]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
b64a1942a033a2d6a46afa8b1efe0e45b5ce66e2
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint8_t *trace = (uint8_t *) BigBuf;
24 static int traceLen = 0;
25 static int rsamples = 0;
26 static int tracing = TRUE;
27 static uint32_t iso14a_timeout;
28
29 // CARD TO READER
30 // Sequence D: 11110000 modulation with subcarrier during first half
31 // Sequence E: 00001111 modulation with subcarrier during second half
32 // Sequence F: 00000000 no modulation with subcarrier
33 // READER TO CARD
34 // Sequence X: 00001100 drop after half a period
35 // Sequence Y: 00000000 no drop
36 // Sequence Z: 11000000 drop at start
37 #define SEC_D 0xf0
38 #define SEC_E 0x0f
39 #define SEC_F 0x00
40 #define SEC_X 0x0c
41 #define SEC_Y 0x00
42 #define SEC_Z 0xc0
43
44 static const uint8_t OddByteParity[256] = {
45 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
49 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
61 };
62
63 // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
64 #define RECV_CMD_OFFSET 3032
65 #define RECV_RES_OFFSET 3096
66 #define DMA_BUFFER_OFFSET 3160
67 #define DMA_BUFFER_SIZE 4096
68 #define TRACE_LENGTH 3000
69
70 uint8_t trigger = 0;
71 void iso14a_set_trigger(int enable) {
72 trigger = enable;
73 }
74
75 //-----------------------------------------------------------------------------
76 // Generate the parity value for a byte sequence
77 //
78 //-----------------------------------------------------------------------------
79 byte_t oddparity (const byte_t bt)
80 {
81 return OddByteParity[bt];
82 }
83
84 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
85 {
86 int i;
87 uint32_t dwPar = 0;
88
89 // Generate the encrypted data
90 for (i = 0; i < iLen; i++) {
91 // Save the encrypted parity bit
92 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
93 }
94 return dwPar;
95 }
96
97 void AppendCrc14443a(uint8_t* data, int len)
98 {
99 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
100 }
101
102 int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
103 {
104 // Return when trace is full
105 if (traceLen >= TRACE_LENGTH) return FALSE;
106
107 // Trace the random, i'm curious
108 rsamples += iSamples;
109 trace[traceLen++] = ((rsamples >> 0) & 0xff);
110 trace[traceLen++] = ((rsamples >> 8) & 0xff);
111 trace[traceLen++] = ((rsamples >> 16) & 0xff);
112 trace[traceLen++] = ((rsamples >> 24) & 0xff);
113 if (!bReader) {
114 trace[traceLen - 1] |= 0x80;
115 }
116 trace[traceLen++] = ((dwParity >> 0) & 0xff);
117 trace[traceLen++] = ((dwParity >> 8) & 0xff);
118 trace[traceLen++] = ((dwParity >> 16) & 0xff);
119 trace[traceLen++] = ((dwParity >> 24) & 0xff);
120 trace[traceLen++] = iLen;
121 memcpy(trace + traceLen, btBytes, iLen);
122 traceLen += iLen;
123 return TRUE;
124 }
125
126 //-----------------------------------------------------------------------------
127 // The software UART that receives commands from the reader, and its state
128 // variables.
129 //-----------------------------------------------------------------------------
130 static struct {
131 enum {
132 STATE_UNSYNCD,
133 STATE_START_OF_COMMUNICATION,
134 STATE_MILLER_X,
135 STATE_MILLER_Y,
136 STATE_MILLER_Z,
137 STATE_ERROR_WAIT
138 } state;
139 uint16_t shiftReg;
140 int bitCnt;
141 int byteCnt;
142 int byteCntMax;
143 int posCnt;
144 int syncBit;
145 int parityBits;
146 int samples;
147 int highCnt;
148 int bitBuffer;
149 enum {
150 DROP_NONE,
151 DROP_FIRST_HALF,
152 DROP_SECOND_HALF
153 } drop;
154 uint8_t *output;
155 } Uart;
156
157 static RAMFUNC int MillerDecoding(int bit)
158 {
159 int error = 0;
160 int bitright;
161
162 if(!Uart.bitBuffer) {
163 Uart.bitBuffer = bit ^ 0xFF0;
164 return FALSE;
165 }
166 else {
167 Uart.bitBuffer <<= 4;
168 Uart.bitBuffer ^= bit;
169 }
170
171 int EOC = FALSE;
172
173 if(Uart.state != STATE_UNSYNCD) {
174 Uart.posCnt++;
175
176 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
177 bit = 0x00;
178 }
179 else {
180 bit = 0x01;
181 }
182 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
183 bitright = 0x00;
184 }
185 else {
186 bitright = 0x01;
187 }
188 if(bit != bitright) { bit = bitright; }
189
190 if(Uart.posCnt == 1) {
191 // measurement first half bitperiod
192 if(!bit) {
193 Uart.drop = DROP_FIRST_HALF;
194 }
195 }
196 else {
197 // measurement second half bitperiod
198 if(!bit & (Uart.drop == DROP_NONE)) {
199 Uart.drop = DROP_SECOND_HALF;
200 }
201 else if(!bit) {
202 // measured a drop in first and second half
203 // which should not be possible
204 Uart.state = STATE_ERROR_WAIT;
205 error = 0x01;
206 }
207
208 Uart.posCnt = 0;
209
210 switch(Uart.state) {
211 case STATE_START_OF_COMMUNICATION:
212 Uart.shiftReg = 0;
213 if(Uart.drop == DROP_SECOND_HALF) {
214 // error, should not happen in SOC
215 Uart.state = STATE_ERROR_WAIT;
216 error = 0x02;
217 }
218 else {
219 // correct SOC
220 Uart.state = STATE_MILLER_Z;
221 }
222 break;
223
224 case STATE_MILLER_Z:
225 Uart.bitCnt++;
226 Uart.shiftReg >>= 1;
227 if(Uart.drop == DROP_NONE) {
228 // logic '0' followed by sequence Y
229 // end of communication
230 Uart.state = STATE_UNSYNCD;
231 EOC = TRUE;
232 }
233 // if(Uart.drop == DROP_FIRST_HALF) {
234 // Uart.state = STATE_MILLER_Z; stay the same
235 // we see a logic '0' }
236 if(Uart.drop == DROP_SECOND_HALF) {
237 // we see a logic '1'
238 Uart.shiftReg |= 0x100;
239 Uart.state = STATE_MILLER_X;
240 }
241 break;
242
243 case STATE_MILLER_X:
244 Uart.shiftReg >>= 1;
245 if(Uart.drop == DROP_NONE) {
246 // sequence Y, we see a '0'
247 Uart.state = STATE_MILLER_Y;
248 Uart.bitCnt++;
249 }
250 if(Uart.drop == DROP_FIRST_HALF) {
251 // Would be STATE_MILLER_Z
252 // but Z does not follow X, so error
253 Uart.state = STATE_ERROR_WAIT;
254 error = 0x03;
255 }
256 if(Uart.drop == DROP_SECOND_HALF) {
257 // We see a '1' and stay in state X
258 Uart.shiftReg |= 0x100;
259 Uart.bitCnt++;
260 }
261 break;
262
263 case STATE_MILLER_Y:
264 Uart.bitCnt++;
265 Uart.shiftReg >>= 1;
266 if(Uart.drop == DROP_NONE) {
267 // logic '0' followed by sequence Y
268 // end of communication
269 Uart.state = STATE_UNSYNCD;
270 EOC = TRUE;
271 }
272 if(Uart.drop == DROP_FIRST_HALF) {
273 // we see a '0'
274 Uart.state = STATE_MILLER_Z;
275 }
276 if(Uart.drop == DROP_SECOND_HALF) {
277 // We see a '1' and go to state X
278 Uart.shiftReg |= 0x100;
279 Uart.state = STATE_MILLER_X;
280 }
281 break;
282
283 case STATE_ERROR_WAIT:
284 // That went wrong. Now wait for at least two bit periods
285 // and try to sync again
286 if(Uart.drop == DROP_NONE) {
287 Uart.highCnt = 6;
288 Uart.state = STATE_UNSYNCD;
289 }
290 break;
291
292 default:
293 Uart.state = STATE_UNSYNCD;
294 Uart.highCnt = 0;
295 break;
296 }
297
298 Uart.drop = DROP_NONE;
299
300 // should have received at least one whole byte...
301 if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
302 return TRUE;
303 }
304
305 if(Uart.bitCnt == 9) {
306 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
307 Uart.byteCnt++;
308
309 Uart.parityBits <<= 1;
310 Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
311
312 if(EOC) {
313 // when End of Communication received and
314 // all data bits processed..
315 return TRUE;
316 }
317 Uart.bitCnt = 0;
318 }
319
320 /*if(error) {
321 Uart.output[Uart.byteCnt] = 0xAA;
322 Uart.byteCnt++;
323 Uart.output[Uart.byteCnt] = error & 0xFF;
324 Uart.byteCnt++;
325 Uart.output[Uart.byteCnt] = 0xAA;
326 Uart.byteCnt++;
327 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
328 Uart.byteCnt++;
329 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
330 Uart.byteCnt++;
331 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
332 Uart.byteCnt++;
333 Uart.output[Uart.byteCnt] = 0xAA;
334 Uart.byteCnt++;
335 return TRUE;
336 }*/
337 }
338
339 }
340 else {
341 bit = Uart.bitBuffer & 0xf0;
342 bit >>= 4;
343 bit ^= 0x0F;
344 if(bit) {
345 // should have been high or at least (4 * 128) / fc
346 // according to ISO this should be at least (9 * 128 + 20) / fc
347 if(Uart.highCnt == 8) {
348 // we went low, so this could be start of communication
349 // it turns out to be safer to choose a less significant
350 // syncbit... so we check whether the neighbour also represents the drop
351 Uart.posCnt = 1; // apparently we are busy with our first half bit period
352 Uart.syncBit = bit & 8;
353 Uart.samples = 3;
354 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
355 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
356 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
357 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
358 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
359 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
360 Uart.syncBit = 8;
361
362 // the first half bit period is expected in next sample
363 Uart.posCnt = 0;
364 Uart.samples = 3;
365 }
366 }
367 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
368
369 Uart.syncBit <<= 4;
370 Uart.state = STATE_START_OF_COMMUNICATION;
371 Uart.drop = DROP_FIRST_HALF;
372 Uart.bitCnt = 0;
373 Uart.byteCnt = 0;
374 Uart.parityBits = 0;
375 error = 0;
376 }
377 else {
378 Uart.highCnt = 0;
379 }
380 }
381 else {
382 if(Uart.highCnt < 8) {
383 Uart.highCnt++;
384 }
385 }
386 }
387
388 return FALSE;
389 }
390
391 //=============================================================================
392 // ISO 14443 Type A - Manchester
393 //=============================================================================
394
395 static struct {
396 enum {
397 DEMOD_UNSYNCD,
398 DEMOD_START_OF_COMMUNICATION,
399 DEMOD_MANCHESTER_D,
400 DEMOD_MANCHESTER_E,
401 DEMOD_MANCHESTER_F,
402 DEMOD_ERROR_WAIT
403 } state;
404 int bitCount;
405 int posCount;
406 int syncBit;
407 int parityBits;
408 uint16_t shiftReg;
409 int buffer;
410 int buff;
411 int samples;
412 int len;
413 enum {
414 SUB_NONE,
415 SUB_FIRST_HALF,
416 SUB_SECOND_HALF
417 } sub;
418 uint8_t *output;
419 } Demod;
420
421 static RAMFUNC int ManchesterDecoding(int v)
422 {
423 int bit;
424 int modulation;
425 int error = 0;
426
427 if(!Demod.buff) {
428 Demod.buff = 1;
429 Demod.buffer = v;
430 return FALSE;
431 }
432 else {
433 bit = Demod.buffer;
434 Demod.buffer = v;
435 }
436
437 if(Demod.state==DEMOD_UNSYNCD) {
438 Demod.output[Demod.len] = 0xfa;
439 Demod.syncBit = 0;
440 //Demod.samples = 0;
441 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
442
443 if(bit & 0x08) {
444 Demod.syncBit = 0x08;
445 }
446
447 if(bit & 0x04) {
448 if(Demod.syncBit) {
449 bit <<= 4;
450 }
451 Demod.syncBit = 0x04;
452 }
453
454 if(bit & 0x02) {
455 if(Demod.syncBit) {
456 bit <<= 2;
457 }
458 Demod.syncBit = 0x02;
459 }
460
461 if(bit & 0x01 && Demod.syncBit) {
462 Demod.syncBit = 0x01;
463 }
464
465 if(Demod.syncBit) {
466 Demod.len = 0;
467 Demod.state = DEMOD_START_OF_COMMUNICATION;
468 Demod.sub = SUB_FIRST_HALF;
469 Demod.bitCount = 0;
470 Demod.shiftReg = 0;
471 Demod.parityBits = 0;
472 Demod.samples = 0;
473 if(Demod.posCount) {
474 if(trigger) LED_A_OFF();
475 switch(Demod.syncBit) {
476 case 0x08: Demod.samples = 3; break;
477 case 0x04: Demod.samples = 2; break;
478 case 0x02: Demod.samples = 1; break;
479 case 0x01: Demod.samples = 0; break;
480 }
481 }
482 error = 0;
483 }
484 }
485 else {
486 //modulation = bit & Demod.syncBit;
487 modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
488
489 Demod.samples += 4;
490
491 if(Demod.posCount==0) {
492 Demod.posCount = 1;
493 if(modulation) {
494 Demod.sub = SUB_FIRST_HALF;
495 }
496 else {
497 Demod.sub = SUB_NONE;
498 }
499 }
500 else {
501 Demod.posCount = 0;
502 if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
503 if(Demod.state!=DEMOD_ERROR_WAIT) {
504 Demod.state = DEMOD_ERROR_WAIT;
505 Demod.output[Demod.len] = 0xaa;
506 error = 0x01;
507 }
508 }
509 else if(modulation) {
510 Demod.sub = SUB_SECOND_HALF;
511 }
512
513 switch(Demod.state) {
514 case DEMOD_START_OF_COMMUNICATION:
515 if(Demod.sub == SUB_FIRST_HALF) {
516 Demod.state = DEMOD_MANCHESTER_D;
517 }
518 else {
519 Demod.output[Demod.len] = 0xab;
520 Demod.state = DEMOD_ERROR_WAIT;
521 error = 0x02;
522 }
523 break;
524
525 case DEMOD_MANCHESTER_D:
526 case DEMOD_MANCHESTER_E:
527 if(Demod.sub == SUB_FIRST_HALF) {
528 Demod.bitCount++;
529 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
530 Demod.state = DEMOD_MANCHESTER_D;
531 }
532 else if(Demod.sub == SUB_SECOND_HALF) {
533 Demod.bitCount++;
534 Demod.shiftReg >>= 1;
535 Demod.state = DEMOD_MANCHESTER_E;
536 }
537 else {
538 Demod.state = DEMOD_MANCHESTER_F;
539 }
540 break;
541
542 case DEMOD_MANCHESTER_F:
543 // Tag response does not need to be a complete byte!
544 if(Demod.len > 0 || Demod.bitCount > 0) {
545 if(Demod.bitCount > 0) {
546 Demod.shiftReg >>= (9 - Demod.bitCount);
547 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
548 Demod.len++;
549 // No parity bit, so just shift a 0
550 Demod.parityBits <<= 1;
551 }
552
553 Demod.state = DEMOD_UNSYNCD;
554 return TRUE;
555 }
556 else {
557 Demod.output[Demod.len] = 0xad;
558 Demod.state = DEMOD_ERROR_WAIT;
559 error = 0x03;
560 }
561 break;
562
563 case DEMOD_ERROR_WAIT:
564 Demod.state = DEMOD_UNSYNCD;
565 break;
566
567 default:
568 Demod.output[Demod.len] = 0xdd;
569 Demod.state = DEMOD_UNSYNCD;
570 break;
571 }
572
573 if(Demod.bitCount>=9) {
574 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
575 Demod.len++;
576
577 Demod.parityBits <<= 1;
578 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
579
580 Demod.bitCount = 0;
581 Demod.shiftReg = 0;
582 }
583
584 /*if(error) {
585 Demod.output[Demod.len] = 0xBB;
586 Demod.len++;
587 Demod.output[Demod.len] = error & 0xFF;
588 Demod.len++;
589 Demod.output[Demod.len] = 0xBB;
590 Demod.len++;
591 Demod.output[Demod.len] = bit & 0xFF;
592 Demod.len++;
593 Demod.output[Demod.len] = Demod.buffer & 0xFF;
594 Demod.len++;
595 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
596 Demod.len++;
597 Demod.output[Demod.len] = 0xBB;
598 Demod.len++;
599 return TRUE;
600 }*/
601
602 }
603
604 } // end (state != UNSYNCED)
605
606 return FALSE;
607 }
608
609 //=============================================================================
610 // Finally, a `sniffer' for ISO 14443 Type A
611 // Both sides of communication!
612 //=============================================================================
613
614 //-----------------------------------------------------------------------------
615 // Record the sequence of commands sent by the reader to the tag, with
616 // triggering so that we start recording at the point that the tag is moved
617 // near the reader.
618 //-----------------------------------------------------------------------------
619 void RAMFUNC SnoopIso14443a(void)
620 {
621 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
622 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
624 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
625 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
626
627 // We won't start recording the frames that we acquire until we trigger;
628 // a good trigger condition to get started is probably when we see a
629 // response from the tag.
630 int triggered = FALSE; // FALSE to wait first for card
631
632 // The command (reader -> tag) that we're receiving.
633 // The length of a received command will in most cases be no more than 18 bytes.
634 // So 32 should be enough!
635 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
636 // The response (tag -> reader) that we're receiving.
637 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
638
639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
640 // into trace, along with its length and other annotations.
641 //uint8_t *trace = (uint8_t *)BigBuf;
642
643 traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
644
645 // The DMA buffer, used to stream samples from the FPGA
646 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
647 int lastRxCounter;
648 int8_t *upTo;
649 int smpl;
650 int maxBehindBy = 0;
651
652 // Count of samples received so far, so that we can include timing
653 // information in the trace buffer.
654 int samples = 0;
655 int rsamples = 0;
656
657 memset(trace, 0x44, RECV_CMD_OFFSET);
658
659 // Set up the demodulator for tag -> reader responses.
660 Demod.output = receivedResponse;
661 Demod.len = 0;
662 Demod.state = DEMOD_UNSYNCD;
663
664 // Setup for the DMA.
665 FpgaSetupSsc();
666 upTo = dmaBuf;
667 lastRxCounter = DMA_BUFFER_SIZE;
668 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
669
670 // And the reader -> tag commands
671 memset(&Uart, 0, sizeof(Uart));
672 Uart.output = receivedCmd;
673 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
674 Uart.state = STATE_UNSYNCD;
675
676 // And put the FPGA in the appropriate mode
677 // Signal field is off with the appropriate LED
678 LED_D_OFF();
679 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
680 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
681
682
683 // And now we loop, receiving samples.
684 for(;;) {
685 LED_A_ON();
686 WDT_HIT();
687 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
688 (DMA_BUFFER_SIZE-1);
689 if(behindBy > maxBehindBy) {
690 maxBehindBy = behindBy;
691 if(behindBy > 400) {
692 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
693 goto done;
694 }
695 }
696 if(behindBy < 1) continue;
697
698 LED_A_OFF();
699 smpl = upTo[0];
700 upTo++;
701 lastRxCounter -= 1;
702 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
703 upTo -= DMA_BUFFER_SIZE;
704 lastRxCounter += DMA_BUFFER_SIZE;
705 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
706 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
707 }
708
709 samples += 4;
710 if(MillerDecoding((smpl & 0xF0) >> 4)) {
711 rsamples = samples - Uart.samples;
712 LED_C_ON();
713 if(triggered) {
714 trace[traceLen++] = ((rsamples >> 0) & 0xff);
715 trace[traceLen++] = ((rsamples >> 8) & 0xff);
716 trace[traceLen++] = ((rsamples >> 16) & 0xff);
717 trace[traceLen++] = ((rsamples >> 24) & 0xff);
718 trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
719 trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
720 trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
721 trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
722 trace[traceLen++] = Uart.byteCnt;
723 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
724 traceLen += Uart.byteCnt;
725 if(traceLen > TRACE_LENGTH) break;
726 }
727 /* And ready to receive another command. */
728 Uart.state = STATE_UNSYNCD;
729 /* And also reset the demod code, which might have been */
730 /* false-triggered by the commands from the reader. */
731 Demod.state = DEMOD_UNSYNCD;
732 LED_B_OFF();
733 }
734
735 if(ManchesterDecoding(smpl & 0x0F)) {
736 rsamples = samples - Demod.samples;
737 LED_B_ON();
738
739 // timestamp, as a count of samples
740 trace[traceLen++] = ((rsamples >> 0) & 0xff);
741 trace[traceLen++] = ((rsamples >> 8) & 0xff);
742 trace[traceLen++] = ((rsamples >> 16) & 0xff);
743 trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
744 trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
745 trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
746 trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
747 trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
748 // length
749 trace[traceLen++] = Demod.len;
750 memcpy(trace+traceLen, receivedResponse, Demod.len);
751 traceLen += Demod.len;
752 if(traceLen > TRACE_LENGTH) break;
753
754 triggered = TRUE;
755
756 // And ready to receive another response.
757 memset(&Demod, 0, sizeof(Demod));
758 Demod.output = receivedResponse;
759 Demod.state = DEMOD_UNSYNCD;
760 LED_C_OFF();
761 }
762
763 if(BUTTON_PRESS()) {
764 DbpString("cancelled_a");
765 goto done;
766 }
767 }
768
769 DbpString("COMMAND FINISHED");
770
771 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
772 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
773
774 done:
775 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
776 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
777 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
778 LED_A_OFF();
779 LED_B_OFF();
780 LED_C_OFF();
781 LED_D_OFF();
782 }
783
784 //-----------------------------------------------------------------------------
785 // Prepare tag messages
786 //-----------------------------------------------------------------------------
787 static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
788 {
789 int i;
790 int oddparity;
791
792 ToSendReset();
793
794 // Correction bit, might be removed when not needed
795 ToSendStuffBit(0);
796 ToSendStuffBit(0);
797 ToSendStuffBit(0);
798 ToSendStuffBit(0);
799 ToSendStuffBit(1); // 1
800 ToSendStuffBit(0);
801 ToSendStuffBit(0);
802 ToSendStuffBit(0);
803
804 // Send startbit
805 ToSend[++ToSendMax] = SEC_D;
806
807 for(i = 0; i < len; i++) {
808 int j;
809 uint8_t b = cmd[i];
810
811 // Data bits
812 oddparity = 0x01;
813 for(j = 0; j < 8; j++) {
814 oddparity ^= (b & 1);
815 if(b & 1) {
816 ToSend[++ToSendMax] = SEC_D;
817 } else {
818 ToSend[++ToSendMax] = SEC_E;
819 }
820 b >>= 1;
821 }
822
823 // Parity bit
824 if(oddparity) {
825 ToSend[++ToSendMax] = SEC_D;
826 } else {
827 ToSend[++ToSendMax] = SEC_E;
828 }
829 }
830
831 // Send stopbit
832 ToSend[++ToSendMax] = SEC_F;
833
834 // Flush the buffer in FPGA!!
835 for(i = 0; i < 5; i++) {
836 ToSend[++ToSendMax] = SEC_F;
837 }
838
839 // Convert from last byte pos to length
840 ToSendMax++;
841
842 // Add a few more for slop
843 ToSend[ToSendMax++] = 0x00;
844 ToSend[ToSendMax++] = 0x00;
845 //ToSendMax += 2;
846 }
847
848 //-----------------------------------------------------------------------------
849 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
850 //-----------------------------------------------------------------------------
851 static void CodeStrangeAnswer()
852 {
853 int i;
854
855 ToSendReset();
856
857 // Correction bit, might be removed when not needed
858 ToSendStuffBit(0);
859 ToSendStuffBit(0);
860 ToSendStuffBit(0);
861 ToSendStuffBit(0);
862 ToSendStuffBit(1); // 1
863 ToSendStuffBit(0);
864 ToSendStuffBit(0);
865 ToSendStuffBit(0);
866
867 // Send startbit
868 ToSend[++ToSendMax] = SEC_D;
869
870 // 0
871 ToSend[++ToSendMax] = SEC_E;
872
873 // 0
874 ToSend[++ToSendMax] = SEC_E;
875
876 // 1
877 ToSend[++ToSendMax] = SEC_D;
878
879 // Send stopbit
880 ToSend[++ToSendMax] = SEC_F;
881
882 // Flush the buffer in FPGA!!
883 for(i = 0; i < 5; i++) {
884 ToSend[++ToSendMax] = SEC_F;
885 }
886
887 // Convert from last byte pos to length
888 ToSendMax++;
889
890 // Add a few more for slop
891 ToSend[ToSendMax++] = 0x00;
892 ToSend[ToSendMax++] = 0x00;
893 //ToSendMax += 2;
894 }
895
896 //-----------------------------------------------------------------------------
897 // Wait for commands from reader
898 // Stop when button is pressed
899 // Or return TRUE when command is captured
900 //-----------------------------------------------------------------------------
901 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
902 {
903 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
904 // only, since we are receiving, not transmitting).
905 // Signal field is off with the appropriate LED
906 LED_D_OFF();
907 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
908
909 // Now run a `software UART' on the stream of incoming samples.
910 Uart.output = received;
911 Uart.byteCntMax = maxLen;
912 Uart.state = STATE_UNSYNCD;
913
914 for(;;) {
915 WDT_HIT();
916
917 if(BUTTON_PRESS()) return FALSE;
918
919 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
920 AT91C_BASE_SSC->SSC_THR = 0x00;
921 }
922 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
923 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
924 if(MillerDecoding((b & 0xf0) >> 4)) {
925 *len = Uart.byteCnt;
926 return TRUE;
927 }
928 if(MillerDecoding(b & 0x0f)) {
929 *len = Uart.byteCnt;
930 return TRUE;
931 }
932 }
933 }
934 }
935
936 //-----------------------------------------------------------------------------
937 // Main loop of simulated tag: receive commands from reader, decide what
938 // response to send, and send it.
939 //-----------------------------------------------------------------------------
940 void SimulateIso14443aTag(int tagType, int TagUid)
941 {
942 // This function contains the tag emulation
943
944 // Prepare protocol messages
945 // static const uint8_t cmd1[] = { 0x26 };
946 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
947 //
948 static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
949 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
950
951 // UID response
952 // static const uint8_t cmd2[] = { 0x93, 0x20 };
953 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
954
955 // my desfire
956 static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
957
958
959 // When reader selects us during cascade1 it will send cmd3
960 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
961 uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
962 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
963
964 // send cascade2 2nd half of UID
965 static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
966 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
967
968 // When reader selects us during cascade2 it will send cmd3a
969 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
970 uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
971 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
972
973 static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
974
975 uint8_t *resp;
976 int respLen;
977
978 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
979 // This will need
980 // 144 data bits (18 * 8)
981 // 18 parity bits
982 // 2 Start and stop
983 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
984 // 1 just for the case
985 // ----------- +
986 // 166
987 //
988 // 166 bytes, since every bit that needs to be send costs us a byte
989 //
990
991 // Respond with card type
992 uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
993 int resp1Len;
994
995 // Anticollision cascade1 - respond with uid
996 uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
997 int resp2Len;
998
999 // Anticollision cascade2 - respond with 2nd half of uid if asked
1000 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1001 uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
1002 int resp2aLen;
1003
1004 // Acknowledge select - cascade 1
1005 uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
1006 int resp3Len;
1007
1008 // Acknowledge select - cascade 2
1009 uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
1010 int resp3aLen;
1011
1012 // Response to a read request - not implemented atm
1013 uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
1014 int resp4Len;
1015
1016 // Authenticate response - nonce
1017 uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
1018 int resp5Len;
1019
1020 uint8_t *receivedCmd = (uint8_t *)BigBuf;
1021 int len;
1022
1023 int i;
1024 int u;
1025 uint8_t b;
1026
1027 // To control where we are in the protocol
1028 int order = 0;
1029 int lastorder;
1030
1031 // Just to allow some checks
1032 int happened = 0;
1033 int happened2 = 0;
1034
1035 int cmdsRecvd = 0;
1036
1037 int fdt_indicator;
1038
1039 memset(receivedCmd, 0x44, 400);
1040
1041 // Prepare the responses of the anticollision phase
1042 // there will be not enough time to do this at the moment the reader sends it REQA
1043
1044 // Answer to request
1045 CodeIso14443aAsTag(response1, sizeof(response1));
1046 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1047
1048 // Send our UID (cascade 1)
1049 CodeIso14443aAsTag(response2, sizeof(response2));
1050 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1051
1052 // Answer to select (cascade1)
1053 CodeIso14443aAsTag(response3, sizeof(response3));
1054 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1055
1056 // Send the cascade 2 2nd part of the uid
1057 CodeIso14443aAsTag(response2a, sizeof(response2a));
1058 memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
1059
1060 // Answer to select (cascade 2)
1061 CodeIso14443aAsTag(response3a, sizeof(response3a));
1062 memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
1063
1064 // Strange answer is an example of rare message size (3 bits)
1065 CodeStrangeAnswer();
1066 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1067
1068 // Authentication answer (random nonce)
1069 CodeIso14443aAsTag(response5, sizeof(response5));
1070 memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
1071
1072 // We need to listen to the high-frequency, peak-detected path.
1073 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1074 FpgaSetupSsc();
1075
1076 cmdsRecvd = 0;
1077
1078 LED_A_ON();
1079 for(;;) {
1080
1081 if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
1082 DbpString("button press");
1083 break;
1084 }
1085 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1086 // Okay, look at the command now.
1087 lastorder = order;
1088 i = 1; // first byte transmitted
1089 if(receivedCmd[0] == 0x26) {
1090 // Received a REQUEST
1091 resp = resp1; respLen = resp1Len; order = 1;
1092 //DbpString("Hello request from reader:");
1093 } else if(receivedCmd[0] == 0x52) {
1094 // Received a WAKEUP
1095 resp = resp1; respLen = resp1Len; order = 6;
1096 // //DbpString("Wakeup request from reader:");
1097
1098 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
1099 // Received request for UID (cascade 1)
1100 resp = resp2; respLen = resp2Len; order = 2;
1101 // DbpString("UID (cascade 1) request from reader:");
1102 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1103
1104
1105 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
1106 // Received request for UID (cascade 2)
1107 resp = resp2a; respLen = resp2aLen; order = 20;
1108 // DbpString("UID (cascade 2) request from reader:");
1109 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1110
1111
1112 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
1113 // Received a SELECT
1114 resp = resp3; respLen = resp3Len; order = 3;
1115 // DbpString("Select (cascade 1) request from reader:");
1116 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1117
1118
1119 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
1120 // Received a SELECT
1121 resp = resp3a; respLen = resp3aLen; order = 30;
1122 // DbpString("Select (cascade 2) request from reader:");
1123 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1124
1125
1126 } else if(receivedCmd[0] == 0x30) {
1127 // Received a READ
1128 resp = resp4; respLen = resp4Len; order = 4; // Do nothing
1129 Dbprintf("Read request from reader: %x %x %x",
1130 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1131
1132
1133 } else if(receivedCmd[0] == 0x50) {
1134 // Received a HALT
1135 resp = resp1; respLen = 0; order = 5; // Do nothing
1136 DbpString("Reader requested we HALT!:");
1137
1138 } else if(receivedCmd[0] == 0x60) {
1139 // Received an authentication request
1140 resp = resp5; respLen = resp5Len; order = 7;
1141 Dbprintf("Authenticate request from reader: %x %x %x",
1142 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1143
1144 } else if(receivedCmd[0] == 0xE0) {
1145 // Received a RATS request
1146 resp = resp1; respLen = 0;order = 70;
1147 Dbprintf("RATS request from reader: %x %x %x",
1148 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1149 } else {
1150 // Never seen this command before
1151 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1152 len,
1153 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1154 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1155 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1156 // Do not respond
1157 resp = resp1; respLen = 0; order = 0;
1158 }
1159
1160 // Count number of wakeups received after a halt
1161 if(order == 6 && lastorder == 5) { happened++; }
1162
1163 // Count number of other messages after a halt
1164 if(order != 6 && lastorder == 5) { happened2++; }
1165
1166 // Look at last parity bit to determine timing of answer
1167 if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
1168 // 1236, so correction bit needed
1169 i = 0;
1170 }
1171
1172 memset(receivedCmd, 0x44, 32);
1173
1174 if(cmdsRecvd > 999) {
1175 DbpString("1000 commands later...");
1176 break;
1177 }
1178 else {
1179 cmdsRecvd++;
1180 }
1181
1182 if(respLen <= 0) continue;
1183
1184 // Modulate Manchester
1185 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1186 AT91C_BASE_SSC->SSC_THR = 0x00;
1187 FpgaSetupSsc();
1188
1189 // ### Transmit the response ###
1190 u = 0;
1191 b = 0x00;
1192 fdt_indicator = FALSE;
1193 for(;;) {
1194 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1195 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1196 (void)b;
1197 }
1198 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1199 if(i > respLen) {
1200 b = 0x00;
1201 u++;
1202 } else {
1203 b = resp[i];
1204 i++;
1205 }
1206 AT91C_BASE_SSC->SSC_THR = b;
1207
1208 if(u > 4) {
1209 break;
1210 }
1211 }
1212 if(BUTTON_PRESS()) {
1213 break;
1214 }
1215 }
1216
1217 }
1218
1219 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1220 LED_A_OFF();
1221 }
1222
1223 //-----------------------------------------------------------------------------
1224 // Transmit the command (to the tag) that was placed in ToSend[].
1225 //-----------------------------------------------------------------------------
1226 static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
1227 {
1228 int c;
1229
1230 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1231
1232 if (wait)
1233 if(*wait < 10)
1234 *wait = 10;
1235
1236 for(c = 0; c < *wait;) {
1237 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1238 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1239 c++;
1240 }
1241 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1242 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1243 (void)r;
1244 }
1245 WDT_HIT();
1246 }
1247
1248 c = 0;
1249 for(;;) {
1250 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1251 AT91C_BASE_SSC->SSC_THR = cmd[c];
1252 c++;
1253 if(c >= len) {
1254 break;
1255 }
1256 }
1257 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1258 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1259 (void)r;
1260 }
1261 WDT_HIT();
1262 }
1263 if (samples) *samples = (c + *wait) << 3;
1264 }
1265
1266 //-----------------------------------------------------------------------------
1267 // Code a 7-bit command without parity bit
1268 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1269 //-----------------------------------------------------------------------------
1270 void ShortFrameFromReader(const uint8_t bt)
1271 {
1272 int j;
1273 int last;
1274 uint8_t b;
1275
1276 ToSendReset();
1277
1278 // Start of Communication (Seq. Z)
1279 ToSend[++ToSendMax] = SEC_Z;
1280 last = 0;
1281
1282 b = bt;
1283 for(j = 0; j < 7; j++) {
1284 if(b & 1) {
1285 // Sequence X
1286 ToSend[++ToSendMax] = SEC_X;
1287 last = 1;
1288 } else {
1289 if(last == 0) {
1290 // Sequence Z
1291 ToSend[++ToSendMax] = SEC_Z;
1292 }
1293 else {
1294 // Sequence Y
1295 ToSend[++ToSendMax] = SEC_Y;
1296 last = 0;
1297 }
1298 }
1299 b >>= 1;
1300 }
1301
1302 // End of Communication
1303 if(last == 0) {
1304 // Sequence Z
1305 ToSend[++ToSendMax] = SEC_Z;
1306 }
1307 else {
1308 // Sequence Y
1309 ToSend[++ToSendMax] = SEC_Y;
1310 last = 0;
1311 }
1312 // Sequence Y
1313 ToSend[++ToSendMax] = SEC_Y;
1314
1315 // Just to be sure!
1316 ToSend[++ToSendMax] = SEC_Y;
1317 ToSend[++ToSendMax] = SEC_Y;
1318 ToSend[++ToSendMax] = SEC_Y;
1319
1320 // Convert from last character reference to length
1321 ToSendMax++;
1322 }
1323
1324 //-----------------------------------------------------------------------------
1325 // Prepare reader command to send to FPGA
1326 //
1327 //-----------------------------------------------------------------------------
1328 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1329 {
1330 int i, j;
1331 int last;
1332 uint8_t b;
1333
1334 ToSendReset();
1335
1336 // Start of Communication (Seq. Z)
1337 ToSend[++ToSendMax] = SEC_Z;
1338 last = 0;
1339
1340 // Generate send structure for the data bits
1341 for (i = 0; i < len; i++) {
1342 // Get the current byte to send
1343 b = cmd[i];
1344
1345 for (j = 0; j < 8; j++) {
1346 if (b & 1) {
1347 // Sequence X
1348 ToSend[++ToSendMax] = SEC_X;
1349 last = 1;
1350 } else {
1351 if (last == 0) {
1352 // Sequence Z
1353 ToSend[++ToSendMax] = SEC_Z;
1354 } else {
1355 // Sequence Y
1356 ToSend[++ToSendMax] = SEC_Y;
1357 last = 0;
1358 }
1359 }
1360 b >>= 1;
1361 }
1362
1363 // Get the parity bit
1364 if ((dwParity >> i) & 0x01) {
1365 // Sequence X
1366 ToSend[++ToSendMax] = SEC_X;
1367 last = 1;
1368 } else {
1369 if (last == 0) {
1370 // Sequence Z
1371 ToSend[++ToSendMax] = SEC_Z;
1372 } else {
1373 // Sequence Y
1374 ToSend[++ToSendMax] = SEC_Y;
1375 last = 0;
1376 }
1377 }
1378 }
1379
1380 // End of Communication
1381 if (last == 0) {
1382 // Sequence Z
1383 ToSend[++ToSendMax] = SEC_Z;
1384 } else {
1385 // Sequence Y
1386 ToSend[++ToSendMax] = SEC_Y;
1387 last = 0;
1388 }
1389 // Sequence Y
1390 ToSend[++ToSendMax] = SEC_Y;
1391
1392 // Just to be sure!
1393 ToSend[++ToSendMax] = SEC_Y;
1394 ToSend[++ToSendMax] = SEC_Y;
1395 ToSend[++ToSendMax] = SEC_Y;
1396
1397 // Convert from last character reference to length
1398 ToSendMax++;
1399 }
1400
1401 //-----------------------------------------------------------------------------
1402 // Wait a certain time for tag response
1403 // If a response is captured return TRUE
1404 // If it takes to long return FALSE
1405 //-----------------------------------------------------------------------------
1406 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1407 {
1408 // buffer needs to be 512 bytes
1409 int c;
1410
1411 // Set FPGA mode to "reader listen mode", no modulation (listen
1412 // only, since we are receiving, not transmitting).
1413 // Signal field is on with the appropriate LED
1414 LED_D_ON();
1415 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1416
1417 // Now get the answer from the card
1418 Demod.output = receivedResponse;
1419 Demod.len = 0;
1420 Demod.state = DEMOD_UNSYNCD;
1421
1422 uint8_t b;
1423 if (elapsed) *elapsed = 0;
1424
1425 c = 0;
1426 for(;;) {
1427 WDT_HIT();
1428
1429 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1430 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1431 if (elapsed) (*elapsed)++;
1432 }
1433 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1434 if(c < iso14a_timeout) { c++; } else { return FALSE; }
1435 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1436 if(ManchesterDecoding((b>>4) & 0xf)) {
1437 *samples = ((c - 1) << 3) + 4;
1438 return TRUE;
1439 }
1440 if(ManchesterDecoding(b & 0x0f)) {
1441 *samples = c << 3;
1442 return TRUE;
1443 }
1444 }
1445 }
1446 }
1447
1448 void ReaderTransmitShort(const uint8_t* bt)
1449 {
1450 int wait = 0;
1451 int samples = 0;
1452
1453 ShortFrameFromReader(*bt);
1454
1455 // Select the card
1456 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1457
1458 // Store reader command in buffer
1459 if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
1460 }
1461
1462 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
1463 {
1464 int wait = 0;
1465 int samples = 0;
1466
1467 // This is tied to other size changes
1468 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1469 CodeIso14443aAsReaderPar(frame,len,par);
1470
1471 // Select the card
1472 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1473 if(trigger)
1474 LED_A_ON();
1475
1476 // Store reader command in buffer
1477 if (tracing) LogTrace(frame,len,0,par,TRUE);
1478 }
1479
1480
1481 void ReaderTransmit(uint8_t* frame, int len)
1482 {
1483 // Generate parity and redirect
1484 ReaderTransmitPar(frame,len,GetParity(frame,len));
1485 }
1486
1487 int ReaderReceive(uint8_t* receivedAnswer)
1488 {
1489 int samples = 0;
1490 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1491 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1492 if(samples == 0) return FALSE;
1493 return Demod.len;
1494 }
1495
1496 int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
1497 {
1498 int samples = 0;
1499 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1500 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1501 *parptr = Demod.parityBits;
1502 if(samples == 0) return FALSE;
1503 return Demod.len;
1504 }
1505
1506 /* performs iso14443a anticolision procedure
1507 * fills the uid pointer unless NULL
1508 * fills resp_data unless NULL */
1509 int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) {
1510 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1511 uint8_t sel_all[] = { 0x93,0x20 };
1512 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1513 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1514
1515 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1516
1517 uint8_t sak = 0x04; // cascade uid
1518 int cascade_level = 0;
1519
1520 int len;
1521
1522 // clear uid
1523 memset(uid_ptr, 0, 8);
1524
1525 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1526 ReaderTransmitShort(wupa);
1527 // Receive the ATQA
1528 if(!ReaderReceive(resp)) return 0;
1529
1530 if(resp_data)
1531 memcpy(resp_data->atqa, resp, 2);
1532
1533 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1534 // which case we need to make a cascade 2 request and select - this is a long UID
1535 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1536 for(; sak & 0x04; cascade_level++)
1537 {
1538 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1539 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1540
1541 // SELECT_ALL
1542 ReaderTransmit(sel_all,sizeof(sel_all));
1543 if (!ReaderReceive(resp)) return 0;
1544 if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4);
1545
1546 // calculate crypto UID
1547 if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4);
1548
1549 // Construct SELECT UID command
1550 memcpy(sel_uid+2,resp,5);
1551 AppendCrc14443a(sel_uid,7);
1552 ReaderTransmit(sel_uid,sizeof(sel_uid));
1553
1554 // Receive the SAK
1555 if (!ReaderReceive(resp)) return 0;
1556 sak = resp[0];
1557 }
1558 if(resp_data) {
1559 resp_data->sak = sak;
1560 resp_data->ats_len = 0;
1561 }
1562 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1563 if (uid_ptr[0] == 0x88) {
1564 memcpy(uid_ptr, uid_ptr + 1, 7);
1565 uid_ptr[7] = 0;
1566 }
1567
1568 if( (sak & 0x20) == 0)
1569 return 2; // non iso14443a compliant tag
1570
1571 // Request for answer to select
1572 if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1573 AppendCrc14443a(rats, 2);
1574 ReaderTransmit(rats, sizeof(rats));
1575
1576 if (!(len = ReaderReceive(resp))) return 0;
1577
1578 memcpy(resp_data->ats, resp, sizeof(resp_data->ats));
1579 resp_data->ats_len = len;
1580 }
1581
1582 return 1;
1583 }
1584
1585 void iso14443a_setup() {
1586 // Setup SSC
1587 FpgaSetupSsc();
1588 // Start from off (no field generated)
1589 // Signal field is off with the appropriate LED
1590 LED_D_OFF();
1591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1592 SpinDelay(200);
1593
1594 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1595
1596 // Now give it time to spin up.
1597 // Signal field is on with the appropriate LED
1598 LED_D_ON();
1599 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1600 SpinDelay(200);
1601
1602 iso14a_timeout = 2048; //default
1603 }
1604
1605 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1606 uint8_t real_cmd[cmd_len+4];
1607 real_cmd[0] = 0x0a; //I-Block
1608 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1609 memcpy(real_cmd+2, cmd, cmd_len);
1610 AppendCrc14443a(real_cmd,cmd_len+2);
1611
1612 ReaderTransmit(real_cmd, cmd_len+4);
1613 size_t len = ReaderReceive(data);
1614 if(!len)
1615 return -1; //DATA LINK ERROR
1616
1617 return len;
1618 }
1619
1620
1621 //-----------------------------------------------------------------------------
1622 // Read an ISO 14443a tag. Send out commands and store answers.
1623 //
1624 //-----------------------------------------------------------------------------
1625 void ReaderIso14443a(UsbCommand * c, UsbCommand * ack)
1626 {
1627 iso14a_command_t param = c->arg[0];
1628 uint8_t * cmd = c->d.asBytes;
1629 size_t len = c->arg[1];
1630
1631 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1);
1632
1633 if(param & ISO14A_CONNECT) {
1634 iso14443a_setup();
1635 ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL);
1636 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1637 }
1638
1639 if(param & ISO14A_SET_TIMEOUT) {
1640 iso14a_timeout = c->arg[2];
1641 }
1642
1643 if(param & ISO14A_SET_TIMEOUT) {
1644 iso14a_timeout = c->arg[2];
1645 }
1646
1647 if(param & ISO14A_APDU) {
1648 ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes);
1649 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1650 }
1651
1652 if(param & ISO14A_RAW) {
1653 if(param & ISO14A_APPEND_CRC) {
1654 AppendCrc14443a(cmd,len);
1655 len += 2;
1656 }
1657 ReaderTransmit(cmd,len);
1658 ack->arg[0] = ReaderReceive(ack->d.asBytes);
1659 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1660 }
1661
1662 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0);
1663
1664 if(param & ISO14A_NO_DISCONNECT)
1665 return;
1666
1667 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1668 LEDsoff();
1669 }
1670 //-----------------------------------------------------------------------------
1671 // Read an ISO 14443a tag. Send out commands and store answers.
1672 //
1673 //-----------------------------------------------------------------------------
1674 void ReaderMifare(uint32_t parameter)
1675 {
1676 // Mifare AUTH
1677 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1678 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1679
1680 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1681 traceLen = 0;
1682 tracing = false;
1683
1684 iso14443a_setup();
1685
1686 LED_A_ON();
1687 LED_B_OFF();
1688 LED_C_OFF();
1689
1690 byte_t nt_diff = 0;
1691 LED_A_OFF();
1692 byte_t par = 0;
1693 byte_t par_mask = 0xff;
1694 byte_t par_low = 0;
1695 int led_on = TRUE;
1696 uint8_t uid[8];
1697 uint32_t cuid;
1698
1699 tracing = FALSE;
1700 byte_t nt[4] = {0,0,0,0};
1701 byte_t nt_attacked[4];
1702 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1703 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
1704 num_to_bytes(parameter, 4, nt_attacked);
1705 int isOK = 0, isNULL = 0;
1706
1707 while(TRUE)
1708 {
1709 LED_C_ON();
1710 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1711 SpinDelay(200);
1712 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1713 LED_C_OFF();
1714
1715 // Test if the action was cancelled
1716 if(BUTTON_PRESS()) {
1717 break;
1718 }
1719
1720 if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
1721
1722 // Transmit MIFARE_CLASSIC_AUTH
1723 ReaderTransmit(mf_auth, sizeof(mf_auth));
1724
1725 // Receive the (16 bit) "random" nonce
1726 if (!ReaderReceive(receivedAnswer)) continue;
1727 memcpy(nt, receivedAnswer, 4);
1728
1729 // Transmit reader nonce and reader answer
1730 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
1731
1732 // Receive 4 bit answer
1733 if (ReaderReceive(receivedAnswer))
1734 {
1735 isNULL = (nt_attacked[0] = 0) && (nt_attacked[1] = 0) && (nt_attacked[2] = 0) && (nt_attacked[3] = 0);
1736 if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue;
1737
1738 if (nt_diff == 0)
1739 {
1740 LED_A_ON();
1741 memcpy(nt_attacked, nt, 4);
1742 par_mask = 0xf8;
1743 par_low = par & 0x07;
1744 }
1745
1746 led_on = !led_on;
1747 if(led_on) LED_B_ON(); else LED_B_OFF();
1748 par_list[nt_diff] = par;
1749 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
1750
1751 // Test if the information is complete
1752 if (nt_diff == 0x07) {
1753 isOK = 1;
1754 break;
1755 }
1756
1757 nt_diff = (nt_diff + 1) & 0x07;
1758 mf_nr_ar[3] = nt_diff << 5;
1759 par = par_low;
1760 } else {
1761 if (nt_diff == 0)
1762 {
1763 par++;
1764 } else {
1765 par = (((par >> 3) + 1) << 3) | par_low;
1766 }
1767 }
1768 }
1769
1770 LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
1771 LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
1772 LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
1773
1774 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1775 memcpy(ack.d.asBytes + 0, uid, 4);
1776 memcpy(ack.d.asBytes + 4, nt, 4);
1777 memcpy(ack.d.asBytes + 8, par_list, 8);
1778 memcpy(ack.d.asBytes + 16, ks_list, 8);
1779
1780 LED_B_ON();
1781 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1782 LED_B_OFF();
1783
1784 // Thats it...
1785 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1786 LEDsoff();
1787 tracing = TRUE;
1788
1789 // DbpString("COMMAND mifare FINISHED");
1790 }
1791
1792 //-----------------------------------------------------------------------------
1793 // Select, Authenticaate, Read an MIFARE tag.
1794 // read block
1795 //-----------------------------------------------------------------------------
1796 void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1797 {
1798 // params
1799 uint8_t blockNo = arg0;
1800 uint8_t keyType = arg1;
1801 uint64_t ui64Key = 0;
1802 ui64Key = bytes_to_num(datain, 6);
1803
1804 // variables
1805 byte_t isOK = 0;
1806 byte_t dataoutbuf[16];
1807 uint8_t uid[8];
1808 uint32_t cuid;
1809 struct Crypto1State mpcs = {0, 0};
1810 struct Crypto1State *pcs;
1811 pcs = &mpcs;
1812
1813 // clear trace
1814 traceLen = 0;
1815 // tracing = false;
1816
1817 iso14443a_setup();
1818
1819 LED_A_ON();
1820 LED_B_OFF();
1821 LED_C_OFF();
1822
1823 while (true) {
1824 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1825 Dbprintf("Can't select card");
1826 break;
1827 };
1828
1829 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
1830 Dbprintf("Auth error");
1831 break;
1832 };
1833
1834 if(mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) {
1835 Dbprintf("Read block error");
1836 break;
1837 };
1838
1839 if(mifare_classic_halt(pcs, cuid)) {
1840 Dbprintf("Halt error");
1841 break;
1842 };
1843
1844 isOK = 1;
1845 break;
1846 }
1847
1848 // ----------------------------- crypto1 destroy
1849 crypto1_destroy(pcs);
1850
1851 // DbpString("READ BLOCK FINISHED");
1852
1853 // add trace trailer
1854 uid[0] = 0xff;
1855 uid[1] = 0xff;
1856 uid[2] = 0xff;
1857 uid[3] = 0xff;
1858 LogTrace(uid, 4, 0, 0, TRUE);
1859
1860 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1861 memcpy(ack.d.asBytes, dataoutbuf, 16);
1862
1863 LED_B_ON();
1864 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1865 LED_B_OFF();
1866
1867
1868 // Thats it...
1869 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1870 LEDsoff();
1871 // tracing = TRUE;
1872
1873 }
1874
1875 //-----------------------------------------------------------------------------
1876 // Select, Authenticaate, Read an MIFARE tag.
1877 // read sector (data = 4 x 16 bytes = 64 bytes)
1878 //-----------------------------------------------------------------------------
1879 void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1880 {
1881 // params
1882 uint8_t sectorNo = arg0;
1883 uint8_t keyType = arg1;
1884 uint64_t ui64Key = 0;
1885 ui64Key = bytes_to_num(datain, 6);
1886
1887 // variables
1888 byte_t isOK = 0;
1889 byte_t dataoutbuf[16 * 4];
1890 uint8_t uid[8];
1891 uint32_t cuid;
1892 struct Crypto1State mpcs = {0, 0};
1893 struct Crypto1State *pcs;
1894 pcs = &mpcs;
1895
1896 // clear trace
1897 traceLen = 0;
1898 // tracing = false;
1899
1900 iso14443a_setup();
1901
1902 LED_A_ON();
1903 LED_B_OFF();
1904 LED_C_OFF();
1905
1906 while (true) {
1907 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1908 Dbprintf("Can't select card");
1909 break;
1910 };
1911
1912 if(mifare_classic_auth(pcs, cuid, sectorNo * 4, keyType, ui64Key, AUTH_FIRST)) {
1913 Dbprintf("Auth error");
1914 break;
1915 };
1916
1917 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 0, dataoutbuf + 16 * 0)) {
1918 Dbprintf("Read block 0 error");
1919 break;
1920 };
1921 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 1, dataoutbuf + 16 * 1)) {
1922 Dbprintf("Read block 1 error");
1923 break;
1924 };
1925 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 2, dataoutbuf + 16 * 2)) {
1926 Dbprintf("Read block 2 error");
1927 break;
1928 };
1929 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 3, dataoutbuf + 16 * 3)) {
1930 Dbprintf("Read block 3 error");
1931 break;
1932 };
1933
1934 if(mifare_classic_halt(pcs, cuid)) {
1935 Dbprintf("Halt error");
1936 break;
1937 };
1938
1939 isOK = 1;
1940 break;
1941 }
1942
1943 // ----------------------------- crypto1 destroy
1944 crypto1_destroy(pcs);
1945
1946 // DbpString("READ BLOCK FINISHED");
1947
1948 // add trace trailer
1949 uid[0] = 0xff;
1950 uid[1] = 0xff;
1951 uid[2] = 0xff;
1952 uid[3] = 0xff;
1953 LogTrace(uid, 4, 0, 0, TRUE);
1954
1955 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1956 memcpy(ack.d.asBytes, dataoutbuf, 16 * 2);
1957
1958 LED_B_ON();
1959 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1960
1961 SpinDelay(100);
1962
1963 memcpy(ack.d.asBytes, dataoutbuf + 16 * 2, 16 * 2);
1964 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1965 LED_B_OFF();
1966
1967 // Thats it...
1968 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1969 LEDsoff();
1970 // tracing = TRUE;
1971
1972 }
1973
1974 //-----------------------------------------------------------------------------
1975 // Select, Authenticaate, Read an MIFARE tag.
1976 // read block
1977 //-----------------------------------------------------------------------------
1978 void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1979 {
1980 // params
1981 uint8_t blockNo = arg0;
1982 uint8_t keyType = arg1;
1983 uint64_t ui64Key = 0;
1984 byte_t blockdata[16];
1985
1986 ui64Key = bytes_to_num(datain, 6);
1987 memcpy(blockdata, datain + 10, 16);
1988
1989 // variables
1990 byte_t isOK = 0;
1991 uint8_t uid[8];
1992 uint32_t cuid;
1993 struct Crypto1State mpcs = {0, 0};
1994 struct Crypto1State *pcs;
1995 pcs = &mpcs;
1996
1997 // clear trace
1998 traceLen = 0;
1999 // tracing = false;
2000
2001 iso14443a_setup();
2002
2003 LED_A_ON();
2004 LED_B_OFF();
2005 LED_C_OFF();
2006
2007 while (true) {
2008 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2009 Dbprintf("Can't select card");
2010 break;
2011 };
2012
2013 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
2014 Dbprintf("Auth error");
2015 break;
2016 };
2017
2018 if(mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) {
2019 Dbprintf("Write block error");
2020 break;
2021 };
2022
2023 if(mifare_classic_halt(pcs, cuid)) {
2024 Dbprintf("Halt error");
2025 break;
2026 };
2027
2028 isOK = 1;
2029 break;
2030 }
2031
2032 // ----------------------------- crypto1 destroy
2033 crypto1_destroy(pcs);
2034
2035 // DbpString("WRITE BLOCK FINISHED");
2036
2037 // add trace trailer
2038 uid[0] = 0xff;
2039 uid[1] = 0xff;
2040 uid[2] = 0xff;
2041 uid[3] = 0xff;
2042 LogTrace(uid, 4, 0, 0, TRUE);
2043
2044 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2045
2046 LED_B_ON();
2047 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2048 LED_B_OFF();
2049
2050
2051 // Thats it...
2052 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2053 LEDsoff();
2054 // tracing = TRUE;
2055
2056 }
2057
2058 // Return 1 if the nonce is invalid else return 0
2059 int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, byte_t * parity) {
2060 return ((oddparity((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \
2061 (oddparity((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \
2062 (oddparity((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
2063 }
2064
2065
2066 //-----------------------------------------------------------------------------
2067 // MIFARE nested authentication.
2068 //
2069 //-----------------------------------------------------------------------------
2070 void MifareNested(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2071 {
2072 // params
2073 uint8_t blockNo = arg0;
2074 uint8_t keyType = arg1;
2075 uint64_t ui64Key = 0;
2076
2077 ui64Key = bytes_to_num(datain, 6);
2078
2079 // variables
2080 uint8_t targetBlockNo = blockNo + 1;
2081 uint8_t targetKeyType = keyType;
2082 int rtr, i, j, m, len;
2083 int davg, dmin, dmax;
2084 uint8_t uid[8];
2085 uint32_t cuid, nt1, nt2, nttmp, nttest, par, ks1;
2086 uint8_t par_array[4];
2087 nestedVector nvector[3][10];
2088 int nvectorcount[3] = {10, 10, 10};
2089 int ncount = 0;
2090 UsbCommand ack = {CMD_ACK, {0, 0, 0}};
2091 struct Crypto1State mpcs = {0, 0};
2092 struct Crypto1State *pcs;
2093 pcs = &mpcs;
2094 uint8_t* receivedAnswer = mifare_get_bigbufptr();
2095
2096 // clear trace
2097 traceLen = 0;
2098 tracing = false;
2099
2100 iso14443a_setup();
2101
2102 LED_A_ON();
2103 LED_B_ON();
2104 LED_C_OFF();
2105
2106 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2107 SpinDelay(200);
2108
2109 davg = dmax = 0;
2110 dmin = 2000;
2111
2112 // test nonce distance
2113 for (rtr = 0; rtr < 10; rtr++) {
2114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2115 SpinDelay(100);
2116 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2117
2118 // Test if the action was cancelled
2119 if(BUTTON_PRESS()) {
2120 break;
2121 }
2122
2123 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2124 Dbprintf("Can't select card");
2125 break;
2126 };
2127
2128 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
2129 Dbprintf("Auth1 error");
2130 break;
2131 };
2132
2133 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2)) {
2134 Dbprintf("Auth2 error");
2135 break;
2136 };
2137
2138 nttmp = prng_successor(nt1, 500);
2139 for (i = 501; i < 2000; i++) {
2140 nttmp = prng_successor(nttmp, 1);
2141 if (nttmp == nt2) break;
2142 }
2143
2144 if (i != 2000) {
2145 davg += i;
2146 if (dmin > i) dmin = i;
2147 if (dmax < i) dmax = i;
2148 // Dbprintf("r=%d nt1=%08x nt2=%08x distance=%d", rtr, nt1, nt2, i);
2149 }
2150 }
2151
2152 if (rtr == 0) return;
2153
2154 davg = davg / rtr;
2155 Dbprintf("distance: min=%d max=%d avg=%d", dmin, dmax, davg);
2156
2157 LED_B_OFF();
2158
2159 tracing = true;
2160
2161 LED_C_ON();
2162
2163 // get crypted nonces for target sector
2164 for (rtr = 0; rtr < 2; rtr++) {
2165 // Dbprintf("------------------------------");
2166
2167 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2168 SpinDelay(100);
2169 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2170
2171 // Test if the action was cancelled
2172 if(BUTTON_PRESS()) {
2173 break;
2174 }
2175
2176 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2177 Dbprintf("Can't select card");
2178 break;
2179 };
2180
2181 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
2182 Dbprintf("Auth1 error");
2183 break;
2184 };
2185
2186 // nested authentication
2187 len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, &par);
2188 if (len != 4) {
2189 Dbprintf("Auth2 error len=%d", len);
2190 break;
2191 };
2192
2193 nt2 = bytes_to_num(receivedAnswer, 4);
2194 // Dbprintf("r=%d nt1=%08x nt2enc=%08x nt2par=%08x", rtr, nt1, nt2, par);
2195
2196 // ----------------------- test
2197 /* uint32_t d_nt, d_ks1, d_ks2, d_ks3, reader_challenge;
2198 byte_t ar[4];
2199
2200 ar[0] = 0x55;
2201 ar[1] = 0x41;
2202 ar[2] = 0x49;
2203 ar[3] = 0x92;
2204
2205 crypto1_destroy(pcs);
2206 crypto1_create(pcs, ui64Key);
2207
2208 // decrypt nt with help of new key
2209 d_nt = crypto1_word(pcs, nt2 ^ cuid, 1) ^ nt2;
2210
2211 reader_challenge = d_nt;//(uint32_t)bytes_to_num(ar, 4);
2212 d_ks1 = crypto1_word(pcs, reader_challenge, 0);
2213 d_ks2 = crypto1_word(pcs, 0, 0);
2214 d_ks3 = crypto1_word(pcs, 0,0);
2215
2216 Dbprintf("TST: ks1=%08x nt=%08x", d_ks1, d_nt);*/
2217 // ----------------------- test
2218
2219 // Parity validity check
2220 for (i = 0; i < 4; i++) {
2221 par_array[i] = (oddparity(receivedAnswer[i]) != ((par & 0x08) >> 3));
2222 par = par << 1;
2223 }
2224
2225 ncount = 0;
2226 for (m = dmin - 10; m < dmax + 10; m++) {
2227 nttest = prng_successor(nt1, m);
2228 ks1 = nt2 ^ nttest;
2229
2230 //-------------------------------------- test
2231 /* if (nttest == d_nt){
2232 Dbprintf("nttest=d_nt! m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
2233 }*/
2234 //-------------------------------------- test
2235 if (valid_nonce(nttest, nt2, ks1, par_array) && (ncount < 11)){
2236
2237 nvector[2][ncount].nt = nttest;
2238 nvector[2][ncount].ks1 = ks1;
2239 ncount++;
2240 nvectorcount[2] = ncount;
2241
2242 // Dbprintf("valid m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
2243 }
2244
2245 }
2246
2247 // select vector with length less than got
2248 if (nvectorcount[2] != 0) {
2249 m = 2;
2250 if (nvectorcount[2] < nvectorcount[1]) m = 1;
2251 if (nvectorcount[2] < nvectorcount[0]) m = 0;
2252 if (m != 2) {
2253 for (i = 0; i < nvectorcount[m]; i++) {
2254 nvector[m][i] = nvector[2][i];
2255 }
2256 nvectorcount[m] = nvectorcount[2];
2257 }
2258 }
2259
2260 // Dbprintf("vector count: 1=%d 2=%d 3=%d", nvectorcount[0], nvectorcount[1], nvectorcount[2]);
2261 }
2262
2263 LED_C_OFF();
2264
2265
2266 // ----------------------------- crypto1 destroy
2267 crypto1_destroy(pcs);
2268
2269 // add trace trailer
2270 uid[0] = 0xff;
2271 uid[1] = 0xff;
2272 uid[2] = 0xff;
2273 uid[3] = 0xff;
2274 LogTrace(uid, 4, 0, 0, TRUE);
2275
2276 for (i = 0; i < 2; i++) {
2277 for (j = 0; j < nvectorcount[i]; j += 5) {
2278 ncount = nvectorcount[i] - j;
2279 if (ncount > 5) ncount = 5;
2280
2281 ack.arg[0] = 0; // isEOF = 0
2282 ack.arg[1] = ncount;
2283 ack.arg[2] = targetBlockNo + (targetKeyType * 0x100);
2284 memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
2285
2286 memcpy(ack.d.asBytes, &cuid, 4);
2287 for (m = 0; m < ncount; m++) {
2288 memcpy(ack.d.asBytes + 8 + m * 8 + 0, &nvector[i][m + j].nt, 4);
2289 memcpy(ack.d.asBytes + 8 + m * 8 + 4, &nvector[i][m + j].ks1, 4);
2290 }
2291
2292 LED_B_ON();
2293 SpinDelay(100);
2294 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2295 LED_B_OFF();
2296 }
2297 }
2298
2299 // finalize list
2300 ack.arg[0] = 1; // isEOF = 1
2301 ack.arg[1] = 0;
2302 ack.arg[2] = 0;
2303 memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
2304
2305 LED_B_ON();
2306 SpinDelay(300);
2307 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2308 LED_B_OFF();
2309
2310 DbpString("NESTED FINISHED");
2311
2312 // Thats it...
2313 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2314 LEDsoff();
2315 // tracing = TRUE;
2316
2317 }
2318
2319 //-----------------------------------------------------------------------------
2320 // MIFARE 1K simulate.
2321 //
2322 //-----------------------------------------------------------------------------
2323 void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2324 {
2325 int cardSTATE = MFEMUL_NOFIELD;
2326
2327 while (true) {
2328
2329 if(BUTTON_PRESS()) {
2330 break;
2331 }
2332
2333 switch (cardSTATE) {
2334 case MFEMUL_NOFIELD:{
2335 break;
2336 }
2337 case MFEMUL_IDLE:{
2338 break;
2339 }
2340 case MFEMUL_SELECT1:{
2341 break;
2342 }
2343 case MFEMUL_SELECT2:{
2344 break;
2345 }
2346 case MFEMUL_AUTH1:{
2347 break;
2348 }
2349 case MFEMUL_AUTH2:{
2350 break;
2351 }
2352 case MFEMUL_HALTED:{
2353 break;
2354 }
2355
2356 }
2357
2358 }
2359
2360 }
Impressum, Datenschutz