.
1603 SendForward(fwd_bit_count
);
1605 // Now do the acquisition
1608 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1609 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1611 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1612 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1614 if (i
>= bufsize
) break;
1618 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1619 cmd_send(CMD_ACK
,0,0,0,0,0);
1623 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1625 uint8_t fwd_bit_count
;
1627 //If password mode do login
1628 if (PwdMode
== 1) EM4xLogin(Pwd
);
1630 forward_ptr
= forwardLink_data
;
1631 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1632 fwd_bit_count
+= Prepare_Addr( Address
);
1633 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1635 SendForward(fwd_bit_count
);
1637 //Wait for write to complete
1639 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1643 void CopyViKingtoT55x7(uint32_t block1
, uint32_t block2
) {
1645 T55xxWriteBlock(block1
,1,0,0);
1646 T55xxWriteBlock(block2
,2,0,0);
1647 T55xxWriteBlock(T55x7_MODULATION_MANCHESTER
| T55x7_BITRATE_RF_32
| 2 << T55x7_MAXBLOCK_SHIFT
,0,0,0);
1648 // T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T5555_MAXBLOCK_SHIFT,0,0,1);
1650 // Shouldn't this one be: T55x7_MAXBLOCK_SHIFT and 0 in password mode