1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
25 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum
= 0;
33 // CARD TO READER - manchester
34 // Sequence D: 11110000 modulation with subcarrier during first half
35 // Sequence E: 00001111 modulation with subcarrier during second half
36 // Sequence F: 00000000 no modulation with subcarrier
37 // READER TO CARD - miller
38 // Sequence X: 00001100 drop after half a period
39 // Sequence Y: 00000000 no drop
40 // Sequence Z: 11000000 drop at start
48 const uint8_t OddByteParity
[256] = {
49 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
50 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
51 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
52 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
58 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
59 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
60 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
61 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
62 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
63 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
64 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
68 void iso14a_set_trigger(bool enable
) {
72 void iso14a_clear_trace() {
73 memset(trace
, 0x44, TRACE_SIZE
);
77 void iso14a_set_tracing(bool enable
) {
81 void iso14a_set_timeout(uint32_t timeout
) {
82 iso14a_timeout
= timeout
;
85 //-----------------------------------------------------------------------------
86 // Generate the parity value for a byte sequence
88 //-----------------------------------------------------------------------------
89 byte_t
oddparity (const byte_t bt
)
91 return OddByteParity
[bt
];
94 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
99 // Generate the encrypted data
100 for (i
= 0; i
< iLen
; i
++) {
101 // Save the encrypted parity bit
102 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
107 void AppendCrc14443a(uint8_t* data
, int len
)
109 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
112 // The function LogTrace() is also used by the iClass implementation in iClass.c
113 int RAMFUNC
LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
115 // Return when trace is full
116 if (traceLen
>= TRACE_SIZE
) return FALSE
;
118 // Trace the random, i'm curious
119 rsamples
+= iSamples
;
120 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
121 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
122 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
123 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
125 trace
[traceLen
- 1] |= 0x80;
127 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
128 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
129 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
130 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
131 trace
[traceLen
++] = iLen
;
132 memcpy(trace
+ traceLen
, btBytes
, iLen
);
137 //-----------------------------------------------------------------------------
138 // The software UART that receives commands from the reader, and its state
140 //-----------------------------------------------------------------------------
143 static RAMFUNC
int MillerDecoding(int bit
)
148 if(!Uart
.bitBuffer
) {
149 Uart
.bitBuffer
= bit
^ 0xFF0;
153 Uart
.bitBuffer
<<= 4;
154 Uart
.bitBuffer
^= bit
;
159 if(Uart
.state
!= STATE_UNSYNCD
) {
162 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
168 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
174 if(bit
!= bitright
) { bit
= bitright
; }
176 if(Uart
.posCnt
== 1) {
177 // measurement first half bitperiod
179 Uart
.drop
= DROP_FIRST_HALF
;
183 // measurement second half bitperiod
184 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
185 Uart
.drop
= DROP_SECOND_HALF
;
188 // measured a drop in first and second half
189 // which should not be possible
190 Uart
.state
= STATE_ERROR_WAIT
;
197 case STATE_START_OF_COMMUNICATION
:
199 if(Uart
.drop
== DROP_SECOND_HALF
) {
200 // error, should not happen in SOC
201 Uart
.state
= STATE_ERROR_WAIT
;
206 Uart
.state
= STATE_MILLER_Z
;
213 if(Uart
.drop
== DROP_NONE
) {
214 // logic '0' followed by sequence Y
215 // end of communication
216 Uart
.state
= STATE_UNSYNCD
;
219 // if(Uart.drop == DROP_FIRST_HALF) {
220 // Uart.state = STATE_MILLER_Z; stay the same
221 // we see a logic '0' }
222 if(Uart
.drop
== DROP_SECOND_HALF
) {
223 // we see a logic '1'
224 Uart
.shiftReg
|= 0x100;
225 Uart
.state
= STATE_MILLER_X
;
231 if(Uart
.drop
== DROP_NONE
) {
232 // sequence Y, we see a '0'
233 Uart
.state
= STATE_MILLER_Y
;
236 if(Uart
.drop
== DROP_FIRST_HALF
) {
237 // Would be STATE_MILLER_Z
238 // but Z does not follow X, so error
239 Uart
.state
= STATE_ERROR_WAIT
;
242 if(Uart
.drop
== DROP_SECOND_HALF
) {
243 // We see a '1' and stay in state X
244 Uart
.shiftReg
|= 0x100;
252 if(Uart
.drop
== DROP_NONE
) {
253 // logic '0' followed by sequence Y
254 // end of communication
255 Uart
.state
= STATE_UNSYNCD
;
258 if(Uart
.drop
== DROP_FIRST_HALF
) {
260 Uart
.state
= STATE_MILLER_Z
;
262 if(Uart
.drop
== DROP_SECOND_HALF
) {
263 // We see a '1' and go to state X
264 Uart
.shiftReg
|= 0x100;
265 Uart
.state
= STATE_MILLER_X
;
269 case STATE_ERROR_WAIT
:
270 // That went wrong. Now wait for at least two bit periods
271 // and try to sync again
272 if(Uart
.drop
== DROP_NONE
) {
274 Uart
.state
= STATE_UNSYNCD
;
279 Uart
.state
= STATE_UNSYNCD
;
284 Uart
.drop
= DROP_NONE
;
286 // should have received at least one whole byte...
287 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
291 if(Uart
.bitCnt
== 9) {
292 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
295 Uart
.parityBits
<<= 1;
296 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
299 // when End of Communication received and
300 // all data bits processed..
307 Uart.output[Uart.byteCnt] = 0xAA;
309 Uart.output[Uart.byteCnt] = error & 0xFF;
311 Uart.output[Uart.byteCnt] = 0xAA;
313 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
315 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
317 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
319 Uart.output[Uart.byteCnt] = 0xAA;
327 bit
= Uart
.bitBuffer
& 0xf0;
331 // should have been high or at least (4 * 128) / fc
332 // according to ISO this should be at least (9 * 128 + 20) / fc
333 if(Uart
.highCnt
== 8) {
334 // we went low, so this could be start of communication
335 // it turns out to be safer to choose a less significant
336 // syncbit... so we check whether the neighbour also represents the drop
337 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
338 Uart
.syncBit
= bit
& 8;
340 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
341 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
342 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
343 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
344 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
345 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
348 // the first half bit period is expected in next sample
353 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
356 Uart
.state
= STATE_START_OF_COMMUNICATION
;
357 Uart
.drop
= DROP_FIRST_HALF
;
368 if(Uart
.highCnt
< 8) {
377 //=============================================================================
378 // ISO 14443 Type A - Manchester
379 //=============================================================================
382 static RAMFUNC
int ManchesterDecoding(int v
)
398 if(Demod
.state
==DEMOD_UNSYNCD
) {
399 Demod
.output
[Demod
.len
] = 0xfa;
402 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
405 Demod
.syncBit
= 0x08;
412 Demod
.syncBit
= 0x04;
419 Demod
.syncBit
= 0x02;
422 if(bit
& 0x01 && Demod
.syncBit
) {
423 Demod
.syncBit
= 0x01;
428 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
429 Demod
.sub
= SUB_FIRST_HALF
;
432 Demod
.parityBits
= 0;
435 if(trigger
) LED_A_OFF();
436 switch(Demod
.syncBit
) {
437 case 0x08: Demod
.samples
= 3; break;
438 case 0x04: Demod
.samples
= 2; break;
439 case 0x02: Demod
.samples
= 1; break;
440 case 0x01: Demod
.samples
= 0; break;
447 //modulation = bit & Demod.syncBit;
448 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
452 if(Demod
.posCount
==0) {
455 Demod
.sub
= SUB_FIRST_HALF
;
458 Demod
.sub
= SUB_NONE
;
463 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
464 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
465 Demod
.state
= DEMOD_ERROR_WAIT
;
466 Demod
.output
[Demod
.len
] = 0xaa;
470 else if(modulation
) {
471 Demod
.sub
= SUB_SECOND_HALF
;
474 switch(Demod
.state
) {
475 case DEMOD_START_OF_COMMUNICATION
:
476 if(Demod
.sub
== SUB_FIRST_HALF
) {
477 Demod
.state
= DEMOD_MANCHESTER_D
;
480 Demod
.output
[Demod
.len
] = 0xab;
481 Demod
.state
= DEMOD_ERROR_WAIT
;
486 case DEMOD_MANCHESTER_D
:
487 case DEMOD_MANCHESTER_E
:
488 if(Demod
.sub
== SUB_FIRST_HALF
) {
490 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
491 Demod
.state
= DEMOD_MANCHESTER_D
;
493 else if(Demod
.sub
== SUB_SECOND_HALF
) {
495 Demod
.shiftReg
>>= 1;
496 Demod
.state
= DEMOD_MANCHESTER_E
;
499 Demod
.state
= DEMOD_MANCHESTER_F
;
503 case DEMOD_MANCHESTER_F
:
504 // Tag response does not need to be a complete byte!
505 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
506 if(Demod
.bitCount
> 0) {
507 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
508 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
510 // No parity bit, so just shift a 0
511 Demod
.parityBits
<<= 1;
514 Demod
.state
= DEMOD_UNSYNCD
;
518 Demod
.output
[Demod
.len
] = 0xad;
519 Demod
.state
= DEMOD_ERROR_WAIT
;
524 case DEMOD_ERROR_WAIT
:
525 Demod
.state
= DEMOD_UNSYNCD
;
529 Demod
.output
[Demod
.len
] = 0xdd;
530 Demod
.state
= DEMOD_UNSYNCD
;
534 if(Demod
.bitCount
>=9) {
535 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
538 Demod
.parityBits
<<= 1;
539 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
546 Demod.output[Demod.len] = 0xBB;
548 Demod.output[Demod.len] = error & 0xFF;
550 Demod.output[Demod.len] = 0xBB;
552 Demod.output[Demod.len] = bit & 0xFF;
554 Demod.output[Demod.len] = Demod.buffer & 0xFF;
556 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
558 Demod.output[Demod.len] = 0xBB;
565 } // end (state != UNSYNCED)
570 //=============================================================================
571 // Finally, a `sniffer' for ISO 14443 Type A
572 // Both sides of communication!
573 //=============================================================================
575 //-----------------------------------------------------------------------------
576 // Record the sequence of commands sent by the reader to the tag, with
577 // triggering so that we start recording at the point that the tag is moved
579 //-----------------------------------------------------------------------------
580 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
582 // bit 0 - trigger from first card answer
583 // bit 1 - trigger from first reader 7-bit request
587 iso14a_clear_trace();
589 // We won't start recording the frames that we acquire until we trigger;
590 // a good trigger condition to get started is probably when we see a
591 // response from the tag.
592 // triggered == FALSE -- to wait first for card
593 int triggered
= !(param
& 0x03);
595 // The command (reader -> tag) that we're receiving.
596 // The length of a received command will in most cases be no more than 18 bytes.
597 // So 32 should be enough!
598 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
599 // The response (tag -> reader) that we're receiving.
600 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
602 // As we receive stuff, we copy it from receivedCmd or receivedResponse
603 // into trace, along with its length and other annotations.
604 //uint8_t *trace = (uint8_t *)BigBuf;
606 // The DMA buffer, used to stream samples from the FPGA
607 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
608 int8_t *data
= dmaBuf
;
612 // Set up the demodulator for tag -> reader responses.
613 Demod
.output
= receivedResponse
;
615 Demod
.state
= DEMOD_UNSYNCD
;
617 // Set up the demodulator for the reader -> tag commands
618 memset(&Uart
, 0, sizeof(Uart
));
619 Uart
.output
= receivedCmd
;
620 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
621 Uart
.state
= STATE_UNSYNCD
;
623 // Setup for the DMA.
625 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
627 // And put the FPGA in the appropriate mode
628 // Signal field is off with the appropriate LED
630 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
631 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
633 // Count of samples received so far, so that we can include timing
634 // information in the trace buffer.
636 // And now we loop, receiving samples.
639 DbpString("cancelled by button");
646 int register readBufDataP
= data
- dmaBuf
;
647 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
648 if (readBufDataP
<= dmaBufDataP
){
649 dataLen
= dmaBufDataP
- readBufDataP
;
651 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
+ 1;
653 // test for length of buffer
654 if(dataLen
> maxDataLen
) {
655 maxDataLen
= dataLen
;
657 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
661 if(dataLen
< 1) continue;
663 // primary buffer was stopped( <-- we lost data!
664 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
665 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
666 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
668 // secondary buffer sets as primary, secondary buffer was stopped
669 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
670 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
671 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
677 if(MillerDecoding((data
[0] & 0xF0) >> 4)) {
680 // check - if there is a short 7bit request from reader
681 if ((!triggered
) && (param
& 0x02) && (Uart
.byteCnt
== 1) && (Uart
.bitCnt
= 9)) triggered
= TRUE
;
684 if (!LogTrace(receivedCmd
, Uart
.byteCnt
, 0 - Uart
.samples
, Uart
.parityBits
, TRUE
)) break;
686 /* And ready to receive another command. */
687 Uart
.state
= STATE_UNSYNCD
;
688 /* And also reset the demod code, which might have been */
689 /* false-triggered by the commands from the reader. */
690 Demod
.state
= DEMOD_UNSYNCD
;
694 if(ManchesterDecoding(data
[0] & 0x0F)) {
697 if (!LogTrace(receivedResponse
, Demod
.len
, 0 - Demod
.samples
, Demod
.parityBits
, FALSE
)) break;
699 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
701 // And ready to receive another response.
702 memset(&Demod
, 0, sizeof(Demod
));
703 Demod
.output
= receivedResponse
;
704 Demod
.state
= DEMOD_UNSYNCD
;
709 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
714 DbpString("COMMAND FINISHED");
717 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
718 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen
, Uart
.state
, Uart
.byteCnt
);
719 Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
723 //-----------------------------------------------------------------------------
724 // Prepare tag messages
725 //-----------------------------------------------------------------------------
726 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
732 // Correction bit, might be removed when not needed
737 ToSendStuffBit(1); // 1
743 ToSend
[++ToSendMax
] = SEC_D
;
745 for(i
= 0; i
< len
; i
++) {
750 for(j
= 0; j
< 8; j
++) {
752 ToSend
[++ToSendMax
] = SEC_D
;
754 ToSend
[++ToSendMax
] = SEC_E
;
759 // Get the parity bit
760 if ((dwParity
>> i
) & 0x01) {
761 ToSend
[++ToSendMax
] = SEC_D
;
763 ToSend
[++ToSendMax
] = SEC_E
;
768 ToSend
[++ToSendMax
] = SEC_F
;
770 // Convert from last byte pos to length
774 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
775 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
778 //-----------------------------------------------------------------------------
779 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
780 //-----------------------------------------------------------------------------
781 static void CodeStrangeAnswerAsTag()
787 // Correction bit, might be removed when not needed
792 ToSendStuffBit(1); // 1
798 ToSend
[++ToSendMax
] = SEC_D
;
801 ToSend
[++ToSendMax
] = SEC_E
;
804 ToSend
[++ToSendMax
] = SEC_E
;
807 ToSend
[++ToSendMax
] = SEC_D
;
810 ToSend
[++ToSendMax
] = SEC_F
;
812 // Flush the buffer in FPGA!!
813 for(i
= 0; i
< 5; i
++) {
814 ToSend
[++ToSendMax
] = SEC_F
;
817 // Convert from last byte pos to length
821 static void Code4bitAnswerAsTag(uint8_t cmd
)
827 // Correction bit, might be removed when not needed
832 ToSendStuffBit(1); // 1
838 ToSend
[++ToSendMax
] = SEC_D
;
841 for(i
= 0; i
< 4; i
++) {
843 ToSend
[++ToSendMax
] = SEC_D
;
845 ToSend
[++ToSendMax
] = SEC_E
;
851 ToSend
[++ToSendMax
] = SEC_F
;
853 // Flush the buffer in FPGA!!
854 for(i
= 0; i
< 5; i
++) {
855 ToSend
[++ToSendMax
] = SEC_F
;
858 // Convert from last byte pos to length
862 //-----------------------------------------------------------------------------
863 // Wait for commands from reader
864 // Stop when button is pressed
865 // Or return TRUE when command is captured
866 //-----------------------------------------------------------------------------
867 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
869 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
870 // only, since we are receiving, not transmitting).
871 // Signal field is off with the appropriate LED
873 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
875 // Now run a `software UART' on the stream of incoming samples.
876 Uart
.output
= received
;
877 Uart
.byteCntMax
= maxLen
;
878 Uart
.state
= STATE_UNSYNCD
;
883 if(BUTTON_PRESS()) return FALSE
;
885 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
886 AT91C_BASE_SSC
->SSC_THR
= 0x00;
888 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
889 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
890 if(MillerDecoding((b
& 0xf0) >> 4)) {
894 if(MillerDecoding(b
& 0x0f)) {
902 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
);
903 int EmSend4bitEx(uint8_t resp
, int correctionNeeded
);
904 int EmSend4bit(uint8_t resp
);
905 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
);
906 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
);
907 int EmSendCmdEx(uint8_t *resp
, int respLen
, int correctionNeeded
);
908 int EmSendCmd(uint8_t *resp
, int respLen
);
909 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
911 //-----------------------------------------------------------------------------
912 // Main loop of simulated tag: receive commands from reader, decide what
913 // response to send, and send it.
914 //-----------------------------------------------------------------------------
915 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
917 // Enable and clear the trace
919 iso14a_clear_trace();
921 // This function contains the tag emulation
924 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
925 uint8_t response1
[2];
928 case 1: { // MIFARE Classic
929 // Says: I am Mifare 1k - original line
934 case 2: { // MIFARE Ultralight
935 // Says: I am a stupid memory tag, no crypto
940 case 3: { // MIFARE DESFire
941 // Says: I am a DESFire tag, ph33r me
946 case 4: { // ISO/IEC 14443-4
947 // Says: I am a javacard (JCOP)
953 Dbprintf("Error: unkown tagtype (%d)",tagType
);
958 // The second response contains the (mandatory) first 24 bits of the UID
959 uint8_t response2
[5];
961 // Check if the uid uses the (optional) part
962 uint8_t response2a
[5];
965 num_to_bytes(uid_1st
,3,response2
+1);
966 num_to_bytes(uid_2nd
,4,response2a
);
967 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
969 // Configure the ATQA and SAK accordingly
970 response1
[0] |= 0x40;
973 num_to_bytes(uid_1st
,4,response2
);
974 // Configure the ATQA and SAK accordingly
975 response1
[0] &= 0xBF;
979 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
980 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
982 // Prepare the mandatory SAK (for 4 and 7 byte UID)
983 uint8_t response3
[3];
985 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
987 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
988 uint8_t response3a
[3];
989 response3a
[0] = sak
& 0xFB;
990 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
992 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
993 uint8_t response6
[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
994 ComputeCrc14443(CRC_14443_A
, response6
, 3, &response6
[3], &response6
[4]);
996 uint8_t *resp
= NULL
;
999 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
1001 // 144 data bits (18 * 8)
1004 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
1005 // 1 just for the case
1009 // 166 bytes, since every bit that needs to be send costs us a byte
1012 // Respond with card type
1013 uint8_t *resp1
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1016 // Anticollision cascade1 - respond with uid
1017 uint8_t *resp2
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 166);
1020 // Anticollision cascade2 - respond with 2nd half of uid if asked
1021 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1022 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1025 // Acknowledge select - cascade 1
1026 uint8_t *resp3
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*2));
1029 // Acknowledge select - cascade 2
1030 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*3));
1033 // Response to a read request - not implemented atm
1034 uint8_t *resp4
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*4));
1037 // Authenticate response - nonce
1038 uint8_t *resp5
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*5));
1041 // Authenticate response - nonce
1042 uint8_t *resp6
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*6));
1045 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
1048 // To control where we are in the protocol
1052 // Just to allow some checks
1057 uint8_t* respdata
= NULL
;
1059 // uint8_t nack = 0x04;
1061 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1063 // Prepare the responses of the anticollision phase
1064 // there will be not enough time to do this at the moment the reader sends it REQA
1066 // Answer to request
1067 CodeIso14443aAsTag(response1
, sizeof(response1
));
1068 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1070 // Send our UID (cascade 1)
1071 CodeIso14443aAsTag(response2
, sizeof(response2
));
1072 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1074 // Answer to select (cascade1)
1075 CodeIso14443aAsTag(response3
, sizeof(response3
));
1076 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1078 // Send the cascade 2 2nd part of the uid
1079 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1080 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1082 // Answer to select (cascade 2)
1083 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1084 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1086 // Strange answer is an example of rare message size (3 bits)
1087 CodeStrangeAnswerAsTag();
1088 memcpy(resp4
, ToSend
, ToSendMax
);// resp4Len = ToSendMax;
1090 // Authentication answer (random nonce)
1091 CodeIso14443aAsTag(response5
, sizeof(response5
));
1092 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1094 // dummy ATS (pseudo-ATR), answer to RATS
1095 CodeIso14443aAsTag(response6
, sizeof(response6
));
1096 memcpy(resp6
, ToSend
, ToSendMax
); resp6Len
= ToSendMax
;
1098 // We need to listen to the high-frequency, peak-detected path.
1099 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1107 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
1108 DbpString("button press");
1113 LogTrace(receivedCmd
,len
, 0, Uart
.parityBits
, TRUE
);
1116 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1117 // Okay, look at the command now.
1119 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1120 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1121 respdata
= response1
;
1122 respsize
= sizeof(response1
);
1123 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1124 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1125 respdata
= response1
;
1126 respsize
= sizeof(response1
);
1127 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1128 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1129 respdata
= response2
;
1130 respsize
= sizeof(response2
);
1131 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1132 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1133 respdata
= response2a
;
1134 respsize
= sizeof(response2a
);
1135 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1136 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1137 respdata
= response3
;
1138 respsize
= sizeof(response3
);
1139 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1140 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1141 respdata
= response3a
;
1142 respsize
= sizeof(response3a
);
1143 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1144 // resp = resp4; respLen = resp4Len; order = 4; // Do nothing
1145 // respdata = &nack;
1146 // respsize = sizeof(nack); // 4-bit answer
1147 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1148 Dbprintf("Read request from reader: %x %x",receivedCmd
[0],receivedCmd
[1]);
1149 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1151 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1152 // DbpString("Reader requested we HALT!:");
1154 resp
= resp1
; respLen
= 0; order
= 0;
1157 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1158 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1159 respdata
= response5
;
1160 respsize
= sizeof(response5
);
1161 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1162 resp
= resp6
; respLen
= resp6Len
; order
= 70;
1163 respdata
= response6
;
1164 respsize
= sizeof(response6
);
1166 if (order
== 7 && len
==8) {
1167 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1168 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1169 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1171 // Never seen this command before
1172 Dbprintf("Received unknown command (len=%d):",len
);
1173 Dbhexdump(len
,receivedCmd
,false);
1176 resp
= resp1
; respLen
= 0; order
= 0;
1181 // Count number of wakeups received after a halt
1182 if(order
== 6 && lastorder
== 5) { happened
++; }
1184 // Count number of other messages after a halt
1185 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1187 // Look at last parity bit to determine timing of answer
1188 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1189 // 1236, so correction bit needed
1193 if(cmdsRecvd
> 999) {
1194 DbpString("1000 commands later...");
1201 EmSendCmd14443aRaw(resp
, respLen
, receivedCmd
[0] == 0x52);
1205 if (respdata
!= NULL
) {
1206 LogTrace(respdata
,respsize
, 0, SwapBits(GetParity(respdata
,respsize
),respsize
), FALSE
);
1208 if(traceLen
> TRACE_SIZE
) {
1209 DbpString("Trace full");
1214 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1217 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1222 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1223 // of bits specified in the delay parameter.
1224 void PrepareDelayedTransfer(uint16_t delay
)
1226 uint8_t bitmask
= 0;
1227 uint8_t bits_to_shift
= 0;
1228 uint8_t bits_shifted
= 0;
1232 for (uint16_t i
= 0; i
< delay
; i
++) {
1233 bitmask
|= (0x01 << i
);
1235 ToSend
[++ToSendMax
] = 0x00;
1236 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1237 bits_to_shift
= ToSend
[i
] & bitmask
;
1238 ToSend
[i
] = ToSend
[i
] >> delay
;
1239 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1240 bits_shifted
= bits_to_shift
;
1248 //-----------------------------------------------------------------------------
1249 // Transmit the command (to the tag) that was placed in ToSend[].
1250 // Parameter timing:
1252 // if == 0: return time of transfer
1253 // if != 0: delay transfer until time specified
1254 //-----------------------------------------------------------------------------
1255 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1263 if(*timing
== 0) { // Measure time
1264 *timing
= (GetCountMifare() + 8) & 0xfffffff8;
1266 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 if(MF_DBGLEVEL
>= 4 && GetCountMifare() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1269 while(GetCountMifare() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1272 for(c
= 0; c
< 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1273 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1274 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1281 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1282 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1292 //-----------------------------------------------------------------------------
1293 // Prepare reader command (in bits, support short frames) to send to FPGA
1294 //-----------------------------------------------------------------------------
1295 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1303 // Start of Communication (Seq. Z)
1304 ToSend
[++ToSendMax
] = SEC_Z
;
1307 size_t bytecount
= nbytes(bits
);
1308 // Generate send structure for the data bits
1309 for (i
= 0; i
< bytecount
; i
++) {
1310 // Get the current byte to send
1312 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1314 for (j
= 0; j
< bitsleft
; j
++) {
1317 ToSend
[++ToSendMax
] = SEC_X
;
1322 ToSend
[++ToSendMax
] = SEC_Z
;
1325 ToSend
[++ToSendMax
] = SEC_Y
;
1332 // Only transmit (last) parity bit if we transmitted a complete byte
1334 // Get the parity bit
1335 if ((dwParity
>> i
) & 0x01) {
1337 ToSend
[++ToSendMax
] = SEC_X
;
1342 ToSend
[++ToSendMax
] = SEC_Z
;
1345 ToSend
[++ToSendMax
] = SEC_Y
;
1352 // End of Communication
1355 ToSend
[++ToSendMax
] = SEC_Z
;
1358 ToSend
[++ToSendMax
] = SEC_Y
;
1362 ToSend
[++ToSendMax
] = SEC_Y
;
1365 ToSend
[++ToSendMax
] = SEC_Y
;
1366 ToSend
[++ToSendMax
] = SEC_Y
;
1367 ToSend
[++ToSendMax
] = SEC_Y
;
1369 // Convert from last character reference to length
1373 //-----------------------------------------------------------------------------
1374 // Prepare reader command to send to FPGA
1375 //-----------------------------------------------------------------------------
1376 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1378 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1381 //-----------------------------------------------------------------------------
1382 // Wait for commands from reader
1383 // Stop when button is pressed (return 1) or field was gone (return 2)
1384 // Or return 0 when command is captured
1385 //-----------------------------------------------------------------------------
1386 static int EmGetCmd(uint8_t *received
, int *len
, int maxLen
)
1390 uint32_t timer
= 0, vtime
= 0;
1394 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1395 // only, since we are receiving, not transmitting).
1396 // Signal field is off with the appropriate LED
1398 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1400 // Set ADC to read field strength
1401 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1402 AT91C_BASE_ADC
->ADC_MR
=
1403 ADC_MODE_PRESCALE(32) |
1404 ADC_MODE_STARTUP_TIME(16) |
1405 ADC_MODE_SAMPLE_HOLD_TIME(8);
1406 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1408 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1410 // Now run a 'software UART' on the stream of incoming samples.
1411 Uart
.output
= received
;
1412 Uart
.byteCntMax
= maxLen
;
1413 Uart
.state
= STATE_UNSYNCD
;
1418 if (BUTTON_PRESS()) return 1;
1420 // test if the field exists
1421 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1423 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1424 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1425 if (analogCnt
>= 32) {
1426 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1427 vtime
= GetTickCount();
1428 if (!timer
) timer
= vtime
;
1429 // 50ms no field --> card to idle state
1430 if (vtime
- timer
> 50) return 2;
1432 if (timer
) timer
= 0;
1438 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1439 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1441 // receive and test the miller decoding
1442 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1443 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1444 if(MillerDecoding((b
& 0xf0) >> 4)) {
1445 *len
= Uart
.byteCnt
;
1446 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1449 if(MillerDecoding(b
& 0x0f)) {
1450 *len
= Uart
.byteCnt
;
1451 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1458 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
)
1463 // Modulate Manchester
1464 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1465 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1468 // include correction bit
1470 if((Uart
.parityBits
& 0x01) || correctionNeeded
) {
1471 // 1236, so correction bit needed
1477 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1478 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1481 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1483 b
= 0xff; // was 0x00
1489 AT91C_BASE_SSC
->SSC_THR
= b
;
1493 if(BUTTON_PRESS()) {
1501 int EmSend4bitEx(uint8_t resp
, int correctionNeeded
){
1502 Code4bitAnswerAsTag(resp
);
1503 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1504 if (tracing
) LogTrace(&resp
, 1, GetDeltaCountUS(), GetParity(&resp
, 1), FALSE
);
1508 int EmSend4bit(uint8_t resp
){
1509 return EmSend4bitEx(resp
, 0);
1512 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
){
1513 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1514 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1515 if (tracing
) LogTrace(resp
, respLen
, GetDeltaCountUS(), par
, FALSE
);
1519 int EmSendCmdEx(uint8_t *resp
, int respLen
, int correctionNeeded
){
1520 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1523 int EmSendCmd(uint8_t *resp
, int respLen
){
1524 return EmSendCmdExPar(resp
, respLen
, 0, GetParity(resp
, respLen
));
1527 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1528 return EmSendCmdExPar(resp
, respLen
, 0, par
);
1531 //-----------------------------------------------------------------------------
1532 // Wait a certain time for tag response
1533 // If a response is captured return TRUE
1534 // If it takes to long return FALSE
1535 //-----------------------------------------------------------------------------
1536 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1538 // buffer needs to be 512 bytes
1541 // Set FPGA mode to "reader listen mode", no modulation (listen
1542 // only, since we are receiving, not transmitting).
1543 // Signal field is on with the appropriate LED
1545 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1547 // Now get the answer from the card
1548 Demod
.output
= receivedResponse
;
1550 Demod
.state
= DEMOD_UNSYNCD
;
1553 if (elapsed
) *elapsed
= 0;
1559 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1560 // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1561 // if (elapsed) (*elapsed)++;
1563 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1564 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1565 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1566 if(ManchesterDecoding((b
>>4) & 0xf)) {
1567 *samples
= ((c
- 1) << 3) + 4;
1570 if(ManchesterDecoding(b
& 0x0f)) {
1578 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1581 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1584 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1588 // Store reader command in buffer
1589 if (tracing
) LogTrace(frame
,nbytes(bits
),0,par
,TRUE
);
1592 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1594 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1597 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1599 // Generate parity and redirect
1600 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1603 int ReaderReceive(uint8_t* receivedAnswer
)
1606 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1607 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1608 if(samples
== 0) return FALSE
;
1612 int ReaderReceivePar(uint8_t* receivedAnswer
, uint32_t * parptr
)
1615 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1616 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1617 *parptr
= Demod
.parityBits
;
1618 if(samples
== 0) return FALSE
;
1622 /* performs iso14443a anticolision procedure
1623 * fills the uid pointer unless NULL
1624 * fills resp_data unless NULL */
1625 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1626 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1627 uint8_t sel_all
[] = { 0x93,0x20 };
1628 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1629 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1630 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1632 size_t uid_resp_len
;
1634 uint8_t sak
= 0x04; // cascade uid
1635 int cascade_level
= 0;
1638 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1639 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1641 if(!ReaderReceive(resp
)) return 0;
1642 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1645 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1646 p_hi14a_card
->uidlen
= 0;
1647 memset(p_hi14a_card
->uid
,0,10);
1652 memset(uid_ptr
,0,10);
1655 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1656 // which case we need to make a cascade 2 request and select - this is a long UID
1657 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1658 for(; sak
& 0x04; cascade_level
++) {
1659 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1660 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1663 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1664 if (!ReaderReceive(resp
)) return 0;
1666 // First backup the current uid
1667 memcpy(uid_resp
,resp
,4);
1669 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1671 // calculate crypto UID. Always use last 4 Bytes.
1673 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1676 // Construct SELECT UID command
1677 memcpy(sel_uid
+2,resp
,5);
1678 AppendCrc14443a(sel_uid
,7);
1679 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1682 if (!ReaderReceive(resp
)) return 0;
1685 // Test if more parts of the uid are comming
1686 if ((sak
& 0x04) && uid_resp
[0] == 0x88) {
1687 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1688 // http://www.nxp.com/documents/application_note/AN10927.pdf
1689 memcpy(uid_resp
, uid_resp
+ 1, 3);
1694 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1698 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1699 p_hi14a_card
->uidlen
+= uid_resp_len
;
1704 p_hi14a_card
->sak
= sak
;
1705 p_hi14a_card
->ats_len
= 0;
1708 if( (sak
& 0x20) == 0) {
1709 return 2; // non iso14443a compliant tag
1712 // Request for answer to select
1713 AppendCrc14443a(rats
, 2);
1714 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1716 if (!(len
= ReaderReceive(resp
))) return 0;
1719 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1720 p_hi14a_card
->ats_len
= len
;
1723 // reset the PCB block number
1724 iso14_pcb_blocknum
= 0;
1728 void iso14443a_setup() {
1729 // Set up the synchronous serial port
1731 // Start from off (no field generated)
1732 // Signal field is off with the appropriate LED
1734 // FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1737 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1739 // Now give it time to spin up.
1740 // Signal field is on with the appropriate LED
1742 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1743 SpinDelay(7); // iso14443-3 specifies 5ms max.
1745 iso14a_timeout
= 2048; //default
1748 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1749 uint8_t real_cmd
[cmd_len
+4];
1750 real_cmd
[0] = 0x0a; //I-Block
1751 // put block number into the PCB
1752 real_cmd
[0] |= iso14_pcb_blocknum
;
1753 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1754 memcpy(real_cmd
+2, cmd
, cmd_len
);
1755 AppendCrc14443a(real_cmd
,cmd_len
+2);
1757 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1758 size_t len
= ReaderReceive(data
);
1759 uint8_t * data_bytes
= (uint8_t *) data
;
1761 return 0; //DATA LINK ERROR
1762 // if we received an I- or R(ACK)-Block with a block number equal to the
1763 // current block number, toggle the current block number
1764 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1765 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1766 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1767 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1769 iso14_pcb_blocknum
^= 1;
1775 //-----------------------------------------------------------------------------
1776 // Read an ISO 14443a tag. Send out commands and store answers.
1778 //-----------------------------------------------------------------------------
1779 void ReaderIso14443a(UsbCommand
* c
)
1781 iso14a_command_t param
= c
->arg
[0];
1782 uint8_t * cmd
= c
->d
.asBytes
;
1783 size_t len
= c
->arg
[1];
1785 byte_t buf
[USB_CMD_DATA_SIZE
];
1787 iso14a_clear_trace();
1788 iso14a_set_tracing(true);
1790 if(param
& ISO14A_REQUEST_TRIGGER
) {
1791 iso14a_set_trigger(1);
1794 if(param
& ISO14A_CONNECT
) {
1796 arg0
= iso14443a_select_card(NULL
, (iso14a_card_select_t
*)buf
, NULL
);
1797 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(iso14a_card_select_t
));
1800 if(param
& ISO14A_SET_TIMEOUT
) {
1801 iso14a_timeout
= c
->arg
[2];
1804 if(param
& ISO14A_SET_TIMEOUT
) {
1805 iso14a_timeout
= c
->arg
[2];
1808 if(param
& ISO14A_APDU
) {
1809 arg0
= iso14_apdu(cmd
, len
, buf
);
1810 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1813 if(param
& ISO14A_RAW
) {
1814 if(param
& ISO14A_APPEND_CRC
) {
1815 AppendCrc14443a(cmd
,len
);
1818 ReaderTransmit(cmd
,len
, NULL
);
1819 arg0
= ReaderReceive(buf
);
1820 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1823 if(param
& ISO14A_REQUEST_TRIGGER
) {
1824 iso14a_set_trigger(0);
1827 if(param
& ISO14A_NO_DISCONNECT
) {
1831 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1836 // Determine the distance between two nonces.
1837 // Assume that the difference is small, but we don't know which is first.
1838 // Therefore try in alternating directions.
1839 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1842 uint32_t nttmp1
, nttmp2
;
1844 if (nt1
== nt2
) return 0;
1849 for (i
= 1; i
< 32768; i
++) {
1850 nttmp1
= prng_successor(nttmp1
, 1);
1851 if (nttmp1
== nt2
) return i
;
1852 nttmp2
= prng_successor(nttmp2
, 1);
1853 if (nttmp2
== nt1
) return -i
;
1856 return(-99999); // either nt1 or nt2 are invalid nonces
1860 //-----------------------------------------------------------------------------
1861 // Recover several bits of the cypher stream. This implements (first stages of)
1862 // the algorithm described in "The Dark Side of Security by Obscurity and
1863 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1864 // (article by Nicolas T. Courtois, 2009)
1865 //-----------------------------------------------------------------------------
1866 void ReaderMifare(bool first_try
)
1869 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1870 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1871 static uint8_t mf_nr_ar3
;
1873 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1879 //byte_t par_mask = 0xff;
1880 static byte_t par_low
= 0;
1885 uint32_t nt
, previous_nt
;
1886 static uint32_t nt_attacked
= 0;
1887 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1888 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1890 static uint32_t sync_time
;
1891 static uint32_t sync_cycles
;
1892 int catch_up_cycles
= 0;
1893 int last_catch_up
= 0;
1894 uint16_t consecutive_resyncs
= 0;
1903 while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up"
1904 sync_time
= GetCountMifare() & 0xfffffff8;
1905 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1911 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1912 // nt_attacked = prng_successor(nt_attacked, 1);
1914 mf_nr_ar
[3] = mf_nr_ar3
;
1923 for(uint16_t i
= 0; TRUE
; i
++) {
1927 // Test if the action was cancelled
1928 if(BUTTON_PRESS()) {
1934 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1935 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1939 //keep the card active
1940 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1942 // CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
1944 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1945 catch_up_cycles
= 0;
1947 // if we missed the sync time already, advance to the next nonce repeat
1948 while(GetCountMifare() > sync_time
) {
1949 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
1952 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1953 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
1955 // Receive the (4 Byte) "random" nonce
1956 if (!ReaderReceive(receivedAnswer
)) {
1957 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1962 nt
= bytes_to_num(receivedAnswer
, 4);
1964 // Transmit reader nonce with fake par
1965 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
1967 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
1968 int nt_distance
= dist_nt(previous_nt
, nt
);
1969 if (nt_distance
== 0) {
1973 if (nt_distance
== -99999) { // invalid nonce received, try again
1976 sync_cycles
= (sync_cycles
- nt_distance
);
1977 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
1982 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
1983 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
1984 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
1985 catch_up_cycles
= 0;
1988 if (catch_up_cycles
== last_catch_up
) {
1989 consecutive_resyncs
++;
1992 last_catch_up
= catch_up_cycles
;
1993 consecutive_resyncs
= 0;
1995 if (consecutive_resyncs
< 3) {
1996 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
1999 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2000 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2005 consecutive_resyncs
= 0;
2007 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2008 if (ReaderReceive(receivedAnswer
))
2010 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2014 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2018 if(led_on
) LED_B_ON(); else LED_B_OFF();
2020 par_list
[nt_diff
] = par
;
2021 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2023 // Test if the information is complete
2024 if (nt_diff
== 0x07) {
2029 nt_diff
= (nt_diff
+ 1) & 0x07;
2030 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2033 if (nt_diff
== 0 && first_try
)
2037 par
= (((par
>> 3) + 1) << 3) | par_low
;
2042 LogTrace((const uint8_t *)&nt
, 4, 0, GetParity((const uint8_t *)&nt
, 4), TRUE
);
2043 LogTrace(par_list
, 8, 0, GetParity(par_list
, 8), TRUE
);
2044 LogTrace(ks_list
, 8, 0, GetParity(ks_list
, 8), TRUE
);
2046 mf_nr_ar
[3] &= 0x1F;
2049 memcpy(buf
+ 0, uid
, 4);
2050 num_to_bytes(nt
, 4, buf
+ 4);
2051 memcpy(buf
+ 8, par_list
, 8);
2052 memcpy(buf
+ 16, ks_list
, 8);
2053 memcpy(buf
+ 24, mf_nr_ar
, 4);
2055 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2058 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2063 //-----------------------------------------------------------------------------
2064 // MIFARE 1K simulate.
2066 //-----------------------------------------------------------------------------
2067 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
2069 int cardSTATE
= MFEMUL_NOFIELD
;
2071 int vHf
= 0; // in mV
2072 //int nextCycleTimeout = 0;
2074 // uint32_t timer = 0;
2075 uint32_t selTimer
= 0;
2076 uint32_t authTimer
= 0;
2079 uint8_t cardWRBL
= 0;
2080 uint8_t cardAUTHSC
= 0;
2081 uint8_t cardAUTHKEY
= 0xff; // no authentication
2082 //uint32_t cardRn = 0;
2083 uint32_t cardRr
= 0;
2085 //uint32_t rn_enc = 0;
2087 uint32_t cardINTREG
= 0;
2088 uint8_t cardINTBLOCK
= 0;
2089 struct Crypto1State mpcs
= {0, 0};
2090 struct Crypto1State
*pcs
;
2093 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2094 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2096 static uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2098 static uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2099 static uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2101 static uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2102 static uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2104 static uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2105 // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
2106 static uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2112 // Authenticate response - nonce
2113 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2115 // get UID from emul memory
2116 emlGetMemBt(receivedCmd
, 7, 1);
2117 _7BUID
= !(receivedCmd
[0] == 0x00);
2118 if (!_7BUID
) { // ---------- 4BUID
2121 emlGetMemBt(rUIDBCC1
, 0, 4);
2122 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2123 } else { // ---------- 7BUID
2127 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2128 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2129 emlGetMemBt(rUIDBCC2
, 3, 4);
2130 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2133 // -------------------------------------- test area
2135 // -------------------------------------- END test area
2136 // start mkseconds counter
2139 // We need to listen to the high-frequency, peak-detected path.
2140 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2143 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2146 if (MF_DBGLEVEL
>= 1) Dbprintf("Started. 7buid=%d", _7BUID
);
2147 // calibrate mkseconds counter
2152 if(BUTTON_PRESS()) {
2156 // find reader field
2157 // Vref = 3300mV, and an 10:1 voltage divider on the input
2158 // can measure voltages up to 33000 mV
2159 if (cardSTATE
== MFEMUL_NOFIELD
) {
2160 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2161 if (vHf
> MF_MINFIELDV
) {
2162 cardSTATE_TO_IDLE();
2167 if (cardSTATE
!= MFEMUL_NOFIELD
) {
2168 res
= EmGetCmd(receivedCmd
, &len
, RECV_CMD_SIZE
); // (+ nextCycleTimeout)
2170 cardSTATE
= MFEMUL_NOFIELD
;
2177 //nextCycleTimeout = 0;
2179 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2181 if (len
!= 4 && cardSTATE
!= MFEMUL_NOFIELD
) { // len != 4 <---- speed up the code 4 authentication
2182 // REQ or WUP request in ANY state and WUP in HALTED state
2183 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2184 selTimer
= GetTickCount();
2185 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2186 cardSTATE
= MFEMUL_SELECT1
;
2188 // init crypto block
2191 crypto1_destroy(pcs
);
2196 switch (cardSTATE
) {
2197 case MFEMUL_NOFIELD
:{
2200 case MFEMUL_HALTED
:{
2206 case MFEMUL_SELECT1
:{
2208 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2209 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2215 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2217 EmSendCmd(rSAK
, sizeof(rSAK
));
2219 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2221 cuid
= bytes_to_num(rUIDBCC1
, 4);
2223 cardSTATE
= MFEMUL_WORK
;
2225 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2228 cardSTATE
= MFEMUL_SELECT2
;
2235 case MFEMUL_SELECT2
:{
2238 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2239 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2245 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2246 EmSendCmd(rSAK
, sizeof(rSAK
));
2248 cuid
= bytes_to_num(rUIDBCC2
, 4);
2249 cardSTATE
= MFEMUL_WORK
;
2251 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2255 // i guess there is a command). go into the work state.
2256 if (len
!= 4) break;
2257 cardSTATE
= MFEMUL_WORK
;
2263 //rn_enc = bytes_to_num(receivedCmd, 4);
2264 //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
2265 cardRr
= bytes_to_num(&receivedCmd
[4], 4) ^ crypto1_word(pcs
, 0, 0);
2267 if (cardRr
!= prng_successor(nonce
, 64)){
2268 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr
, prng_successor(nonce
, 64));
2269 cardSTATE_TO_IDLE();
2272 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2273 num_to_bytes(ans
, 4, rAUTH_AT
);
2275 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2276 cardSTATE
= MFEMUL_AUTH2
;
2278 cardSTATE_TO_IDLE();
2280 if (cardSTATE
!= MFEMUL_AUTH2
) break;
2284 cardSTATE
= MFEMUL_WORK
;
2285 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2289 lbWORK
: if (len
== 0) break;
2291 if (cardAUTHKEY
== 0xff) {
2292 // first authentication
2293 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2294 authTimer
= GetTickCount();
2296 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2297 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2300 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2301 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2302 num_to_bytes(nonce
, 4, rAUTH_AT
);
2303 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2306 // last working revision
2307 // EmSendCmd14443aRaw(resp1, resp1Len, 0);
2308 // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
2310 cardSTATE
= MFEMUL_AUTH1
;
2311 //nextCycleTimeout = 10;
2316 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2318 // nested authentication
2319 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2320 authTimer
= GetTickCount();
2322 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2323 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2326 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2327 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2328 num_to_bytes(ans
, 4, rAUTH_AT
);
2329 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2332 cardSTATE
= MFEMUL_AUTH1
;
2333 //nextCycleTimeout = 10;
2338 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2339 // BUT... ACK --> NACK
2340 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2341 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2345 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2346 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2347 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2352 if (len
== 4 && receivedCmd
[0] == 0x30) {
2353 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2354 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2357 emlGetMem(response
, receivedCmd
[1], 1);
2358 AppendCrc14443a(response
, 16);
2359 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2360 EmSendCmdPar(response
, 18, par
);
2365 if (len
== 4 && receivedCmd
[0] == 0xA0) {
2366 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2367 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2370 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2371 //nextCycleTimeout = 50;
2372 cardSTATE
= MFEMUL_WRITEBL2
;
2373 cardWRBL
= receivedCmd
[1];
2377 // works with cardINTREG
2379 // increment, decrement, restore
2380 if (len
== 4 && (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2)) {
2381 if (receivedCmd
[1] >= 16 * 4 ||
2382 receivedCmd
[1] / 4 != cardAUTHSC
||
2383 emlCheckValBl(receivedCmd
[1])) {
2384 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2387 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2388 if (receivedCmd
[0] == 0xC1)
2389 cardSTATE
= MFEMUL_INTREG_INC
;
2390 if (receivedCmd
[0] == 0xC0)
2391 cardSTATE
= MFEMUL_INTREG_DEC
;
2392 if (receivedCmd
[0] == 0xC2)
2393 cardSTATE
= MFEMUL_INTREG_REST
;
2394 cardWRBL
= receivedCmd
[1];
2401 if (len
== 4 && receivedCmd
[0] == 0xB0) {
2402 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2403 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2407 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2408 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2410 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2416 if (len
== 4 && (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00)) {
2419 cardSTATE
= MFEMUL_HALTED
;
2420 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2424 // command not allowed
2426 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2433 case MFEMUL_WRITEBL2
:{
2435 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2436 emlSetMem(receivedCmd
, cardWRBL
, 1);
2437 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2438 cardSTATE
= MFEMUL_WORK
;
2441 cardSTATE_TO_IDLE();
2447 case MFEMUL_INTREG_INC
:{
2448 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2449 memcpy(&ans
, receivedCmd
, 4);
2450 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2451 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2452 cardSTATE_TO_IDLE();
2455 cardINTREG
= cardINTREG
+ ans
;
2456 cardSTATE
= MFEMUL_WORK
;
2459 case MFEMUL_INTREG_DEC
:{
2460 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2461 memcpy(&ans
, receivedCmd
, 4);
2462 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2463 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2464 cardSTATE_TO_IDLE();
2467 cardINTREG
= cardINTREG
- ans
;
2468 cardSTATE
= MFEMUL_WORK
;
2471 case MFEMUL_INTREG_REST
:{
2472 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2473 memcpy(&ans
, receivedCmd
, 4);
2474 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2475 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2476 cardSTATE_TO_IDLE();
2479 cardSTATE
= MFEMUL_WORK
;
2485 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2488 // add trace trailer
2489 memset(rAUTH_NT
, 0x44, 4);
2490 LogTrace(rAUTH_NT
, 4, 0, 0, TRUE
);
2492 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2495 //-----------------------------------------------------------------------------
2498 //-----------------------------------------------------------------------------
2499 void RAMFUNC
SniffMifare(uint8_t param
) {
2501 // bit 0 - trigger from first card answer
2502 // bit 1 - trigger from first reader 7-bit request
2504 // C(red) A(yellow) B(green)
2506 // init trace buffer
2507 iso14a_clear_trace();
2509 // The command (reader -> tag) that we're receiving.
2510 // The length of a received command will in most cases be no more than 18 bytes.
2511 // So 32 should be enough!
2512 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2513 // The response (tag -> reader) that we're receiving.
2514 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2516 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2517 // into trace, along with its length and other annotations.
2518 //uint8_t *trace = (uint8_t *)BigBuf;
2520 // The DMA buffer, used to stream samples from the FPGA
2521 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2522 int8_t *data
= dmaBuf
;
2526 // Set up the demodulator for tag -> reader responses.
2527 Demod
.output
= receivedResponse
;
2529 Demod
.state
= DEMOD_UNSYNCD
;
2531 // Set up the demodulator for the reader -> tag commands
2532 memset(&Uart
, 0, sizeof(Uart
));
2533 Uart
.output
= receivedCmd
;
2534 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
2535 Uart
.state
= STATE_UNSYNCD
;
2537 // Setup for the DMA.
2539 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
2541 // And put the FPGA in the appropriate mode
2542 // Signal field is off with the appropriate LED
2544 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
2545 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2549 int sniffCounter
= 0;
2551 // And now we loop, receiving samples.
2553 if(BUTTON_PRESS()) {
2554 DbpString("cancelled by button");
2561 if (++sniffCounter
> 65) {
2562 if (MfSniffSend(2000)) {
2568 int register readBufDataP
= data
- dmaBuf
;
2569 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
2570 if (readBufDataP
<= dmaBufDataP
){
2571 dataLen
= dmaBufDataP
- readBufDataP
;
2573 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
+ 1;
2575 // test for length of buffer
2576 if(dataLen
> maxDataLen
) {
2577 maxDataLen
= dataLen
;
2579 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2583 if(dataLen
< 1) continue;
2585 // primary buffer was stopped( <-- we lost data!
2586 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2587 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2588 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2589 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2591 // secondary buffer sets as primary, secondary buffer was stopped
2592 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2593 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2594 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2599 if(MillerDecoding((data
[0] & 0xF0) >> 4)) {
2601 // check - if there is a short 7bit request from reader
2602 if (MfSniffLogic(receivedCmd
, Uart
.byteCnt
, Uart
.parityBits
, Uart
.bitCnt
, TRUE
)) break;
2604 /* And ready to receive another command. */
2605 Uart
.state
= STATE_UNSYNCD
;
2607 /* And also reset the demod code */
2608 Demod
.state
= DEMOD_UNSYNCD
;
2611 if(ManchesterDecoding(data
[0] & 0x0F)) {
2614 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2616 // And ready to receive another response.
2617 memset(&Demod
, 0, sizeof(Demod
));
2618 Demod
.output
= receivedResponse
;
2619 Demod
.state
= DEMOD_UNSYNCD
;
2621 /* And also reset the uart code */
2622 Uart
.state
= STATE_UNSYNCD
;
2626 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
2631 DbpString("COMMAND FINISHED");
2634 FpgaDisableSscDma();
2637 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen
, Uart
.state
, Uart
.byteCnt
, Uart
.byteCntMax
);