1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Routines to support ISO 14443B. This includes both the reader software and
9 // the `fake tag' modes.
10 //-----------------------------------------------------------------------------
11 #include "iso14443b.h"
13 #define RECEIVE_SAMPLES_TIMEOUT 50000
14 #define ISO14443B_DMA_BUFFER_SIZE 256
16 // Guard Time (per 14443-2)
18 // Synchronization time (per 14443-2)
20 // Frame Delay Time PICC to PCD (per 14443-3 Amendment 1)
24 #define SEND4STUFFBIT(x) ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);
25 //#define SEND4STUFFBIT(x) ToSendStuffBit(x);
27 static void switch_off(void);
29 // the block number for the ISO14443-4 PCB (used with APDUs)
30 static uint8_t pcb_blocknum
= 0;
32 static uint32_t iso14b_timeout
= RECEIVE_SAMPLES_TIMEOUT
;
33 // param timeout is in ftw_
34 void iso14b_set_timeout(uint32_t timeout
) {
36 // clock is about 1.5 us
37 iso14b_timeout
= timeout
;
38 if(MF_DBGLEVEL
>= 2) Dbprintf("ISO14443B Timeout set to %ld fwt", iso14b_timeout
);
41 static void switch_off(void){
42 if (MF_DBGLEVEL
> 3) Dbprintf("switch_off");
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
50 //=============================================================================
51 // An ISO 14443 Type B tag. We listen for commands from the reader, using
52 // a UART kind of thing that's implemented in software. When we get a
53 // frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
54 // If it's good, then we can do something appropriate with it, and send
56 //=============================================================================
59 //-----------------------------------------------------------------------------
60 // The software UART that receives commands from the reader, and its state variables.
61 //-----------------------------------------------------------------------------
65 STATE_GOT_FALLING_EDGE_OF_SOF
,
66 STATE_AWAITING_START_BIT
,
77 static void UartReset() {
78 Uart
.state
= STATE_UNSYNCD
;
82 Uart
.byteCntMax
= MAX_FRAME_SIZE
;
86 static void UartInit(uint8_t *data
) {
89 // memset(Uart.output, 0x00, MAX_FRAME_SIZE);
92 //-----------------------------------------------------------------------------
93 // The software Demod that receives commands from the tag, and its state variables.
94 //-----------------------------------------------------------------------------
98 DEMOD_PHASE_REF_TRAINING
,
99 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
,
100 DEMOD_GOT_FALLING_EDGE_OF_SOF
,
101 DEMOD_AWAITING_START_BIT
,
107 /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
116 uint32_t startTime
, endTime
;
119 // Clear out the state of the "UART" that receives from the tag.
120 static void DemodReset() {
121 Demod
.state
= DEMOD_UNSYNCD
;
133 static void DemodInit(uint8_t *data
) {
136 // memset(Demod.output, 0x00, MAX_FRAME_SIZE);
139 void AppendCrc14443b(uint8_t* data
, int len
) {
140 ComputeCrc14443(CRC_14443_B
, data
, len
, data
+len
, data
+len
+1);
143 //-----------------------------------------------------------------------------
144 // Code up a string of octets at layer 2 (including CRC, we don't generate
145 // that here) so that they can be transmitted to the reader. Doesn't transmit
146 // them yet, just leaves them ready to send in ToSend[].
147 //-----------------------------------------------------------------------------
148 static void CodeIso14443bAsTag(const uint8_t *cmd
, int len
) {
151 * Reader to card | ASK - Amplitude Shift Keying Modulation (PCD to PICC for Type B) (NRZ-L encodig)
152 * Card to reader | BPSK - Binary Phase Shift Keying Modulation, (PICC to PCD for Type B)
154 * fc - carrier frequency 13.56mHz
155 * TR0 - Guard Time per 14443-2
156 * TR1 - Synchronization Time per 14443-2
157 * TR2 - PICC to PCD Frame Delay Time (per 14443-3 Amendment 1)
159 * Elementary Time Unit (ETU) is
160 * - 128 Carrier Cycles (9.4395 µS) = 8 Subcarrier Units
162 * - 10 ETU = 1 startbit, 8 databits, 1 stopbit (10bits length)
166 * Start of frame (SOF) is
167 * - [10-11] ETU of ZEROS, unmodulated time
168 * - [2-3] ETU of ONES,
170 * End of frame (EOF) is
171 * - [10-11] ETU of ZEROS, unmodulated time
173 * -TO VERIFY THIS BELOW-
174 * The mode FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK which we use to simulate tag
176 * - A 1-bit input to the FPGA becomes 8 pulses at 847.5kHz (9.44µS)
177 * - A 0-bit input to the FPGA becomes an unmodulated time of 9.44µS
181 * Card sends data ub 847.e kHz subcarrier
182 * 848k = 9.44µS = 128 fc
183 * 424k = 18.88µS = 256 fc
184 * 212k = 37.76µS = 512 fc
185 * 106k = 75.52µS = 1024 fc
187 * Reader data transmission:
188 * - no modulation ONES
190 * - Command, data and CRC_B
192 * - no modulation ONES
194 * Card data transmission
197 * - data (each bytes is: 1startbit,8bits, 1stopbit)
201 * FPGA implementation :
202 * At this point only Type A is implemented. This means that we are using a
203 * bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
204 * things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
213 // Transmit a burst of ones, as the initial thing that lets the
214 // reader get phase sync.
215 // This loop is TR1, per specification
216 // TR1 minimum must be > 80/fs
217 // TR1 maximum 200/fs
218 // 80/fs < TR1 < 200/fs
219 // 10 ETU < TR1 < 24 ETU
222 // 10-11 ETU * 4times samples ZEROS
223 for(i
= 0; i
< 10; i
++) { SEND4STUFFBIT(0); }
224 //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }
226 // 2-3 ETU * 4times samples ONES
227 for(i
= 0; i
< 3; i
++) { SEND4STUFFBIT(1); }
228 //for(i = 0; i < 3; i++) { ToSendStuffBit(1); }
231 for(i
= 0; i
< len
; ++i
) {
239 for(j
= 0; j
< 8; ++j
) {
255 // For PICC it ranges 0-18us (1etu = 9us)
261 // 10-11 ETU * 4 sample rate = ZEROS
262 for(i
= 0; i
< 10; i
++) { SEND4STUFFBIT(0); }
263 //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }
266 for(i
= 0; i
< 40; i
++) { SEND4STUFFBIT(1); }
267 //for(i = 0; i < 40; i++) { ToSendStuffBit(1); }
269 // Convert from last byte pos to length
274 /* Receive & handle a bit coming from the reader.
276 * This function is called 4 times per bit (every 2 subcarrier cycles).
277 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
280 * LED A -> ON once we have received the SOF and are expecting the rest.
281 * LED A -> OFF once we have received EOF or are in error state or unsynced
283 * Returns: true if we received a EOF
284 * false if we are still waiting for some more
286 static RAMFUNC
int Handle14443bReaderUartBit(uint8_t bit
) {
290 // we went low, so this could be the beginning of an SOF
291 Uart
.state
= STATE_GOT_FALLING_EDGE_OF_SOF
;
297 case STATE_GOT_FALLING_EDGE_OF_SOF
:
299 if(Uart
.posCnt
== 2) { // sample every 4 1/fs in the middle of a bit
301 if(Uart
.bitCnt
> 9) {
302 // we've seen enough consecutive
303 // zeros that it's a valid SOF
306 Uart
.state
= STATE_AWAITING_START_BIT
;
307 LED_A_ON(); // Indicate we got a valid SOF
309 // didn't stay down long enough
310 // before going high, error
311 Uart
.state
= STATE_UNSYNCD
;
314 // do nothing, keep waiting
318 if(Uart
.posCnt
>= 4) Uart
.posCnt
= 0;
319 if(Uart
.bitCnt
> 12) {
320 // Give up if we see too many zeros without
323 Uart
.state
= STATE_UNSYNCD
;
327 case STATE_AWAITING_START_BIT
:
330 if(Uart
.posCnt
> 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
331 // stayed high for too long between
333 Uart
.state
= STATE_UNSYNCD
;
336 // falling edge, this starts the data byte
340 Uart
.state
= STATE_RECEIVING_DATA
;
344 case STATE_RECEIVING_DATA
:
346 if(Uart
.posCnt
== 2) {
347 // time to sample a bit
350 Uart
.shiftReg
|= 0x200;
354 if(Uart
.posCnt
>= 4) {
357 if(Uart
.bitCnt
== 10) {
358 if((Uart
.shiftReg
& 0x200) && !(Uart
.shiftReg
& 0x001))
360 // this is a data byte, with correct
361 // start and stop bits
362 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
>> 1) & 0xff;
365 if(Uart
.byteCnt
>= Uart
.byteCntMax
) {
366 // Buffer overflowed, give up
368 Uart
.state
= STATE_UNSYNCD
;
370 // so get the next byte now
372 Uart
.state
= STATE_AWAITING_START_BIT
;
374 } else if (Uart
.shiftReg
== 0x000) {
375 // this is an EOF byte
376 LED_A_OFF(); // Finished receiving
377 Uart
.state
= STATE_UNSYNCD
;
378 if (Uart
.byteCnt
!= 0) {
384 Uart
.state
= STATE_UNSYNCD
;
391 Uart
.state
= STATE_UNSYNCD
;
398 //-----------------------------------------------------------------------------
399 // Receive a command (from the reader to us, where we are the simulated tag),
400 // and store it in the given buffer, up to the given maximum length. Keeps
401 // spinning, waiting for a well-framed command, until either we get one
402 // (returns TRUE) or someone presses the pushbutton on the board (FALSE).
404 // Assume that we're called with the SSC (to the FPGA) and ADC path set
406 //-----------------------------------------------------------------------------
407 static int GetIso14443bCommandFromReader(uint8_t *received
, uint16_t *len
) {
408 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
409 // only, since we are receiving, not transmitting).
410 // Signal field is off with the appropriate LED
412 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
418 // clear receiving shift register and holding register
419 // What does this loop do? Is it TR1?
420 for(uint8_t c
= 0; c
< 10;) {
421 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
422 AT91C_BASE_SSC
->SSC_THR
= 0xFF;
427 // Now run a `software UART' on the stream of incoming samples.
432 while( !BUTTON_PRESS() ) {
435 if ( AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
436 b
= (uint8_t) AT91C_BASE_SSC
->SSC_RHR
;
437 for ( mask
= 0x80; mask
!= 0; mask
>>= 1) {
438 if ( Handle14443bReaderUartBit(b
& mask
)) {
448 void ClearFpgaShiftingRegisters(void){
452 // clear receiving shift register and holding register
453 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
455 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
457 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
459 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
462 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
463 for (uint8_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
464 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
465 if (AT91C_BASE_SSC
->SSC_RHR
) break;
469 //AT91C_BASE_SSC->SSC_THR = 0xFF;
472 void WaitForFpgaDelayQueueIsEmpty( uint16_t delay
){
473 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
474 uint8_t fpga_queued_bits
= delay
>> 3; // twich /8 ?? >>3,
475 for (uint8_t i
= 0; i
<= fpga_queued_bits
/8 + 1; ) {
476 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
477 AT91C_BASE_SSC
->SSC_THR
= 0xFF;
483 static void TransmitFor14443b_AsTag( uint8_t *response
, uint16_t len
) {
485 // Signal field is off with the appropriate LED
487 //uint16_t fpgasendQueueDelay = 0;
490 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_BPSK
);
492 ClearFpgaShiftingRegisters();
497 // Transmit the response.
498 for(uint16_t i
= 0; i
< len
;) {
499 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
500 AT91C_BASE_SSC
->SSC_THR
= response
[++i
];
502 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
503 b
= AT91C_BASE_SSC
->SSC_RHR
;
508 //WaitForFpgaDelayQueueIsEmpty(fpgasendQueueDelay);
509 AT91C_BASE_SSC
->SSC_THR
= 0xFF;
511 //-----------------------------------------------------------------------------
512 // Main loop of simulated tag: receive commands from reader, decide what
513 // response to send, and send it.
514 //-----------------------------------------------------------------------------
515 void SimulateIso14443bTag(uint32_t pupi
) {
517 ///////////// setup device.
518 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
520 // allocate command receive buffer
522 BigBuf_Clear_ext(false);
526 // connect Demodulated Signal to ADC:
527 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
529 // Set up the synchronous serial port
533 uint16_t len
, cmdsReceived
= 0;
534 int cardSTATE
= SIM_NOFIELD
;
535 int vHf
= 0; // in mV
536 // uint32_t time_0 = 0;
537 // uint32_t t2r_time = 0;
538 // uint32_t r2t_time = 0;
539 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
541 // the only commands we understand is WUPB, AFI=0, Select All, N=1:
542 // static const uint8_t cmdWUPB[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB
543 // ... and REQB, AFI=0, Normal Request, N=1:
544 // static const uint8_t cmdREQB[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB
546 // static const uint8_t cmdATTRIB[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB
548 // ... if not PUPI/UID is supplied we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
549 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
550 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
551 uint8_t respATQB
[] = { 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19,
552 0x22, 0x00, 0x21, 0x85, 0x5e, 0xd7 };
554 // response to HLTB and ATTRIB
555 static const uint8_t respOK
[] = {0x00, 0x78, 0xF0};
557 // ...PUPI/UID supplied from user. Adjust ATQB response accordingly
559 uint8_t len
= size(respATQB
);
560 num_to_bytes(pupi
, 4, respATQB
+1);
561 ComputeCrc14443(CRC_14443_B
, respATQB
, 12, &respATQB
[len
-2], &respATQB
[len
-1]);
564 // prepare "ATQB" tag answer (encoded):
565 CodeIso14443bAsTag(respATQB
, sizeof(respATQB
));
566 uint8_t *encodedATQB
= BigBuf_malloc(ToSendMax
);
567 uint16_t encodedATQBLen
= ToSendMax
;
568 memcpy(encodedATQB
, ToSend
, ToSendMax
);
571 // prepare "OK" tag answer (encoded):
572 CodeIso14443bAsTag(respOK
, sizeof(respOK
));
573 uint8_t *encodedOK
= BigBuf_malloc(ToSendMax
);
574 uint16_t encodedOKLen
= ToSendMax
;
575 memcpy(encodedOK
, ToSend
, ToSendMax
);
578 while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
582 if (cardSTATE
== SIM_NOFIELD
) {
583 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
584 if ( vHf
> MF_MINFIELDV
) {
585 cardSTATE
= SIM_IDLE
;
589 if (cardSTATE
== SIM_NOFIELD
) continue;
591 // Get reader command
592 if (!GetIso14443bCommandFromReader(receivedCmd
, &len
)) {
593 Dbprintf("button pressed, received %d commands", cmdsReceived
);
597 // ISO14443-B protocol states:
598 // REQ or WUP request in ANY state
599 // WUP in HALTED state
601 if ( (receivedCmd
[0] == ISO14443B_REQB
&& (receivedCmd
[2] & 0x8)== 0x8 && cardSTATE
== SIM_HALTED
) ||
602 receivedCmd
[0] == ISO14443B_REQB
){
603 LogTrace(receivedCmd
, len
, 0, 0, NULL
, TRUE
);
604 cardSTATE
= SIM_SELECTING
;
609 * How should this flow go?
611 * send response ( waiting for Attrib)
613 * send response ( waiting for commands 7816)
615 send halt response ( waiting for wupb )
622 LogTrace(receivedCmd
, len
, 0, 0, NULL
, TRUE
);
625 case SIM_SELECTING
: {
626 TransmitFor14443b_AsTag( encodedATQB
, encodedATQBLen
);
627 LogTrace(respATQB
, sizeof(respATQB
), 0, 0, NULL
, FALSE
);
628 cardSTATE
= SIM_WORK
;
632 TransmitFor14443b_AsTag( encodedOK
, encodedOKLen
);
633 LogTrace(respOK
, sizeof(respOK
), 0, 0, NULL
, FALSE
);
634 cardSTATE
= SIM_HALTED
;
637 case SIM_ACKNOWLEDGE
:{
638 TransmitFor14443b_AsTag( encodedOK
, encodedOKLen
);
639 LogTrace(respOK
, sizeof(respOK
), 0, 0, NULL
, FALSE
);
640 cardSTATE
= SIM_IDLE
;
644 if ( len
== 7 && receivedCmd
[0] == ISO14443B_HALT
) {
645 cardSTATE
= SIM_HALTED
;
646 } else if ( len
== 11 && receivedCmd
[0] == ISO14443B_ATTRIB
) {
647 cardSTATE
= SIM_ACKNOWLEDGE
;
652 // - emulate with a memory dump
653 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len
, cmdsReceived
);
657 if (len
>= 3){ // if crc exists
658 ComputeCrc14443(CRC_14443_B
, receivedCmd
, len
-2, &b1
, &b2
);
659 if(b1
!= receivedCmd
[len
-2] || b2
!= receivedCmd
[len
-1])
660 DbpString("+++CRC fail");
662 DbpString("CRC passes");
664 cardSTATE
= SIM_IDLE
;
672 if(cmdsReceived
> 1000) {
673 DbpString("14B Simulate, 1000 commands later...");
677 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, BigBuf_get_traceLen());
678 switch_off(); //simulate
681 //=============================================================================
682 // An ISO 14443 Type B reader. We take layer two commands, code them
683 // appropriately, and then send them to the tag. We then listen for the
684 // tag's response, which we leave in the buffer to be demodulated on the
686 //=============================================================================
689 * Handles reception of a bit from the tag
691 * This function is called 2 times per bit (every 4 subcarrier cycles).
692 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
695 * LED C -> ON once we have received the SOF and are expecting the rest.
696 * LED C -> OFF once we have received EOF or are unsynced
698 * Returns: true if we received a EOF
699 * false if we are still waiting for some more
702 #ifndef SUBCARRIER_DETECT_THRESHOLD
703 # define SUBCARRIER_DETECT_THRESHOLD 8
706 static RAMFUNC
int Handle14443bTagSamplesDemod(int ci
, int cq
) {
707 int v
=0;// , myI, myQ = 0;
708 // The soft decision on the bit uses an estimate of just the
709 // quadrant of the reference angle, not the exact angle.
710 #define MAKE_SOFT_DECISION() { \
711 if(Demod.sumI > 0) { \
716 if(Demod.sumQ > 0) { \
723 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
724 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
725 #define CHECK_FOR_SUBCARRIER() { \
727 if(cq < 0) { /* ci < 0, cq < 0 */ \
729 v = -cq - (ci >> 1); \
731 v = -ci - (cq >> 1); \
733 } else { /* ci < 0, cq >= 0 */ \
735 v = -ci + (cq >> 1); \
737 v = cq - (ci >> 1); \
741 if(cq < 0) { /* ci >= 0, cq < 0 */ \
743 v = ci - (cq >> 1); \
745 v = -cq + (ci >> 1); \
747 } else { /* ci >= 0, cq >= 0 */ \
749 v = ci + (cq >> 1); \
751 v = cq + (ci >> 1); \
757 //note: couldn't we just use MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2) from common.h - marshmellow
758 #define CHECK_FOR_SUBCARRIER_un() { \
761 v = MAX(myI,myQ) + (MIN(myI,myQ) >> 1); \
764 switch(Demod
.state
) {
767 CHECK_FOR_SUBCARRIER();
769 // subcarrier detected
770 if(v
> SUBCARRIER_DETECT_THRESHOLD
) {
771 Demod
.state
= DEMOD_PHASE_REF_TRAINING
;
778 case DEMOD_PHASE_REF_TRAINING
:
779 if(Demod
.posCount
< 8) {
781 CHECK_FOR_SUBCARRIER();
783 if (v
> SUBCARRIER_DETECT_THRESHOLD
) {
784 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
785 // note: synchronization time > 80 1/fs
791 Demod
.state
= DEMOD_UNSYNCD
;
794 Demod
.state
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
;
798 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
:
800 MAKE_SOFT_DECISION();
802 if(v
< 0) { // logic '0' detected
803 Demod
.state
= DEMOD_GOT_FALLING_EDGE_OF_SOF
;
804 Demod
.posCount
= 0; // start of SOF sequence
806 // maximum length of TR1 = 200 1/fs
807 if(Demod
.posCount
> 26*2) Demod
.state
= DEMOD_UNSYNCD
;
812 case DEMOD_GOT_FALLING_EDGE_OF_SOF
:
815 MAKE_SOFT_DECISION();
818 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
819 if(Demod
.posCount
< 8*2) {
820 Demod
.state
= DEMOD_UNSYNCD
;
822 LED_C_ON(); // Got SOF
823 Demod
.startTime
= GetCountSspClk();
824 Demod
.state
= DEMOD_AWAITING_START_BIT
;
829 // low phase of SOF too long (> 12 etu)
830 if (Demod
.posCount
> 14*2) {
831 Demod
.state
= DEMOD_UNSYNCD
;
837 case DEMOD_AWAITING_START_BIT
:
840 MAKE_SOFT_DECISION();
843 if(Demod
.posCount
> 2*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
844 Demod
.state
= DEMOD_UNSYNCD
;
847 } else { // start bit detected
849 Demod
.posCount
= 1; // this was the first half
852 Demod
.state
= DEMOD_RECEIVING_DATA
;
856 case DEMOD_RECEIVING_DATA
:
858 MAKE_SOFT_DECISION();
860 if (Demod
.posCount
== 0) {
865 // second half of bit
867 Demod
.shiftReg
>>= 1;
870 if(Demod
.thisBit
> 0) Demod
.shiftReg
|= 0x200;
874 if(Demod
.bitCount
== 10) {
876 uint16_t s
= Demod
.shiftReg
;
878 // stop bit == '1', start bit == '0'
879 if((s
& 0x200) && !(s
& 0x001)) {
880 uint8_t b
= (s
>> 1);
881 Demod
.output
[Demod
.len
] = b
;
883 Demod
.state
= DEMOD_AWAITING_START_BIT
;
885 Demod
.state
= DEMOD_UNSYNCD
;
886 Demod
.endTime
= GetCountSspClk();
889 // This is EOF (start, stop and all data bits == '0'
890 if(s
== 0) return TRUE
;
898 Demod
.state
= DEMOD_UNSYNCD
;
907 * Demodulate the samples we received from the tag, also log to tracebuffer
908 * quiet: set to 'TRUE' to disable debug output
910 static void GetTagSamplesFor14443bDemod() {
911 bool gotFrame
= FALSE
;
912 int lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
913 int max
= 0, ci
= 0, cq
= 0, samples
= 0;
914 uint32_t time_0
= 0, time_stop
= 0;
918 // Set up the demodulator for tag -> reader responses.
919 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
921 // The DMA buffer, used to stream samples from the FPGA
922 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
923 int8_t *upTo
= dmaBuf
;
925 // Setup and start DMA.
926 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
) ){
927 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
931 time_0
= GetCountSspClk();
933 // And put the FPGA in the appropriate mode
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
936 while( !BUTTON_PRESS() ) {
939 int behindBy
= lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
940 if(behindBy
> max
) max
= behindBy
;
942 // rx counter - dma counter? (how much?) & (mod) dma buff / 2. (since 2bytes at the time is read)
943 while(((lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1)) > 2) {
950 // restart DMA buffer to receive again.
951 if(upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
953 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
954 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
958 if(lastRxCounter
<= 0)
959 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
961 // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103
962 //gotFrame = Handle14443bTagSamplesDemod(ci & 0xfe, cq & 0xfe);
963 gotFrame
= Handle14443bTagSamplesDemod(ci
, cq
);
964 if ( gotFrame
) break;
968 time_stop
= GetCountSspClk() - time_0
;
970 if(time_stop
> iso14b_timeout
|| gotFrame
) break;
975 if (MF_DBGLEVEL
>= 3) {
976 Dbprintf("max behindby = %d, samples = %d, gotFrame = %s, Demod.state = %d, Demod.len = %u",
979 (gotFrame
) ? "true" : "false",
985 LogTrace(Demod
.output
, Demod
.len
, Demod
.startTime
, Demod
.endTime
, NULL
, FALSE
);
989 //-----------------------------------------------------------------------------
990 // Transmit the command (to the tag) that was placed in ToSend[].
991 //-----------------------------------------------------------------------------
992 static void TransmitFor14443b_AsReader(void) {
994 // we could been in following mode:
995 // FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ
996 // if its second call or more
998 // while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
999 // AT91C_BASE_SSC->SSC_THR = 0XFF;
1002 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1006 volatile uint32_t b
;
1008 // What does this loop do? Is it TR1?
1009 // 0xFF = 8 bits of 1. 1 bit == 1Etu,..
1010 // loop 10 * 8 = 80 ETU of delay, with a non modulated signal. why?
1012 for(c
= 0; c
< 50;) {
1013 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1014 AT91C_BASE_SSC
->SSC_THR
= 0xFF;
1017 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1018 b
= AT91C_BASE_SSC
->SSC_RHR
;
1024 for(c
= 0; c
< ToSendMax
;) {
1025 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1026 AT91C_BASE_SSC
->SSC_THR
= ToSend
[c
++];
1028 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1029 b
= AT91C_BASE_SSC
->SSC_RHR
;
1033 //WaitForFpgaDelayQueueIsEmpty(delay);
1034 // We should wait here for the FPGA to send all bits.
1038 //-----------------------------------------------------------------------------
1039 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1040 // so that it is ready to transmit to the tag using TransmitFor14443b().
1041 //-----------------------------------------------------------------------------
1042 static void CodeIso14443bAsReader(const uint8_t *cmd
, int len
)
1045 * Reader data transmission:
1046 * - no modulation ONES
1048 * - Command, data and CRC_B
1050 * - no modulation ONES
1053 * TR0 - 8 ETUS minimum.
1055 * QUESTION: how long is a 1 or 0 in pulses in the xcorr_848 mode?
1056 * 1 "stuffbit" = 1ETU (9us)
1064 // 10-11 ETUs of ZERO
1065 for(i
= 0; i
< 10; ++i
) ToSendStuffBit(0);
1073 // from here we add BITS
1074 for(i
= 0; i
< len
; ++i
) {
1079 if ( b
& 1 ) ToSendStuffBit(1); else ToSendStuffBit(0);
1080 if ( (b
>>1) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1081 if ( (b
>>2) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1082 if ( (b
>>3) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1083 if ( (b
>>4) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1084 if ( (b
>>5) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1085 if ( (b
>>6) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1086 if ( (b
>>7) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
1089 // EGT extra guard time
1090 // For PCD it ranges 0-57us (1etu = 9us)
1097 // 10-11 ETUs of ZERO
1098 for(i
= 0; i
< 10; ++i
) ToSendStuffBit(0);
1100 // Transition time. TR0 - guard time
1102 // Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF.
1103 // I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode
1104 for(i
= 0; i
< 32 ; ++i
) ToSendStuffBit(1);
1106 // TR1 - Synchronization time
1107 // Convert from last character reference to length
1113 Convenience function to encode, transmit and trace iso 14443b comms
1115 static void CodeAndTransmit14443bAsReader(const uint8_t *cmd
, int len
) {
1117 CodeIso14443bAsReader(cmd
, len
);
1119 uint32_t time_start
= GetCountSspClk();
1121 TransmitFor14443b_AsReader();
1123 if(trigger
) LED_A_ON();
1125 LogTrace(cmd
, len
, time_start
, GetCountSspClk()-time_start
, NULL
, TRUE
);
1128 /* Sends an APDU to the tag
1129 * TODO: check CRC and preamble
1131 uint8_t iso14443b_apdu(uint8_t const *message
, size_t message_length
, uint8_t *response
)
1133 uint8_t crc
[2] = {0x00, 0x00};
1134 uint8_t message_frame
[message_length
+ 4];
1136 message_frame
[0] = 0x0A | pcb_blocknum
;
1139 message_frame
[1] = 0;
1141 memcpy(message_frame
+ 2, message
, message_length
);
1143 ComputeCrc14443(CRC_14443_B
, message_frame
, message_length
+ 2, &message_frame
[message_length
+ 2], &message_frame
[message_length
+ 3]);
1145 CodeAndTransmit14443bAsReader(message_frame
, message_length
+ 4); //no
1147 GetTagSamplesFor14443bDemod(); //no
1152 ComputeCrc14443(CRC_14443_B
, Demod
.output
, Demod
.len
-2, &crc
[0], &crc
[1]);
1153 if ( crc
[0] != Demod
.output
[Demod
.len
-2] || crc
[1] != Demod
.output
[Demod
.len
-1] )
1156 // copy response contents
1157 if(response
!= NULL
)
1158 memcpy(response
, Demod
.output
, Demod
.len
);
1166 uint8_t iso14443b_select_srx_card(iso14b_card_select_t
*card
)
1168 // INITIATE command: wake up the tag using the INITIATE
1169 static const uint8_t init_srx
[] = { ISO14443B_INITIATE
, 0x00, 0x97, 0x5b };
1170 // SELECT command (with space for CRC)
1171 uint8_t select_srx
[] = { ISO14443B_SELECT
, 0x00, 0x00, 0x00};
1172 // temp to calc crc.
1173 uint8_t crc
[2] = {0x00, 0x00};
1175 CodeAndTransmit14443bAsReader(init_srx
, sizeof(init_srx
));
1176 GetTagSamplesFor14443bDemod(); //no
1178 if (Demod
.len
== 0) return 2;
1180 // Randomly generated Chip ID
1181 if (card
) card
->chipid
= Demod
.output
[0];
1183 select_srx
[1] = Demod
.output
[0];
1185 ComputeCrc14443(CRC_14443_B
, select_srx
, 2, &select_srx
[2], &select_srx
[3]);
1186 CodeAndTransmit14443bAsReader(select_srx
, sizeof(select_srx
));
1187 GetTagSamplesFor14443bDemod(); //no
1189 if (Demod
.len
!= 3) return 2;
1191 // Check the CRC of the answer:
1192 ComputeCrc14443(CRC_14443_B
, Demod
.output
, Demod
.len
-2 , &crc
[0], &crc
[1]);
1193 if(crc
[0] != Demod
.output
[1] || crc
[1] != Demod
.output
[2]) return 3;
1195 // Check response from the tag: should be the same UID as the command we just sent:
1196 if (select_srx
[1] != Demod
.output
[0]) return 1;
1198 // First get the tag's UID:
1199 select_srx
[0] = ISO14443B_GET_UID
;
1201 ComputeCrc14443(CRC_14443_B
, select_srx
, 1 , &select_srx
[1], &select_srx
[2]);
1202 CodeAndTransmit14443bAsReader(select_srx
, 3); // Only first three bytes for this one
1203 GetTagSamplesFor14443bDemod(); //no
1205 if (Demod
.len
!= 10) return 2;
1207 // The check the CRC of the answer
1208 ComputeCrc14443(CRC_14443_B
, Demod
.output
, Demod
.len
-2, &crc
[0], &crc
[1]);
1209 if(crc
[0] != Demod
.output
[8] || crc
[1] != Demod
.output
[9]) return 3;
1213 memcpy(card
->uid
, Demod
.output
, 8);
1218 /* Perform the ISO 14443 B Card Selection procedure
1219 * Currently does NOT do any collision handling.
1220 * It expects 0-1 cards in the device's range.
1221 * TODO: Support multiple cards (perform anticollision)
1222 * TODO: Verify CRC checksums
1224 uint8_t iso14443b_select_card(iso14b_card_select_t
*card
)
1226 // WUPB command (including CRC)
1227 // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
1228 static const uint8_t wupb
[] = { ISO14443B_REQB
, 0x00, 0x08, 0x39, 0x73 };
1229 // ATTRIB command (with space for CRC)
1230 uint8_t attrib
[] = { ISO14443B_ATTRIB
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};
1232 // temp to calc crc.
1233 uint8_t crc
[2] = {0x00, 0x00};
1235 // first, wake up the tag
1236 CodeAndTransmit14443bAsReader(wupb
, sizeof(wupb
));
1237 GetTagSamplesFor14443bDemod(); //select_card
1240 if (Demod
.len
< 14) return 2;
1243 ComputeCrc14443(CRC_14443_B
, Demod
.output
, Demod
.len
-2, &crc
[0], &crc
[1]);
1244 if ( crc
[0] != Demod
.output
[12] || crc
[1] != Demod
.output
[13] )
1249 memcpy(card
->uid
, Demod
.output
+1, 4);
1250 memcpy(card
->atqb
, Demod
.output
+5, 7);
1253 // copy the PUPI to ATTRIB ( PUPI == UID )
1254 memcpy(attrib
+ 1, Demod
.output
+ 1, 4);
1256 // copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3)
1257 attrib
[7] = Demod
.output
[10] & 0x0F;
1258 ComputeCrc14443(CRC_14443_B
, attrib
, 9, attrib
+ 9, attrib
+ 10);
1260 CodeAndTransmit14443bAsReader(attrib
, sizeof(attrib
));
1261 GetTagSamplesFor14443bDemod();//select_card
1263 // Answer to ATTRIB too short?
1264 if(Demod
.len
< 3) return 2;
1267 ComputeCrc14443(CRC_14443_B
, Demod
.output
, Demod
.len
-2, &crc
[0], &crc
[1]);
1268 if ( crc
[0] != Demod
.output
[1] || crc
[1] != Demod
.output
[2] )
1272 if (card
) card
->cid
= Demod
.output
[0];
1274 uint8_t fwt
= card
->atqb
[6]>>4;
1276 uint32_t fwt_time
= (302 << fwt
);
1277 iso14b_set_timeout( fwt_time
);
1279 // reset PCB block number
1284 // Set up ISO 14443 Type B communication (similar to iso14443a_setup)
1285 // field is setup for "Sending as Reader"
1286 void iso14443b_setup() {
1287 if (MF_DBGLEVEL
> 3) Dbprintf("iso1443b_setup Enter");
1289 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1291 //BigBuf_Clear_ext(false);
1293 // Initialize Demod and Uart structs
1294 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1295 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1297 // connect Demodulated Signal to ADC:
1298 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1300 // Set up the synchronous serial port
1303 // Signal field is on with the appropriate LED
1304 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
| FPGA_HF_READER_TX_SHALLOW_MOD
);
1311 if (MF_DBGLEVEL
> 3) Dbprintf("iso1443b_setup Exit");
1314 //-----------------------------------------------------------------------------
1315 // Read a SRI512 ISO 14443B tag.
1317 // SRI512 tags are just simple memory tags, here we're looking at making a dump
1318 // of the contents of the memory. No anticollision algorithm is done, we assume
1319 // we have a single tag in the field.
1321 // I tried to be systematic and check every answer of the tag, every CRC, etc...
1322 //-----------------------------------------------------------------------------
1323 void ReadSTMemoryIso14443b(uint8_t numofblocks
)
1325 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1327 // Make sure that we start from off, since the tags are stateful;
1328 // confusing things will happen if we don't reset them between reads.
1329 switch_off(); // before ReadStMemory
1335 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1338 // Now give it time to spin up.
1339 // Signal field is on with the appropriate LED
1341 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
);
1344 // First command: wake up the tag using the INITIATE command
1345 uint8_t cmd1
[] = {ISO14443B_INITIATE
, 0x00, 0x97, 0x5b};
1346 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
)); //no
1347 GetTagSamplesFor14443bDemod(); // no
1349 if (Demod
.len
== 0) {
1350 DbpString("No response from tag");
1354 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
1355 Demod
.output
[0], Demod
.output
[1], Demod
.output
[2]);
1358 // There is a response, SELECT the uid
1359 DbpString("Now SELECT tag:");
1360 cmd1
[0] = ISO14443B_SELECT
; // 0x0E is SELECT
1361 cmd1
[1] = Demod
.output
[0];
1362 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1363 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
)); //no
1364 GetTagSamplesFor14443bDemod(); //no
1365 if (Demod
.len
!= 3) {
1366 Dbprintf("Expected 3 bytes from tag, got %d", Demod
.len
);
1370 // Check the CRC of the answer:
1371 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 1 , &cmd1
[2], &cmd1
[3]);
1372 if(cmd1
[2] != Demod
.output
[1] || cmd1
[3] != Demod
.output
[2]) {
1373 DbpString("CRC Error reading select response.");
1377 // Check response from the tag: should be the same UID as the command we just sent:
1378 if (cmd1
[1] != Demod
.output
[0]) {
1379 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1
[1], Demod
.output
[0]);
1384 // Tag is now selected,
1385 // First get the tag's UID:
1386 cmd1
[0] = ISO14443B_GET_UID
;
1387 ComputeCrc14443(CRC_14443_B
, cmd1
, 1 , &cmd1
[1], &cmd1
[2]);
1388 CodeAndTransmit14443bAsReader(cmd1
, 3); // no -- Only first three bytes for this one
1389 GetTagSamplesFor14443bDemod(); //no
1390 if (Demod
.len
!= 10) {
1391 Dbprintf("Expected 10 bytes from tag, got %d", Demod
.len
);
1395 // The check the CRC of the answer (use cmd1 as temporary variable):
1396 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 8, &cmd1
[2], &cmd1
[3]);
1397 if(cmd1
[2] != Demod
.output
[8] || cmd1
[3] != Demod
.output
[9]) {
1398 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1399 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[8]<<8)+Demod
.output
[9]);
1400 // Do not return;, let's go on... (we should retry, maybe ?)
1402 Dbprintf("Tag UID (64 bits): %08x %08x",
1403 (Demod
.output
[7]<<24) + (Demod
.output
[6]<<16) + (Demod
.output
[5]<<8) + Demod
.output
[4],
1404 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0]);
1406 // Now loop to read all 16 blocks, address from 0 to last block
1407 Dbprintf("Tag memory dump, block 0 to %d", numofblocks
);
1413 if (i
== numofblocks
) {
1414 DbpString("System area block (0xff):");
1418 ComputeCrc14443(CRC_14443_B
, cmd1
, 2, &cmd1
[2], &cmd1
[3]);
1419 CodeAndTransmit14443bAsReader(cmd1
, sizeof(cmd1
)); //no
1420 GetTagSamplesFor14443bDemod(); //no
1422 if (Demod
.len
!= 6) { // Check if we got an answer from the tag
1423 DbpString("Expected 6 bytes from tag, got less...");
1426 // The check the CRC of the answer (use cmd1 as temporary variable):
1427 ComputeCrc14443(CRC_14443_B
, Demod
.output
, 4, &cmd1
[2], &cmd1
[3]);
1428 if(cmd1
[2] != Demod
.output
[4] || cmd1
[3] != Demod
.output
[5]) {
1429 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
1430 (cmd1
[2]<<8)+cmd1
[3], (Demod
.output
[4]<<8)+Demod
.output
[5]);
1431 // Do not return;, let's go on... (we should retry, maybe ?)
1433 // Now print out the memory location:
1434 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i
,
1435 (Demod
.output
[3]<<24) + (Demod
.output
[2]<<16) + (Demod
.output
[1]<<8) + Demod
.output
[0],
1436 (Demod
.output
[4]<<8)+Demod
.output
[5]);
1438 if (i
== 0xff) break;
1446 static void iso1444b_setup_snoop(void){
1447 if (MF_DBGLEVEL
> 3) Dbprintf("iso1443b_setup_snoop Enter");
1449 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1451 BigBuf_Clear_ext(false);
1452 clear_trace();//setup snoop
1455 // Initialize Demod and Uart structs
1456 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1457 UartInit(BigBuf_malloc(MAX_FRAME_SIZE
));
1459 if (MF_DBGLEVEL
> 1) {
1460 // Print debug information about the buffer sizes
1461 Dbprintf("Snooping buffers initialized:");
1462 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1463 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE
);
1464 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE
);
1465 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE
);
1468 // connect Demodulated Signal to ADC:
1469 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1471 // Setup for the DMA.
1474 // Set FPGA in the appropriate mode
1475 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
1478 // Start the SSP timer
1480 if (MF_DBGLEVEL
> 3) Dbprintf("iso1443b_setup_snoop Exit");
1483 //=============================================================================
1484 // Finally, the `sniffer' combines elements from both the reader and
1485 // simulated tag, to show both sides of the conversation.
1486 //=============================================================================
1488 //-----------------------------------------------------------------------------
1489 // Record the sequence of commands sent by the reader to the tag, with
1490 // triggering so that we start recording at the point that the tag is moved
1492 //-----------------------------------------------------------------------------
1494 * Memory usage for this function, (within BigBuf)
1495 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1496 * Last Received command (tag->reader) - MAX_FRAME_SIZE
1497 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
1498 * Demodulated samples received - all the rest
1500 void RAMFUNC
SnoopIso14443b(void) {
1502 uint32_t time_0
= 0, time_start
= 0, time_stop
= 0;
1504 // We won't start recording the frames that we acquire until we trigger;
1505 // a good trigger condition to get started is probably when we see a
1506 // response from the tag.
1507 int triggered
= TRUE
; // TODO: set and evaluate trigger condition
1509 int maxBehindBy
= 0;
1511 int lastRxCounter
= ISO14443B_DMA_BUFFER_SIZE
;
1513 bool TagIsActive
= FALSE
;
1514 bool ReaderIsActive
= FALSE
;
1516 iso1444b_setup_snoop();
1518 // The DMA buffer, used to stream samples from the FPGA
1519 int8_t *dmaBuf
= (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE
);
1520 int8_t *upTo
= dmaBuf
;
1522 // Setup and start DMA.
1523 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO14443B_DMA_BUFFER_SIZE
) ){
1524 if (MF_DBGLEVEL
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1529 time_0
= GetCountSspClk();
1531 // And now we loop, receiving samples.
1536 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (ISO14443B_DMA_BUFFER_SIZE
-1);
1538 if ( behindBy
> maxBehindBy
)
1539 maxBehindBy
= behindBy
;
1541 if ( behindBy
< 2 ) continue;
1549 if (upTo
>= dmaBuf
+ ISO14443B_DMA_BUFFER_SIZE
) {
1551 lastRxCounter
+= ISO14443B_DMA_BUFFER_SIZE
;
1552 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
1553 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO14443B_DMA_BUFFER_SIZE
;
1556 // TODO: understand whether we can increase/decrease as we want or not?
1557 if ( behindBy
> ( 9 * ISO14443B_DMA_BUFFER_SIZE
/10) ) {
1558 Dbprintf("blew circular buffer! behindBy=%d", behindBy
);
1563 DbpString("Trace full");
1567 if(BUTTON_PRESS()) {
1568 DbpString("cancelled");
1577 // no need to try decoding reader data if the tag is sending
1578 if (Handle14443bReaderUartBit(ci
& 0x01)) {
1580 time_stop
= (GetCountSspClk()-time_0
);
1583 LogTrace(Uart
.output
, Uart
.byteCnt
, time_start
, time_stop
, NULL
, TRUE
);
1585 /* And ready to receive another command. */
1587 /* And also reset the demod code, which might have been */
1588 /* false-triggered by the commands from the reader. */
1591 time_start
= (GetCountSspClk()-time_0
);
1594 if (Handle14443bReaderUartBit(cq
& 0x01)) {
1596 time_stop
= (GetCountSspClk()-time_0
);
1599 LogTrace(Uart
.output
, Uart
.byteCnt
, time_start
, time_stop
, NULL
, TRUE
);
1601 /* And ready to receive another command. */
1603 /* And also reset the demod code, which might have been */
1604 /* false-triggered by the commands from the reader. */
1607 time_start
= (GetCountSspClk()-time_0
);
1609 ReaderIsActive
= (Uart
.state
> STATE_GOT_FALLING_EDGE_OF_SOF
);
1613 if(!ReaderIsActive
) {
1614 // no need to try decoding tag data if the reader is sending - and we cannot afford the time
1615 // is this | 0x01 the error? & 0xfe in https://github.com/Proxmark/proxmark3/issues/103
1616 if(Handle14443bTagSamplesDemod(ci
& 0xFE, cq
& 0xFE)) {
1618 time_stop
= (GetCountSspClk()-time_0
);
1620 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, NULL
, FALSE
);
1624 // And ready to receive another response.
1627 time_start
= (GetCountSspClk()-time_0
);
1629 TagIsActive
= (Demod
.state
> DEMOD_GOT_FALLING_EDGE_OF_SOF
);
1633 switch_off(); // Snoop
1635 DbpString("Snoop statistics:");
1636 Dbprintf(" Max behind by: %i", maxBehindBy
);
1637 Dbprintf(" Uart State: %x ByteCount: %i ByteCountMax: %i", Uart
.state
, Uart
.byteCnt
, Uart
.byteCntMax
);
1638 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1641 if ( upTo
) upTo
= NULL
;
1643 // Uart.byteCntMax should be set with ATQB value..
1646 void iso14b_set_trigger(bool enable
) {
1651 * Send raw command to tag ISO14443B
1653 * param flags enum ISO14B_COMMAND. (mifare.h)
1654 * len len of buffer data
1655 * data buffer with bytes to send
1661 void SendRawCommand14443B_Ex(UsbCommand
*c
)
1663 iso14b_command_t param
= c
->arg
[0];
1664 size_t len
= c
->arg
[1] & 0xffff;
1665 uint8_t *cmd
= c
->d
.asBytes
;
1667 uint32_t sendlen
= sizeof(iso14b_card_select_t
);
1668 uint8_t buf
[USB_CMD_DATA_SIZE
] = {0x00};
1670 if (MF_DBGLEVEL
> 3) Dbprintf("14b raw: param, %04x", param
);
1672 // turn on trigger (LED_A)
1673 if ((param
& ISO14B_REQUEST_TRIGGER
) == ISO14B_REQUEST_TRIGGER
)
1674 iso14b_set_trigger(TRUE
);
1676 if ((param
& ISO14B_CONNECT
) == ISO14B_CONNECT
) {
1677 // Make sure that we start from off, since the tags are stateful;
1678 // confusing things will happen if we don't reset them between reads.
1679 //switch_off(); // before connect in raw
1685 if ((param
& ISO14B_SELECT_STD
) == ISO14B_SELECT_STD
) {
1686 iso14b_card_select_t
*card
= (iso14b_card_select_t
*)buf
;
1687 status
= iso14443b_select_card(card
);
1688 cmd_send(CMD_ACK
, status
, sendlen
, 0, buf
, sendlen
);
1689 // 0: OK 2: attrib fail, 3:crc fail,
1690 if ( status
> 0 ) return;
1693 if ((param
& ISO14B_SELECT_SR
) == ISO14B_SELECT_SR
) {
1694 iso14b_card_select_t
*card
= (iso14b_card_select_t
*)buf
;
1695 status
= iso14443b_select_srx_card(card
);
1696 cmd_send(CMD_ACK
, status
, sendlen
, 0, buf
, sendlen
);
1697 // 0: OK 2: attrib fail, 3:crc fail,
1698 if ( status
> 0 ) return;
1701 if ((param
& ISO14B_APDU
) == ISO14B_APDU
) {
1702 status
= iso14443b_apdu(cmd
, len
, buf
);
1703 cmd_send(CMD_ACK
, status
, status
, 0, buf
, status
);
1706 if ((param
& ISO14B_RAW
) == ISO14B_RAW
) {
1707 if((param
& ISO14B_APPEND_CRC
) == ISO14B_APPEND_CRC
) {
1708 AppendCrc14443b(cmd
, len
);
1712 CodeAndTransmit14443bAsReader(cmd
, len
); // raw
1713 GetTagSamplesFor14443bDemod(); // raw
1715 sendlen
= MIN(Demod
.len
, USB_CMD_DATA_SIZE
);
1716 status
= (Demod
.len
> 0) ? 0 : 1;
1717 cmd_send(CMD_ACK
, status
, sendlen
, 0, Demod
.output
, sendlen
);
1720 // turn off trigger (LED_A)
1721 if ((param
& ISO14B_REQUEST_TRIGGER
) == ISO14B_REQUEST_TRIGGER
)
1722 iso14b_set_trigger(FALSE
);
1724 // turn off antenna et al
1725 // we don't send a HALT command.
1726 if ((param
& ISO14B_DISCONNECT
) == ISO14B_DISCONNECT
) {
1727 if (MF_DBGLEVEL
> 3) Dbprintf("disconnect");
1728 switch_off(); // disconnect raw
1730 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);