1 //-----------------------------------------------------------------------------
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint8_t *trace
= (uint8_t *) BigBuf
;
24 static int traceLen
= 0;
25 static int rsamples
= 0;
26 static int tracing
= TRUE
;
27 static uint32_t iso14a_timeout
;
30 // Sequence D: 11110000 modulation with subcarrier during first half
31 // Sequence E: 00001111 modulation with subcarrier during second half
32 // Sequence F: 00000000 no modulation with subcarrier
34 // Sequence X: 00001100 drop after half a period
35 // Sequence Y: 00000000 no drop
36 // Sequence Z: 11000000 drop at start
44 static const uint8_t OddByteParity
[256] = {
45 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
49 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
63 // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
64 #define RECV_CMD_OFFSET 3032
65 #define RECV_RES_OFFSET 3096
66 #define DMA_BUFFER_OFFSET 3160
67 #define DMA_BUFFER_SIZE 4096
68 #define TRACE_LENGTH 3000
71 void iso14a_set_trigger(int enable
) {
75 //-----------------------------------------------------------------------------
76 // Generate the parity value for a byte sequence
78 //-----------------------------------------------------------------------------
79 byte_t
oddparity (const byte_t bt
)
81 return OddByteParity
[bt
];
84 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
89 // Generate the encrypted data
90 for (i
= 0; i
< iLen
; i
++) {
91 // Save the encrypted parity bit
92 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
97 void AppendCrc14443a(uint8_t* data
, int len
)
99 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
102 int LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
104 // Return when trace is full
105 if (traceLen
>= TRACE_LENGTH
) return FALSE
;
107 // Trace the random, i'm curious
108 rsamples
+= iSamples
;
109 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
110 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
111 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
112 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
114 trace
[traceLen
- 1] |= 0x80;
116 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
117 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
118 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
119 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
120 trace
[traceLen
++] = iLen
;
121 memcpy(trace
+ traceLen
, btBytes
, iLen
);
126 //-----------------------------------------------------------------------------
127 // The software UART that receives commands from the reader, and its state
129 //-----------------------------------------------------------------------------
133 STATE_START_OF_COMMUNICATION
,
157 static RAMFUNC
int MillerDecoding(int bit
)
162 if(!Uart
.bitBuffer
) {
163 Uart
.bitBuffer
= bit
^ 0xFF0;
167 Uart
.bitBuffer
<<= 4;
168 Uart
.bitBuffer
^= bit
;
173 if(Uart
.state
!= STATE_UNSYNCD
) {
176 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
182 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
188 if(bit
!= bitright
) { bit
= bitright
; }
190 if(Uart
.posCnt
== 1) {
191 // measurement first half bitperiod
193 Uart
.drop
= DROP_FIRST_HALF
;
197 // measurement second half bitperiod
198 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
199 Uart
.drop
= DROP_SECOND_HALF
;
202 // measured a drop in first and second half
203 // which should not be possible
204 Uart
.state
= STATE_ERROR_WAIT
;
211 case STATE_START_OF_COMMUNICATION
:
213 if(Uart
.drop
== DROP_SECOND_HALF
) {
214 // error, should not happen in SOC
215 Uart
.state
= STATE_ERROR_WAIT
;
220 Uart
.state
= STATE_MILLER_Z
;
227 if(Uart
.drop
== DROP_NONE
) {
228 // logic '0' followed by sequence Y
229 // end of communication
230 Uart
.state
= STATE_UNSYNCD
;
233 // if(Uart.drop == DROP_FIRST_HALF) {
234 // Uart.state = STATE_MILLER_Z; stay the same
235 // we see a logic '0' }
236 if(Uart
.drop
== DROP_SECOND_HALF
) {
237 // we see a logic '1'
238 Uart
.shiftReg
|= 0x100;
239 Uart
.state
= STATE_MILLER_X
;
245 if(Uart
.drop
== DROP_NONE
) {
246 // sequence Y, we see a '0'
247 Uart
.state
= STATE_MILLER_Y
;
250 if(Uart
.drop
== DROP_FIRST_HALF
) {
251 // Would be STATE_MILLER_Z
252 // but Z does not follow X, so error
253 Uart
.state
= STATE_ERROR_WAIT
;
256 if(Uart
.drop
== DROP_SECOND_HALF
) {
257 // We see a '1' and stay in state X
258 Uart
.shiftReg
|= 0x100;
266 if(Uart
.drop
== DROP_NONE
) {
267 // logic '0' followed by sequence Y
268 // end of communication
269 Uart
.state
= STATE_UNSYNCD
;
272 if(Uart
.drop
== DROP_FIRST_HALF
) {
274 Uart
.state
= STATE_MILLER_Z
;
276 if(Uart
.drop
== DROP_SECOND_HALF
) {
277 // We see a '1' and go to state X
278 Uart
.shiftReg
|= 0x100;
279 Uart
.state
= STATE_MILLER_X
;
283 case STATE_ERROR_WAIT
:
284 // That went wrong. Now wait for at least two bit periods
285 // and try to sync again
286 if(Uart
.drop
== DROP_NONE
) {
288 Uart
.state
= STATE_UNSYNCD
;
293 Uart
.state
= STATE_UNSYNCD
;
298 Uart
.drop
= DROP_NONE
;
300 // should have received at least one whole byte...
301 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
305 if(Uart
.bitCnt
== 9) {
306 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
309 Uart
.parityBits
<<= 1;
310 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
313 // when End of Communication received and
314 // all data bits processed..
321 Uart.output[Uart.byteCnt] = 0xAA;
323 Uart.output[Uart.byteCnt] = error & 0xFF;
325 Uart.output[Uart.byteCnt] = 0xAA;
327 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
329 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
331 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
333 Uart.output[Uart.byteCnt] = 0xAA;
341 bit
= Uart
.bitBuffer
& 0xf0;
345 // should have been high or at least (4 * 128) / fc
346 // according to ISO this should be at least (9 * 128 + 20) / fc
347 if(Uart
.highCnt
== 8) {
348 // we went low, so this could be start of communication
349 // it turns out to be safer to choose a less significant
350 // syncbit... so we check whether the neighbour also represents the drop
351 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
352 Uart
.syncBit
= bit
& 8;
354 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
355 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
356 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
357 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
358 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
359 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
362 // the first half bit period is expected in next sample
367 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
370 Uart
.state
= STATE_START_OF_COMMUNICATION
;
371 Uart
.drop
= DROP_FIRST_HALF
;
382 if(Uart
.highCnt
< 8) {
391 //=============================================================================
392 // ISO 14443 Type A - Manchester
393 //=============================================================================
398 DEMOD_START_OF_COMMUNICATION
,
421 static RAMFUNC
int ManchesterDecoding(int v
)
437 if(Demod
.state
==DEMOD_UNSYNCD
) {
438 Demod
.output
[Demod
.len
] = 0xfa;
441 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
444 Demod
.syncBit
= 0x08;
451 Demod
.syncBit
= 0x04;
458 Demod
.syncBit
= 0x02;
461 if(bit
& 0x01 && Demod
.syncBit
) {
462 Demod
.syncBit
= 0x01;
467 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
468 Demod
.sub
= SUB_FIRST_HALF
;
471 Demod
.parityBits
= 0;
474 if(trigger
) LED_A_OFF();
475 switch(Demod
.syncBit
) {
476 case 0x08: Demod
.samples
= 3; break;
477 case 0x04: Demod
.samples
= 2; break;
478 case 0x02: Demod
.samples
= 1; break;
479 case 0x01: Demod
.samples
= 0; break;
486 //modulation = bit & Demod.syncBit;
487 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
491 if(Demod
.posCount
==0) {
494 Demod
.sub
= SUB_FIRST_HALF
;
497 Demod
.sub
= SUB_NONE
;
502 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
503 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
504 Demod
.state
= DEMOD_ERROR_WAIT
;
505 Demod
.output
[Demod
.len
] = 0xaa;
509 else if(modulation
) {
510 Demod
.sub
= SUB_SECOND_HALF
;
513 switch(Demod
.state
) {
514 case DEMOD_START_OF_COMMUNICATION
:
515 if(Demod
.sub
== SUB_FIRST_HALF
) {
516 Demod
.state
= DEMOD_MANCHESTER_D
;
519 Demod
.output
[Demod
.len
] = 0xab;
520 Demod
.state
= DEMOD_ERROR_WAIT
;
525 case DEMOD_MANCHESTER_D
:
526 case DEMOD_MANCHESTER_E
:
527 if(Demod
.sub
== SUB_FIRST_HALF
) {
529 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
530 Demod
.state
= DEMOD_MANCHESTER_D
;
532 else if(Demod
.sub
== SUB_SECOND_HALF
) {
534 Demod
.shiftReg
>>= 1;
535 Demod
.state
= DEMOD_MANCHESTER_E
;
538 Demod
.state
= DEMOD_MANCHESTER_F
;
542 case DEMOD_MANCHESTER_F
:
543 // Tag response does not need to be a complete byte!
544 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
545 if(Demod
.bitCount
> 0) {
546 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
547 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
549 // No parity bit, so just shift a 0
550 Demod
.parityBits
<<= 1;
553 Demod
.state
= DEMOD_UNSYNCD
;
557 Demod
.output
[Demod
.len
] = 0xad;
558 Demod
.state
= DEMOD_ERROR_WAIT
;
563 case DEMOD_ERROR_WAIT
:
564 Demod
.state
= DEMOD_UNSYNCD
;
568 Demod
.output
[Demod
.len
] = 0xdd;
569 Demod
.state
= DEMOD_UNSYNCD
;
573 if(Demod
.bitCount
>=9) {
574 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
577 Demod
.parityBits
<<= 1;
578 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
585 Demod.output[Demod.len] = 0xBB;
587 Demod.output[Demod.len] = error & 0xFF;
589 Demod.output[Demod.len] = 0xBB;
591 Demod.output[Demod.len] = bit & 0xFF;
593 Demod.output[Demod.len] = Demod.buffer & 0xFF;
595 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
597 Demod.output[Demod.len] = 0xBB;
604 } // end (state != UNSYNCED)
609 //=============================================================================
610 // Finally, a `sniffer' for ISO 14443 Type A
611 // Both sides of communication!
612 //=============================================================================
614 //-----------------------------------------------------------------------------
615 // Record the sequence of commands sent by the reader to the tag, with
616 // triggering so that we start recording at the point that the tag is moved
618 //-----------------------------------------------------------------------------
619 void RAMFUNC
SnoopIso14443a(void)
621 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
622 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
624 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
625 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
627 // We won't start recording the frames that we acquire until we trigger;
628 // a good trigger condition to get started is probably when we see a
629 // response from the tag.
630 int triggered
= FALSE
; // FALSE to wait first for card
632 // The command (reader -> tag) that we're receiving.
633 // The length of a received command will in most cases be no more than 18 bytes.
634 // So 32 should be enough!
635 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
636 // The response (tag -> reader) that we're receiving.
637 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
640 // into trace, along with its length and other annotations.
641 //uint8_t *trace = (uint8_t *)BigBuf;
643 traceLen
= 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
645 // The DMA buffer, used to stream samples from the FPGA
646 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
652 // Count of samples received so far, so that we can include timing
653 // information in the trace buffer.
657 memset(trace
, 0x44, RECV_CMD_OFFSET
);
659 // Set up the demodulator for tag -> reader responses.
660 Demod
.output
= receivedResponse
;
662 Demod
.state
= DEMOD_UNSYNCD
;
664 // Setup for the DMA.
667 lastRxCounter
= DMA_BUFFER_SIZE
;
668 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
670 // And the reader -> tag commands
671 memset(&Uart
, 0, sizeof(Uart
));
672 Uart
.output
= receivedCmd
;
673 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
674 Uart
.state
= STATE_UNSYNCD
;
676 // And put the FPGA in the appropriate mode
677 // Signal field is off with the appropriate LED
679 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
680 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
683 // And now we loop, receiving samples.
687 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
689 if(behindBy
> maxBehindBy
) {
690 maxBehindBy
= behindBy
;
692 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
696 if(behindBy
< 1) continue;
702 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
703 upTo
-= DMA_BUFFER_SIZE
;
704 lastRxCounter
+= DMA_BUFFER_SIZE
;
705 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
706 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
710 if(MillerDecoding((smpl
& 0xF0) >> 4)) {
711 rsamples
= samples
- Uart
.samples
;
714 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
715 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
716 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
717 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
718 trace
[traceLen
++] = ((Uart
.parityBits
>> 0) & 0xff);
719 trace
[traceLen
++] = ((Uart
.parityBits
>> 8) & 0xff);
720 trace
[traceLen
++] = ((Uart
.parityBits
>> 16) & 0xff);
721 trace
[traceLen
++] = ((Uart
.parityBits
>> 24) & 0xff);
722 trace
[traceLen
++] = Uart
.byteCnt
;
723 memcpy(trace
+traceLen
, receivedCmd
, Uart
.byteCnt
);
724 traceLen
+= Uart
.byteCnt
;
725 if(traceLen
> TRACE_LENGTH
) break;
727 /* And ready to receive another command. */
728 Uart
.state
= STATE_UNSYNCD
;
729 /* And also reset the demod code, which might have been */
730 /* false-triggered by the commands from the reader. */
731 Demod
.state
= DEMOD_UNSYNCD
;
735 if(ManchesterDecoding(smpl
& 0x0F)) {
736 rsamples
= samples
- Demod
.samples
;
739 // timestamp, as a count of samples
740 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
741 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
742 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
743 trace
[traceLen
++] = 0x80 | ((rsamples
>> 24) & 0xff);
744 trace
[traceLen
++] = ((Demod
.parityBits
>> 0) & 0xff);
745 trace
[traceLen
++] = ((Demod
.parityBits
>> 8) & 0xff);
746 trace
[traceLen
++] = ((Demod
.parityBits
>> 16) & 0xff);
747 trace
[traceLen
++] = ((Demod
.parityBits
>> 24) & 0xff);
749 trace
[traceLen
++] = Demod
.len
;
750 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
751 traceLen
+= Demod
.len
;
752 if(traceLen
> TRACE_LENGTH
) break;
756 // And ready to receive another response.
757 memset(&Demod
, 0, sizeof(Demod
));
758 Demod
.output
= receivedResponse
;
759 Demod
.state
= DEMOD_UNSYNCD
;
764 DbpString("cancelled_a");
769 DbpString("COMMAND FINISHED");
771 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
772 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
775 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
776 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
777 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
784 //-----------------------------------------------------------------------------
785 // Prepare tag messages
786 //-----------------------------------------------------------------------------
787 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
)
794 // Correction bit, might be removed when not needed
799 ToSendStuffBit(1); // 1
805 ToSend
[++ToSendMax
] = SEC_D
;
807 for(i
= 0; i
< len
; i
++) {
813 for(j
= 0; j
< 8; j
++) {
814 oddparity
^= (b
& 1);
816 ToSend
[++ToSendMax
] = SEC_D
;
818 ToSend
[++ToSendMax
] = SEC_E
;
825 ToSend
[++ToSendMax
] = SEC_D
;
827 ToSend
[++ToSendMax
] = SEC_E
;
832 ToSend
[++ToSendMax
] = SEC_F
;
834 // Flush the buffer in FPGA!!
835 for(i
= 0; i
< 5; i
++) {
836 ToSend
[++ToSendMax
] = SEC_F
;
839 // Convert from last byte pos to length
842 // Add a few more for slop
843 ToSend
[ToSendMax
++] = 0x00;
844 ToSend
[ToSendMax
++] = 0x00;
848 //-----------------------------------------------------------------------------
849 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
850 //-----------------------------------------------------------------------------
851 static void CodeStrangeAnswer()
857 // Correction bit, might be removed when not needed
862 ToSendStuffBit(1); // 1
868 ToSend
[++ToSendMax
] = SEC_D
;
871 ToSend
[++ToSendMax
] = SEC_E
;
874 ToSend
[++ToSendMax
] = SEC_E
;
877 ToSend
[++ToSendMax
] = SEC_D
;
880 ToSend
[++ToSendMax
] = SEC_F
;
882 // Flush the buffer in FPGA!!
883 for(i
= 0; i
< 5; i
++) {
884 ToSend
[++ToSendMax
] = SEC_F
;
887 // Convert from last byte pos to length
890 // Add a few more for slop
891 ToSend
[ToSendMax
++] = 0x00;
892 ToSend
[ToSendMax
++] = 0x00;
896 //-----------------------------------------------------------------------------
897 // Wait for commands from reader
898 // Stop when button is pressed
899 // Or return TRUE when command is captured
900 //-----------------------------------------------------------------------------
901 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
903 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
904 // only, since we are receiving, not transmitting).
905 // Signal field is off with the appropriate LED
907 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
909 // Now run a `software UART' on the stream of incoming samples.
910 Uart
.output
= received
;
911 Uart
.byteCntMax
= maxLen
;
912 Uart
.state
= STATE_UNSYNCD
;
917 if(BUTTON_PRESS()) return FALSE
;
919 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
920 AT91C_BASE_SSC
->SSC_THR
= 0x00;
922 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
923 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
924 if(MillerDecoding((b
& 0xf0) >> 4)) {
928 if(MillerDecoding(b
& 0x0f)) {
936 //-----------------------------------------------------------------------------
937 // Main loop of simulated tag: receive commands from reader, decide what
938 // response to send, and send it.
939 //-----------------------------------------------------------------------------
940 void SimulateIso14443aTag(int tagType
, int TagUid
)
942 // This function contains the tag emulation
944 // Prepare protocol messages
945 // static const uint8_t cmd1[] = { 0x26 };
946 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
948 static const uint8_t response1
[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
949 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
952 // static const uint8_t cmd2[] = { 0x93, 0x20 };
953 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
956 static const uint8_t response2
[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
959 // When reader selects us during cascade1 it will send cmd3
960 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
961 uint8_t response3
[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
962 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
964 // send cascade2 2nd half of UID
965 static const uint8_t response2a
[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
966 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
968 // When reader selects us during cascade2 it will send cmd3a
969 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
970 uint8_t response3a
[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
971 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
973 static const uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
978 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
980 // 144 data bits (18 * 8)
983 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
984 // 1 just for the case
988 // 166 bytes, since every bit that needs to be send costs us a byte
991 // Respond with card type
992 uint8_t *resp1
= (((uint8_t *)BigBuf
) + 800);
995 // Anticollision cascade1 - respond with uid
996 uint8_t *resp2
= (((uint8_t *)BigBuf
) + 970);
999 // Anticollision cascade2 - respond with 2nd half of uid if asked
1000 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1001 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1004 // Acknowledge select - cascade 1
1005 uint8_t *resp3
= (((uint8_t *)BigBuf
) + 1310);
1008 // Acknowledge select - cascade 2
1009 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + 1480);
1012 // Response to a read request - not implemented atm
1013 uint8_t *resp4
= (((uint8_t *)BigBuf
) + 1550);
1016 // Authenticate response - nonce
1017 uint8_t *resp5
= (((uint8_t *)BigBuf
) + 1720);
1020 uint8_t *receivedCmd
= (uint8_t *)BigBuf
;
1027 // To control where we are in the protocol
1031 // Just to allow some checks
1039 memset(receivedCmd
, 0x44, 400);
1041 // Prepare the responses of the anticollision phase
1042 // there will be not enough time to do this at the moment the reader sends it REQA
1044 // Answer to request
1045 CodeIso14443aAsTag(response1
, sizeof(response1
));
1046 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1048 // Send our UID (cascade 1)
1049 CodeIso14443aAsTag(response2
, sizeof(response2
));
1050 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1052 // Answer to select (cascade1)
1053 CodeIso14443aAsTag(response3
, sizeof(response3
));
1054 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1056 // Send the cascade 2 2nd part of the uid
1057 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1058 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1060 // Answer to select (cascade 2)
1061 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1062 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1064 // Strange answer is an example of rare message size (3 bits)
1065 CodeStrangeAnswer();
1066 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1068 // Authentication answer (random nonce)
1069 CodeIso14443aAsTag(response5
, sizeof(response5
));
1070 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1072 // We need to listen to the high-frequency, peak-detected path.
1073 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1081 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, 100)) {
1082 DbpString("button press");
1085 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1086 // Okay, look at the command now.
1088 i
= 1; // first byte transmitted
1089 if(receivedCmd
[0] == 0x26) {
1090 // Received a REQUEST
1091 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1092 //DbpString("Hello request from reader:");
1093 } else if(receivedCmd
[0] == 0x52) {
1094 // Received a WAKEUP
1095 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1096 // //DbpString("Wakeup request from reader:");
1098 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // greg - cascade 1 anti-collision
1099 // Received request for UID (cascade 1)
1100 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1101 // DbpString("UID (cascade 1) request from reader:");
1102 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1105 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] ==0x95) { // greg - cascade 2 anti-collision
1106 // Received request for UID (cascade 2)
1107 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1108 // DbpString("UID (cascade 2) request from reader:");
1109 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1112 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] ==0x93) { // greg - cascade 1 select
1113 // Received a SELECT
1114 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1115 // DbpString("Select (cascade 1) request from reader:");
1116 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1119 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] ==0x95) { // greg - cascade 2 select
1120 // Received a SELECT
1121 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1122 // DbpString("Select (cascade 2) request from reader:");
1123 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1126 } else if(receivedCmd
[0] == 0x30) {
1128 resp
= resp4
; respLen
= resp4Len
; order
= 4; // Do nothing
1129 Dbprintf("Read request from reader: %x %x %x",
1130 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1133 } else if(receivedCmd
[0] == 0x50) {
1135 resp
= resp1
; respLen
= 0; order
= 5; // Do nothing
1136 DbpString("Reader requested we HALT!:");
1138 } else if(receivedCmd
[0] == 0x60) {
1139 // Received an authentication request
1140 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1141 Dbprintf("Authenticate request from reader: %x %x %x",
1142 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1144 } else if(receivedCmd
[0] == 0xE0) {
1145 // Received a RATS request
1146 resp
= resp1
; respLen
= 0;order
= 70;
1147 Dbprintf("RATS request from reader: %x %x %x",
1148 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1150 // Never seen this command before
1151 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1153 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1154 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1155 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1157 resp
= resp1
; respLen
= 0; order
= 0;
1160 // Count number of wakeups received after a halt
1161 if(order
== 6 && lastorder
== 5) { happened
++; }
1163 // Count number of other messages after a halt
1164 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1166 // Look at last parity bit to determine timing of answer
1167 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1168 // 1236, so correction bit needed
1172 memset(receivedCmd
, 0x44, 32);
1174 if(cmdsRecvd
> 999) {
1175 DbpString("1000 commands later...");
1182 if(respLen
<= 0) continue;
1184 // Modulate Manchester
1185 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1186 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1189 // ### Transmit the response ###
1192 fdt_indicator
= FALSE
;
1194 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1195 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1198 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1206 AT91C_BASE_SSC
->SSC_THR
= b
;
1212 if(BUTTON_PRESS()) {
1219 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1223 //-----------------------------------------------------------------------------
1224 // Transmit the command (to the tag) that was placed in ToSend[].
1225 //-----------------------------------------------------------------------------
1226 static void TransmitFor14443a(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1236 for(c
= 0; c
< *wait
;) {
1237 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1238 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1241 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1242 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1250 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1251 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1257 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1258 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1263 if (samples
) *samples
= (c
+ *wait
) << 3;
1266 //-----------------------------------------------------------------------------
1267 // Code a 7-bit command without parity bit
1268 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1269 //-----------------------------------------------------------------------------
1270 void ShortFrameFromReader(const uint8_t bt
)
1278 // Start of Communication (Seq. Z)
1279 ToSend
[++ToSendMax
] = SEC_Z
;
1283 for(j
= 0; j
< 7; j
++) {
1286 ToSend
[++ToSendMax
] = SEC_X
;
1291 ToSend
[++ToSendMax
] = SEC_Z
;
1295 ToSend
[++ToSendMax
] = SEC_Y
;
1302 // End of Communication
1305 ToSend
[++ToSendMax
] = SEC_Z
;
1309 ToSend
[++ToSendMax
] = SEC_Y
;
1313 ToSend
[++ToSendMax
] = SEC_Y
;
1316 ToSend
[++ToSendMax
] = SEC_Y
;
1317 ToSend
[++ToSendMax
] = SEC_Y
;
1318 ToSend
[++ToSendMax
] = SEC_Y
;
1320 // Convert from last character reference to length
1324 //-----------------------------------------------------------------------------
1325 // Prepare reader command to send to FPGA
1327 //-----------------------------------------------------------------------------
1328 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1336 // Start of Communication (Seq. Z)
1337 ToSend
[++ToSendMax
] = SEC_Z
;
1340 // Generate send structure for the data bits
1341 for (i
= 0; i
< len
; i
++) {
1342 // Get the current byte to send
1345 for (j
= 0; j
< 8; j
++) {
1348 ToSend
[++ToSendMax
] = SEC_X
;
1353 ToSend
[++ToSendMax
] = SEC_Z
;
1356 ToSend
[++ToSendMax
] = SEC_Y
;
1363 // Get the parity bit
1364 if ((dwParity
>> i
) & 0x01) {
1366 ToSend
[++ToSendMax
] = SEC_X
;
1371 ToSend
[++ToSendMax
] = SEC_Z
;
1374 ToSend
[++ToSendMax
] = SEC_Y
;
1380 // End of Communication
1383 ToSend
[++ToSendMax
] = SEC_Z
;
1386 ToSend
[++ToSendMax
] = SEC_Y
;
1390 ToSend
[++ToSendMax
] = SEC_Y
;
1393 ToSend
[++ToSendMax
] = SEC_Y
;
1394 ToSend
[++ToSendMax
] = SEC_Y
;
1395 ToSend
[++ToSendMax
] = SEC_Y
;
1397 // Convert from last character reference to length
1401 //-----------------------------------------------------------------------------
1402 // Wait a certain time for tag response
1403 // If a response is captured return TRUE
1404 // If it takes to long return FALSE
1405 //-----------------------------------------------------------------------------
1406 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1408 // buffer needs to be 512 bytes
1411 // Set FPGA mode to "reader listen mode", no modulation (listen
1412 // only, since we are receiving, not transmitting).
1413 // Signal field is on with the appropriate LED
1415 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1417 // Now get the answer from the card
1418 Demod
.output
= receivedResponse
;
1420 Demod
.state
= DEMOD_UNSYNCD
;
1423 if (elapsed
) *elapsed
= 0;
1429 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1430 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1431 if (elapsed
) (*elapsed
)++;
1433 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1434 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1435 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1436 if(ManchesterDecoding((b
>>4) & 0xf)) {
1437 *samples
= ((c
- 1) << 3) + 4;
1440 if(ManchesterDecoding(b
& 0x0f)) {
1448 void ReaderTransmitShort(const uint8_t* bt
)
1453 ShortFrameFromReader(*bt
);
1456 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1458 // Store reader command in buffer
1459 if (tracing
) LogTrace(bt
,1,0,GetParity(bt
,1),TRUE
);
1462 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
)
1467 // This is tied to other size changes
1468 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1469 CodeIso14443aAsReaderPar(frame
,len
,par
);
1472 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1476 // Store reader command in buffer
1477 if (tracing
) LogTrace(frame
,len
,0,par
,TRUE
);
1481 void ReaderTransmit(uint8_t* frame
, int len
)
1483 // Generate parity and redirect
1484 ReaderTransmitPar(frame
,len
,GetParity(frame
,len
));
1487 int ReaderReceive(uint8_t* receivedAnswer
)
1490 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1491 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1492 if(samples
== 0) return FALSE
;
1496 int ReaderReceivePar(uint8_t* receivedAnswer
, uint32_t * parptr
)
1499 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1500 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1501 *parptr
= Demod
.parityBits
;
1502 if(samples
== 0) return FALSE
;
1506 /* performs iso14443a anticolision procedure
1507 * fills the uid pointer unless NULL
1508 * fills resp_data unless NULL */
1509 int iso14443a_select_card(uint8_t * uid_ptr
, iso14a_card_select_t
* resp_data
, uint32_t * cuid_ptr
) {
1510 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1511 uint8_t sel_all
[] = { 0x93,0x20 };
1512 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1513 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1515 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1517 uint8_t sak
= 0x04; // cascade uid
1518 int cascade_level
= 0;
1523 memset(uid_ptr
, 0, 8);
1525 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1526 ReaderTransmitShort(wupa
);
1528 if(!ReaderReceive(resp
)) return 0;
1531 memcpy(resp_data
->atqa
, resp
, 2);
1533 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1534 // which case we need to make a cascade 2 request and select - this is a long UID
1535 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1536 for(; sak
& 0x04; cascade_level
++)
1538 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1539 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1542 ReaderTransmit(sel_all
,sizeof(sel_all
));
1543 if (!ReaderReceive(resp
)) return 0;
1544 if(uid_ptr
) memcpy(uid_ptr
+ cascade_level
*4, resp
, 4);
1546 // calculate crypto UID
1547 if(cuid_ptr
) *cuid_ptr
= bytes_to_num(resp
, 4);
1549 // Construct SELECT UID command
1550 memcpy(sel_uid
+2,resp
,5);
1551 AppendCrc14443a(sel_uid
,7);
1552 ReaderTransmit(sel_uid
,sizeof(sel_uid
));
1555 if (!ReaderReceive(resp
)) return 0;
1559 resp_data
->sak
= sak
;
1560 resp_data
->ats_len
= 0;
1562 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1563 if (uid_ptr
[0] == 0x88) {
1564 memcpy(uid_ptr
, uid_ptr
+ 1, 7);
1568 if( (sak
& 0x20) == 0)
1569 return 2; // non iso14443a compliant tag
1571 // Request for answer to select
1572 if(resp_data
) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1573 AppendCrc14443a(rats
, 2);
1574 ReaderTransmit(rats
, sizeof(rats
));
1576 if (!(len
= ReaderReceive(resp
))) return 0;
1578 memcpy(resp_data
->ats
, resp
, sizeof(resp_data
->ats
));
1579 resp_data
->ats_len
= len
;
1585 void iso14443a_setup() {
1588 // Start from off (no field generated)
1589 // Signal field is off with the appropriate LED
1591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1594 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1596 // Now give it time to spin up.
1597 // Signal field is on with the appropriate LED
1599 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1602 iso14a_timeout
= 2048; //default
1605 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1606 uint8_t real_cmd
[cmd_len
+4];
1607 real_cmd
[0] = 0x0a; //I-Block
1608 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1609 memcpy(real_cmd
+2, cmd
, cmd_len
);
1610 AppendCrc14443a(real_cmd
,cmd_len
+2);
1612 ReaderTransmit(real_cmd
, cmd_len
+4);
1613 size_t len
= ReaderReceive(data
);
1615 return -1; //DATA LINK ERROR
1621 //-----------------------------------------------------------------------------
1622 // Read an ISO 14443a tag. Send out commands and store answers.
1624 //-----------------------------------------------------------------------------
1625 void ReaderIso14443a(UsbCommand
* c
, UsbCommand
* ack
)
1627 iso14a_command_t param
= c
->arg
[0];
1628 uint8_t * cmd
= c
->d
.asBytes
;
1629 size_t len
= c
->arg
[1];
1631 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(1);
1633 if(param
& ISO14A_CONNECT
) {
1635 ack
->arg
[0] = iso14443a_select_card(ack
->d
.asBytes
, (iso14a_card_select_t
*) (ack
->d
.asBytes
+12), NULL
);
1636 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1639 if(param
& ISO14A_SET_TIMEOUT
) {
1640 iso14a_timeout
= c
->arg
[2];
1643 if(param
& ISO14A_SET_TIMEOUT
) {
1644 iso14a_timeout
= c
->arg
[2];
1647 if(param
& ISO14A_APDU
) {
1648 ack
->arg
[0] = iso14_apdu(cmd
, len
, ack
->d
.asBytes
);
1649 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1652 if(param
& ISO14A_RAW
) {
1653 if(param
& ISO14A_APPEND_CRC
) {
1654 AppendCrc14443a(cmd
,len
);
1657 ReaderTransmit(cmd
,len
);
1658 ack
->arg
[0] = ReaderReceive(ack
->d
.asBytes
);
1659 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1662 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(0);
1664 if(param
& ISO14A_NO_DISCONNECT
)
1667 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1670 //-----------------------------------------------------------------------------
1671 // Read an ISO 14443a tag. Send out commands and store answers.
1673 //-----------------------------------------------------------------------------
1674 void ReaderMifare(uint32_t parameter
)
1677 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1678 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1680 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1693 byte_t par_mask
= 0xff;
1700 byte_t nt
[4] = {0,0,0,0};
1701 byte_t nt_attacked
[4];
1702 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1703 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1704 num_to_bytes(parameter
, 4, nt_attacked
);
1705 int isOK
= 0, isNULL
= 0;
1710 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1712 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1715 // Test if the action was cancelled
1716 if(BUTTON_PRESS()) {
1720 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) continue;
1722 // Transmit MIFARE_CLASSIC_AUTH
1723 ReaderTransmit(mf_auth
, sizeof(mf_auth
));
1725 // Receive the (16 bit) "random" nonce
1726 if (!ReaderReceive(receivedAnswer
)) continue;
1727 memcpy(nt
, receivedAnswer
, 4);
1729 // Transmit reader nonce and reader answer
1730 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
),par
);
1732 // Receive 4 bit answer
1733 if (ReaderReceive(receivedAnswer
))
1735 isNULL
= (nt_attacked
[0] = 0) && (nt_attacked
[1] = 0) && (nt_attacked
[2] = 0) && (nt_attacked
[3] = 0);
1736 if ( (isNULL
!= 0 ) && (memcmp(nt
, nt_attacked
, 4) != 0) ) continue;
1741 memcpy(nt_attacked
, nt
, 4);
1743 par_low
= par
& 0x07;
1747 if(led_on
) LED_B_ON(); else LED_B_OFF();
1748 par_list
[nt_diff
] = par
;
1749 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
1751 // Test if the information is complete
1752 if (nt_diff
== 0x07) {
1757 nt_diff
= (nt_diff
+ 1) & 0x07;
1758 mf_nr_ar
[3] = nt_diff
<< 5;
1765 par
= (((par
>> 3) + 1) << 3) | par_low
;
1770 LogTrace(nt
, 4, 0, GetParity(nt
, 4), TRUE
);
1771 LogTrace(par_list
, 8, 0, GetParity(par_list
, 8), TRUE
);
1772 LogTrace(ks_list
, 8, 0, GetParity(ks_list
, 8), TRUE
);
1774 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1775 memcpy(ack
.d
.asBytes
+ 0, uid
, 4);
1776 memcpy(ack
.d
.asBytes
+ 4, nt
, 4);
1777 memcpy(ack
.d
.asBytes
+ 8, par_list
, 8);
1778 memcpy(ack
.d
.asBytes
+ 16, ks_list
, 8);
1781 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1785 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1789 // DbpString("COMMAND mifare FINISHED");
1792 //-----------------------------------------------------------------------------
1793 // Select, Authenticaate, Read an MIFARE tag.
1795 //-----------------------------------------------------------------------------
1796 void MifareReadBlock(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1799 uint8_t blockNo
= arg0
;
1800 uint8_t keyType
= arg1
;
1801 uint64_t ui64Key
= 0;
1802 ui64Key
= bytes_to_num(datain
, 6);
1806 byte_t dataoutbuf
[16];
1809 struct Crypto1State mpcs
= {0, 0};
1810 struct Crypto1State
*pcs
;
1824 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1825 Dbprintf("Can't select card");
1829 if(mifare_classic_auth(pcs
, cuid
, blockNo
, keyType
, ui64Key
, AUTH_FIRST
)) {
1830 Dbprintf("Auth error");
1834 if(mifare_classic_readblock(pcs
, cuid
, blockNo
, dataoutbuf
)) {
1835 Dbprintf("Read block error");
1839 if(mifare_classic_halt(pcs
, cuid
)) {
1840 Dbprintf("Halt error");
1848 // ----------------------------- crypto1 destroy
1849 crypto1_destroy(pcs
);
1851 // DbpString("READ BLOCK FINISHED");
1853 // add trace trailer
1858 LogTrace(uid
, 4, 0, 0, TRUE
);
1860 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1861 memcpy(ack
.d
.asBytes
, dataoutbuf
, 16);
1864 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1869 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1875 //-----------------------------------------------------------------------------
1876 // Select, Authenticaate, Read an MIFARE tag.
1877 // read sector (data = 4 x 16 bytes = 64 bytes)
1878 //-----------------------------------------------------------------------------
1879 void MifareReadSector(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1882 uint8_t sectorNo
= arg0
;
1883 uint8_t keyType
= arg1
;
1884 uint64_t ui64Key
= 0;
1885 ui64Key
= bytes_to_num(datain
, 6);
1889 byte_t dataoutbuf
[16 * 4];
1892 struct Crypto1State mpcs
= {0, 0};
1893 struct Crypto1State
*pcs
;
1907 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1908 Dbprintf("Can't select card");
1912 if(mifare_classic_auth(pcs
, cuid
, sectorNo
* 4, keyType
, ui64Key
, AUTH_FIRST
)) {
1913 Dbprintf("Auth error");
1917 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 0, dataoutbuf
+ 16 * 0)) {
1918 Dbprintf("Read block 0 error");
1921 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 1, dataoutbuf
+ 16 * 1)) {
1922 Dbprintf("Read block 1 error");
1925 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 2, dataoutbuf
+ 16 * 2)) {
1926 Dbprintf("Read block 2 error");
1929 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 3, dataoutbuf
+ 16 * 3)) {
1930 Dbprintf("Read block 3 error");
1934 if(mifare_classic_halt(pcs
, cuid
)) {
1935 Dbprintf("Halt error");
1943 // ----------------------------- crypto1 destroy
1944 crypto1_destroy(pcs
);
1946 // DbpString("READ BLOCK FINISHED");
1948 // add trace trailer
1953 LogTrace(uid
, 4, 0, 0, TRUE
);
1955 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1956 memcpy(ack
.d
.asBytes
, dataoutbuf
, 16 * 2);
1959 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1963 memcpy(ack
.d
.asBytes
, dataoutbuf
+ 16 * 2, 16 * 2);
1964 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1968 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1974 //-----------------------------------------------------------------------------
1975 // Select, Authenticaate, Read an MIFARE tag.
1977 //-----------------------------------------------------------------------------
1978 void MifareWriteBlock(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1981 uint8_t blockNo
= arg0
;
1982 uint8_t keyType
= arg1
;
1983 uint64_t ui64Key
= 0;
1984 byte_t blockdata
[16];
1986 ui64Key
= bytes_to_num(datain
, 6);
1987 memcpy(blockdata
, datain
+ 10, 16);
1993 struct Crypto1State mpcs
= {0, 0};
1994 struct Crypto1State
*pcs
;
2008 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2009 Dbprintf("Can't select card");
2013 if(mifare_classic_auth(pcs
, cuid
, blockNo
, keyType
, ui64Key
, AUTH_FIRST
)) {
2014 Dbprintf("Auth error");
2018 if(mifare_classic_writeblock(pcs
, cuid
, blockNo
, blockdata
)) {
2019 Dbprintf("Write block error");
2023 if(mifare_classic_halt(pcs
, cuid
)) {
2024 Dbprintf("Halt error");
2032 // ----------------------------- crypto1 destroy
2033 crypto1_destroy(pcs
);
2035 // DbpString("WRITE BLOCK FINISHED");
2037 // add trace trailer
2042 LogTrace(uid
, 4, 0, 0, TRUE
);
2044 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
2047 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
2052 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2058 // Return 1 if the nonce is invalid else return 0
2059 int valid_nonce(uint32_t Nt
, uint32_t NtEnc
, uint32_t Ks1
, byte_t
* parity
) {
2060 return ((oddparity((Nt
>> 24) & 0xFF) == ((parity
[0]) ^ oddparity((NtEnc
>> 24) & 0xFF) ^ BIT(Ks1
,16))) & \
2061 (oddparity((Nt
>> 16) & 0xFF) == ((parity
[1]) ^ oddparity((NtEnc
>> 16) & 0xFF) ^ BIT(Ks1
,8))) & \
2062 (oddparity((Nt
>> 8) & 0xFF) == ((parity
[2]) ^ oddparity((NtEnc
>> 8) & 0xFF) ^ BIT(Ks1
,0)))) ? 1 : 0;
2066 //-----------------------------------------------------------------------------
2067 // MIFARE nested authentication.
2069 //-----------------------------------------------------------------------------
2070 void MifareNested(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
2073 uint8_t blockNo
= arg0
;
2074 uint8_t keyType
= arg1
;
2075 uint64_t ui64Key
= 0;
2077 ui64Key
= bytes_to_num(datain
, 6);
2080 uint8_t targetBlockNo
= blockNo
+ 1;
2081 uint8_t targetKeyType
= keyType
;
2082 int rtr
, i
, j
, m
, len
;
2083 int davg
, dmin
, dmax
;
2085 uint32_t cuid
, nt1
, nt2
, nttmp
, nttest
, par
, ks1
;
2086 uint8_t par_array
[4];
2087 nestedVector nvector
[3][10];
2088 int nvectorcount
[3] = {10, 10, 10};
2090 UsbCommand ack
= {CMD_ACK
, {0, 0, 0}};
2091 struct Crypto1State mpcs
= {0, 0};
2092 struct Crypto1State
*pcs
;
2094 uint8_t* receivedAnswer
= mifare_get_bigbufptr();
2106 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2112 // test nonce distance
2113 for (rtr
= 0; rtr
< 10; rtr
++) {
2114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2116 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
2118 // Test if the action was cancelled
2119 if(BUTTON_PRESS()) {
2123 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2124 Dbprintf("Can't select card");
2128 if(mifare_classic_authex(pcs
, cuid
, blockNo
, keyType
, ui64Key
, AUTH_FIRST
, &nt1
)) {
2129 Dbprintf("Auth1 error");
2133 if(mifare_classic_authex(pcs
, cuid
, blockNo
, keyType
, ui64Key
, AUTH_NESTED
, &nt2
)) {
2134 Dbprintf("Auth2 error");
2138 nttmp
= prng_successor(nt1
, 500);
2139 for (i
= 501; i
< 2000; i
++) {
2140 nttmp
= prng_successor(nttmp
, 1);
2141 if (nttmp
== nt2
) break;
2146 if (dmin
> i
) dmin
= i
;
2147 if (dmax
< i
) dmax
= i
;
2148 // Dbprintf("r=%d nt1=%08x nt2=%08x distance=%d", rtr, nt1, nt2, i);
2152 if (rtr
== 0) return;
2155 Dbprintf("distance: min=%d max=%d avg=%d", dmin
, dmax
, davg
);
2163 // get crypted nonces for target sector
2164 for (rtr
= 0; rtr
< 2; rtr
++) {
2165 // Dbprintf("------------------------------");
2167 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2169 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
2171 // Test if the action was cancelled
2172 if(BUTTON_PRESS()) {
2176 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2177 Dbprintf("Can't select card");
2181 if(mifare_classic_authex(pcs
, cuid
, blockNo
, keyType
, ui64Key
, AUTH_FIRST
, &nt1
)) {
2182 Dbprintf("Auth1 error");
2186 // nested authentication
2187 len
= mifare_sendcmd_shortex(pcs
, AUTH_NESTED
, 0x60 + (targetKeyType
& 0x01), targetBlockNo
, receivedAnswer
, &par
);
2189 Dbprintf("Auth2 error len=%d", len
);
2193 nt2
= bytes_to_num(receivedAnswer
, 4);
2194 // Dbprintf("r=%d nt1=%08x nt2enc=%08x nt2par=%08x", rtr, nt1, nt2, par);
2196 // ----------------------- test
2197 /* uint32_t d_nt, d_ks1, d_ks2, d_ks3, reader_challenge;
2205 crypto1_destroy(pcs);
2206 crypto1_create(pcs, ui64Key);
2208 // decrypt nt with help of new key
2209 d_nt = crypto1_word(pcs, nt2 ^ cuid, 1) ^ nt2;
2211 reader_challenge = d_nt;//(uint32_t)bytes_to_num(ar, 4);
2212 d_ks1 = crypto1_word(pcs, reader_challenge, 0);
2213 d_ks2 = crypto1_word(pcs, 0, 0);
2214 d_ks3 = crypto1_word(pcs, 0,0);
2216 Dbprintf("TST: ks1=%08x nt=%08x", d_ks1, d_nt);*/
2217 // ----------------------- test
2219 // Parity validity check
2220 for (i
= 0; i
< 4; i
++) {
2221 par_array
[i
] = (oddparity(receivedAnswer
[i
]) != ((par
& 0x08) >> 3));
2226 for (m
= dmin
- 10; m
< dmax
+ 10; m
++) {
2227 nttest
= prng_successor(nt1
, m
);
2230 //-------------------------------------- test
2231 /* if (nttest == d_nt){
2232 Dbprintf("nttest=d_nt! m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
2234 //-------------------------------------- test
2235 if (valid_nonce(nttest
, nt2
, ks1
, par_array
) && (ncount
< 11)){
2237 nvector
[2][ncount
].nt
= nttest
;
2238 nvector
[2][ncount
].ks1
= ks1
;
2240 nvectorcount
[2] = ncount
;
2242 // Dbprintf("valid m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
2247 // select vector with length less than got
2248 if (nvectorcount
[2] != 0) {
2250 if (nvectorcount
[2] < nvectorcount
[1]) m
= 1;
2251 if (nvectorcount
[2] < nvectorcount
[0]) m
= 0;
2253 for (i
= 0; i
< nvectorcount
[m
]; i
++) {
2254 nvector
[m
][i
] = nvector
[2][i
];
2256 nvectorcount
[m
] = nvectorcount
[2];
2260 // Dbprintf("vector count: 1=%d 2=%d 3=%d", nvectorcount[0], nvectorcount[1], nvectorcount[2]);
2266 // ----------------------------- crypto1 destroy
2267 crypto1_destroy(pcs
);
2269 // add trace trailer
2274 LogTrace(uid
, 4, 0, 0, TRUE
);
2276 for (i
= 0; i
< 2; i
++) {
2277 for (j
= 0; j
< nvectorcount
[i
]; j
+= 5) {
2278 ncount
= nvectorcount
[i
] - j
;
2279 if (ncount
> 5) ncount
= 5;
2281 ack
.arg
[0] = 0; // isEOF = 0
2282 ack
.arg
[1] = ncount
;
2283 ack
.arg
[2] = targetBlockNo
+ (targetKeyType
* 0x100);
2284 memset(ack
.d
.asBytes
, 0x00, sizeof(ack
.d
.asBytes
));
2286 memcpy(ack
.d
.asBytes
, &cuid
, 4);
2287 for (m
= 0; m
< ncount
; m
++) {
2288 memcpy(ack
.d
.asBytes
+ 8 + m
* 8 + 0, &nvector
[i
][m
+ j
].nt
, 4);
2289 memcpy(ack
.d
.asBytes
+ 8 + m
* 8 + 4, &nvector
[i
][m
+ j
].ks1
, 4);
2294 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
2300 ack
.arg
[0] = 1; // isEOF = 1
2303 memset(ack
.d
.asBytes
, 0x00, sizeof(ack
.d
.asBytes
));
2307 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
2310 DbpString("NESTED FINISHED");
2313 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2319 //-----------------------------------------------------------------------------
2320 // MIFARE 1K simulate.
2322 //-----------------------------------------------------------------------------
2323 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
2325 int cardSTATE
= MFEMUL_NOFIELD
;
2329 if(BUTTON_PRESS()) {
2333 switch (cardSTATE
) {
2334 case MFEMUL_NOFIELD
:{
2340 case MFEMUL_SELECT1
:{
2343 case MFEMUL_SELECT2
:{
2352 case MFEMUL_HALTED
:{