1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
27 #include "proxmark3.h"
32 #include "util_posix.h"
33 #include "crapto1/crapto1.h"
35 #include "hardnested/hardnested_bruteforce.h"
36 #include "hardnested/hardnested_bf_core.h"
37 #include "hardnested/hardnested_bitarray_core.h"
40 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
41 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
43 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
45 #define STATE_FILES_DIRECTORY "hardnested/tables/"
46 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z"
48 #define DEBUG_KEY_ELIMINATION
49 // #define DEBUG_REDUCTION
51 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
53 #define NUM_PART_SUMS 9 // number of possible partial sum property values
60 static uint32_t num_acquired_nonces
= 0;
61 static uint64_t start_time
= 0;
62 static uint16_t effective_bitflip
[2][0x400];
63 static uint16_t num_effective_bitflips
[2] = {0, 0};
64 static uint16_t all_effective_bitflip
[0x400];
65 static uint16_t num_all_effective_bitflips
= 0;
66 static uint16_t num_1st_byte_effective_bitflips
= 0;
67 #define CHECK_1ST_BYTES 0x01
68 #define CHECK_2ND_BYTES 0x02
69 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
70 static uint64_t known_target_key
;
71 static uint32_t test_state
[2] = {0,0};
72 static float brute_force_per_second
;
75 static void get_SIMD_instruction_set(char* instruction_set
) {
76 switch(GetSIMDInstrAuto()) {
78 strcpy(instruction_set
, "AVX512F");
81 strcpy(instruction_set
, "AVX2");
84 strcpy(instruction_set
, "AVX");
87 strcpy(instruction_set
, "SSE2");
90 strcpy(instruction_set
, "MMX");
93 strcpy(instruction_set
, "no");
99 static void print_progress_header(void) {
100 char progress_text
[80];
101 char instr_set
[12] = {0};
102 get_SIMD_instruction_set(instr_set
);
103 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
105 PrintAndLog(" time | #nonces | Activity | expected to brute force");
106 PrintAndLog(" | | | #states | time ");
107 PrintAndLog("------------------------------------------------------------------------------------------------------");
108 PrintAndLog(" 0 | 0 | %-55s | |", progress_text
);
112 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
113 static uint64_t last_print_time
= 0;
114 if (msclock() - last_print_time
> min_diff_print_time
) {
115 last_print_time
= msclock();
116 uint64_t total_time
= msclock() - start_time
;
117 float brute_force_time
= brute_force
/ brute_force_per_second
;
118 char brute_force_time_string
[20];
119 if (brute_force_time
< 90) {
120 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
121 } else if (brute_force_time
< 60 * 90) {
122 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60);
123 } else if (brute_force_time
< 60 * 60 * 36) {
124 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60));
126 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24));
128 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
133 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
134 // bitarray functions
136 static inline void clear_bitarray24(uint32_t *bitarray
)
138 memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19));
142 static inline void set_bitarray24(uint32_t *bitarray
)
144 memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19));
148 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
)
150 bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f);
154 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
)
156 return bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f));
160 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
)
162 if (++state
== 1<<24) return 1<<24;
163 uint32_t index
= state
>> 5;
164 uint_fast8_t bit
= state
& 0x1f;
165 uint32_t line
= bitarray
[index
] << bit
;
166 while (bit
<= 0x1f) {
167 if (line
& 0x80000000) return state
;
173 while (bitarray
[index
] == 0x00000000 && state
< 1<<24) {
177 if (state
>= 1<<24) return 1<<24;
179 return state
+ __builtin_clz(bitarray
[index
]);
182 line
= bitarray
[index
];
183 while (bit
<= 0x1f) {
184 if (line
& 0x80000000) return state
;
196 #define BITFLIP_2ND_BYTE 0x0200
199 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
200 // bitflip property bitarrays
202 static uint32_t *bitflip_bitarrays
[2][0x400];
203 static uint32_t count_bitflip_bitarrays
[2][0x400];
205 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
)
207 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
208 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
209 return (count1
> count2
) - (count2
> count1
);
213 static voidpf
inflate_malloc(voidpf opaque
, uInt items
, uInt size
)
215 return malloc(items
*size
);
219 static void inflate_free(voidpf opaque
, voidpf address
)
224 #define OUTPUT_BUFFER_LEN 80
225 #define INPUT_BUFFER_LEN 80
227 //----------------------------------------------------------------------------
228 // Initialize decompression of the respective (HF or LF) FPGA stream
229 //----------------------------------------------------------------------------
230 static void init_inflate(z_streamp compressed_stream
, uint8_t *input_buffer
, uint32_t insize
, uint8_t *output_buffer
, uint32_t outsize
)
233 // initialize z_stream structure for inflate:
234 compressed_stream
->next_in
= input_buffer
;
235 compressed_stream
->avail_in
= insize
;
236 compressed_stream
->next_out
= output_buffer
;
237 compressed_stream
->avail_out
= outsize
;
238 compressed_stream
->zalloc
= &inflate_malloc
;
239 compressed_stream
->zfree
= &inflate_free
;
241 inflateInit2(compressed_stream
, 0);
246 static void init_bitflip_bitarrays(void)
248 #if defined (DEBUG_REDUCTION)
253 z_stream compressed_stream
;
255 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
256 char state_file_name
[strlen(STATE_FILE_TEMPLATE
)+1];
258 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
259 num_effective_bitflips
[odd_even
] = 0;
260 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
261 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
262 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24;
263 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
264 strcpy(state_files_path
, get_my_executable_directory());
265 strcat(state_files_path
, STATE_FILES_DIRECTORY
);
266 strcat(state_files_path
, state_file_name
);
267 FILE *statesfile
= fopen(state_files_path
, "rb");
268 if (statesfile
== NULL
) {
271 fseek(statesfile
, 0, SEEK_END
);
272 uint32_t filesize
= (uint32_t)ftell(statesfile
);
274 uint8_t input_buffer
[filesize
];
275 size_t bytesread
= fread(input_buffer
, 1, filesize
, statesfile
);
276 if (bytesread
!= filesize
) {
277 printf("File read error with %s. Aborting...\n", state_file_name
);
279 inflateEnd(&compressed_stream
);
284 init_inflate(&compressed_stream
, input_buffer
, filesize
, (uint8_t *)&count
, sizeof(count
));
285 inflate(&compressed_stream
, Z_SYNC_FLUSH
);
286 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) {
287 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
288 if (bitset
== NULL
) {
289 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
290 inflateEnd(&compressed_stream
);
293 compressed_stream
.next_out
= (uint8_t *)bitset
;
294 compressed_stream
.avail_out
= sizeof(uint32_t) * (1<<19);
295 inflate(&compressed_stream
, Z_SYNC_FLUSH
);
296 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
297 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
298 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
299 #if defined (DEBUG_REDUCTION)
300 printf("(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0);
308 inflateEnd(&compressed_stream
);
311 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
316 num_all_effective_bitflips
= 0;
317 num_1st_byte_effective_bitflips
= 0;
318 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
319 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
320 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
322 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
323 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
326 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
329 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) {
330 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
333 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
334 #if defined (DEBUG_REDUCTION)
335 printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
336 for(uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
337 printf("%03x ", all_effective_bitflip
[i
]);
340 qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
341 #if defined (DEBUG_REDUCTION)
342 printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
343 for(uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
344 printf("%03x ", all_effective_bitflip
[i
]);
347 char progress_text
[80];
348 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
349 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
353 static void free_bitflip_bitarrays(void)
355 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
356 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
358 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
359 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
364 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
365 // sum property bitarrays
367 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
368 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
369 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
371 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
374 for (uint16_t j
= 0; j
< 16; j
++) {
376 uint16_t part_sum
= 0;
377 if (odd_even
== ODD_STATE
) {
378 for (uint16_t i
= 0; i
< 5; i
++) {
379 part_sum
^= filter(st
);
380 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
382 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
384 for (uint16_t i
= 0; i
< 4; i
++) {
385 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
386 part_sum
^= filter(st
);
395 static void init_part_sum_bitarrays(void)
397 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
398 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
399 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
400 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
401 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
404 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
407 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
408 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
409 for (uint32_t state
= 0; state
< (1<<20); state
++) {
410 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
411 for (uint16_t low_bits
= 0; low_bits
< 1<<4; low_bits
++) {
412 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
);
417 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
418 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
419 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
420 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
421 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
424 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
427 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
428 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
429 for (uint32_t state
= 0; state
< (1<<20); state
++) {
430 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
431 for (uint16_t high_bits
= 0; high_bits
< 1<<4; high_bits
++) {
432 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<<20);
439 static void free_part_sum_bitarrays(void)
441 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
442 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
444 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
445 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
447 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
448 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
450 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
451 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
456 static void init_sum_bitarrays(void)
458 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
459 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
460 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
461 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
462 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
465 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
468 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
469 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
470 uint16_t sum_a0
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
;
471 uint16_t sum_a0_idx
= 0;
472 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
473 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
474 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
477 // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
478 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
479 // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
480 // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
486 static void free_sum_bitarrays(void)
488 for (int8_t sum_a0
= NUM_SUMS
-1; sum_a0
>= 0; sum_a0
--) {
489 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
490 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
495 #ifdef DEBUG_KEY_ELIMINATION
496 char failstr
[250] = "";
499 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
500 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
503 static float my_p_K
[NUM_SUMS
];
505 static const float *p_K
;
507 static uint32_t cuid
;
508 static noncelist_t nonces
[256];
509 static uint8_t best_first_bytes
[256];
510 static uint64_t maximum_states
= 0;
511 static uint8_t best_first_byte_smallest_bitarray
= 0;
512 static uint16_t first_byte_Sum
= 0;
513 static uint16_t first_byte_num
= 0;
514 static bool write_stats
= false;
515 static FILE *fstats
= NULL
;
516 static uint32_t *all_bitflips_bitarray
[2];
517 static uint32_t num_all_bitflips_bitarray
[2];
518 static bool all_bitflips_bitarray_dirty
[2];
519 static uint64_t last_sample_clock
= 0;
520 static uint64_t sample_period
= 0;
521 static uint64_t num_keys_tested
= 0;
522 static statelist_t
*candidates
= NULL
;
525 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
527 uint8_t first_byte
= nonce_enc
>> 24;
528 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
529 noncelistentry_t
*p2
= NULL
;
531 if (p1
== NULL
) { // first nonce with this 1st byte
533 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
536 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
541 if (p1
== NULL
) { // need to add at the end of the list
542 if (p2
== NULL
) { // list is empty yet. Add first entry.
543 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
544 } else { // add new entry at end of existing list.
545 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
547 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
548 if (p2
== NULL
) { // need to insert at start of list
549 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
551 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
553 } else { // we have seen this 2nd byte before. Nothing to add or insert.
557 // add or insert new data
559 p2
->nonce_enc
= nonce_enc
;
560 p2
->par_enc
= par_enc
;
562 nonces
[first_byte
].num
++;
563 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
564 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
565 return (1); // new nonce added
569 static void init_nonce_memory(void)
571 for (uint16_t i
= 0; i
< 256; i
++) {
574 nonces
[i
].first
= NULL
;
575 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++) {
576 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
577 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
579 nonces
[i
].sum_a8_guess_dirty
= false;
580 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
581 nonces
[i
].BitFlips
[bitflip
] = 0;
583 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
584 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
585 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
588 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
589 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
590 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
591 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
592 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
595 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
596 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
597 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
598 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
605 static void free_nonce_list(noncelistentry_t
*p
)
610 free_nonce_list(p
->next
);
616 static void free_nonces_memory(void)
618 for (uint16_t i
= 0; i
< 256; i
++) {
619 free_nonce_list(nonces
[i
].first
);
621 for (int i
= 255; i
>= 0; i
--) {
622 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
623 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
628 // static double p_hypergeometric_cache[257][NUM_SUMS][257];
630 // #define CACHE_INVALID -1.0
631 // static void init_p_hypergeometric_cache(void)
633 // for (uint16_t n = 0; n <= 256; n++) {
634 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
635 // for (uint16_t k = 0; k <= 256; k++) {
636 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
643 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)
645 // for efficient computation we are using the recursive definition
647 // P(X=k) = P(X=k-1) * --------------------
650 // (N-K)*(N-K-1)*...*(N-K-n+1)
651 // P(X=0) = -----------------------------
652 // N*(N-1)*...*(N-n+1)
655 uint16_t const N
= 256;
656 uint16_t K
= sums
[i_K
];
658 // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
659 // return p_hypergeometric_cache[n][i_K][k];
662 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
664 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
665 double log_result
= 0.0;
666 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
667 log_result
+= log(i
);
669 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
670 log_result
-= log(i
);
672 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
673 return exp(log_result
);
675 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
676 double log_result
= 0.0;
677 for (int16_t i
= k
+1; i
<= n
; i
++) {
678 log_result
+= log(i
);
680 for (int16_t i
= K
+1; i
<= N
; i
++) {
681 log_result
-= log(i
);
683 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
684 return exp(log_result
);
685 } else { // recursion
686 return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
692 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
)
694 if (k
> sums
[i_K
]) return 0.0;
696 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
697 double p_S_is_K
= p_K
[i_K
];
699 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
700 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
702 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
706 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
708 static void init_allbitflips_array(void)
710 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
711 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
712 if (bitset
== NULL
) {
713 printf("Out of memory in init_allbitflips_array(). Aborting...");
716 set_bitarray24(bitset
);
717 all_bitflips_bitarray_dirty
[odd_even
] = false;
718 num_all_bitflips_bitarray
[odd_even
] = 1<<24;
723 static void update_allbitflips_array(void)
725 if (hardnested_stage
& CHECK_2ND_BYTES
) {
726 for (uint16_t i
= 0; i
< 256; i
++) {
727 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
728 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
729 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
730 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
731 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
732 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
733 all_bitflips_bitarray_dirty
[odd_even
] = true;
742 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
744 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
748 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
750 if (odd_even
== ODD_STATE
) {
751 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
752 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
753 nonces
[first_byte
].states_bitarray
[odd_even
]);
755 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
756 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
757 nonces
[first_byte
].states_bitarray
[odd_even
],
758 nonces
[first_byte
^0x80].states_bitarray
[odd_even
]);
761 // estimate reduction by all_bitflips_match()
763 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
764 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
771 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
)
773 uint64_t num_states
= 0;
774 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
775 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
776 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
777 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
778 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
779 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
780 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
781 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
792 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
)
794 uint64_t num_states
= 0;
795 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
796 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
797 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
798 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
799 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
800 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
801 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
802 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
813 static void update_p_K(void)
815 if (hardnested_stage
& CHECK_2ND_BYTES
) {
816 uint64_t total_count
= 0;
817 uint16_t sum_a0
= sums
[first_byte_Sum
];
818 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
819 uint16_t sum_a8
= sums
[sum_a8_idx
];
820 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
822 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
823 uint16_t sum_a8
= sums
[sum_a8_idx
];
824 my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
;
826 // printf("my_p_K = [");
827 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
828 // printf("%7.4f ", my_p_K[sum_a8_idx]);
835 static void update_sum_bitarrays(odd_even_t odd_even
)
837 if (all_bitflips_bitarray_dirty
[odd_even
]) {
838 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
839 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
840 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
842 for (uint16_t i
= 0; i
< 256; i
++) {
843 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
845 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
846 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
847 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
848 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
851 all_bitflips_bitarray_dirty
[odd_even
] = false;
856 static int compare_expected_num_brute_force(const void *b1
, const void *b2
)
858 uint8_t index1
= *(uint8_t *)b1
;
859 uint8_t index2
= *(uint8_t *)b2
;
860 float score1
= nonces
[index1
].expected_num_brute_force
;
861 float score2
= nonces
[index2
].expected_num_brute_force
;
862 return (score1
> score2
) - (score1
< score2
);
866 static int compare_sum_a8_guess(const void *b1
, const void *b2
)
868 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
869 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
870 return (prob1
< prob2
) - (prob1
> prob2
);
875 static float check_smallest_bitflip_bitarrays(void)
877 uint32_t num_odd
, num_even
;
878 uint64_t smallest
= 1LL << 48;
879 // initialize best_first_bytes, do a rough estimation on remaining states
880 for (uint16_t i
= 0; i
< 256; i
++) {
881 num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
882 num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
883 if ((uint64_t)num_odd
* num_even
< smallest
) {
884 smallest
= (uint64_t)num_odd
* num_even
;
885 best_first_byte_smallest_bitarray
= i
;
889 #if defined (DEBUG_REDUCTION)
890 num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
891 num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
892 printf("0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
)/log(2.0));
894 return (float)smallest
/2.0;
898 static void update_expected_brute_force(uint8_t best_byte
) {
900 float total_prob
= 0.0;
901 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
902 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
904 // linear adjust probabilities to result in total_prob = 1.0;
905 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
906 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
908 float prob_all_failed
= 1.0;
909 nonces
[best_byte
].expected_num_brute_force
= 0.0;
910 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
911 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
912 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
913 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
919 static float sort_best_first_bytes(void)
922 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
923 // and the expected number of states to brute force
924 for (uint16_t i
= 0; i
< 256; i
++) {
925 best_first_bytes
[i
] = i
;
926 float prob_all_failed
= 1.0;
927 nonces
[i
].expected_num_brute_force
= 0.0;
928 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
929 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
930 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
931 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
932 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
936 // sort based on expected number of states to brute force
937 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
939 // printf("refine estimations: ");
940 #define NUM_REFINES 1
941 // refine scores for the best:
942 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
943 // printf("%d...", i);
944 uint16_t first_byte
= best_first_bytes
[i
];
945 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
946 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
948 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
949 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
950 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
951 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
952 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
953 // printf("(0x%02x,%d)", first_byte, 0);
955 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
956 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
957 // printf("(0x%02x,%d)", first_byte, 1);
959 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
960 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
961 // printf("(0x%02x,%d)", first_byte, 2);
964 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
965 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
966 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
969 // float fix_probs = 0.0;
970 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
971 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
973 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
974 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
976 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
977 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
979 float prob_all_failed
= 1.0;
980 nonces
[first_byte
].expected_num_brute_force
= 0.0;
981 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
982 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
983 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
984 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
988 // copy best byte to front:
989 float least_expected_brute_force
= (1LL << 48);
990 uint8_t best_byte
= 0;
991 for (uint16_t i
= 0; i
< 10; i
++) {
992 uint16_t first_byte
= best_first_bytes
[i
];
993 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
994 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
998 if (best_byte
!= 0) {
999 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
1000 uint8_t tmp
= best_first_bytes
[0];
1001 best_first_bytes
[0] = best_first_bytes
[best_byte
];
1002 best_first_bytes
[best_byte
] = tmp
;
1005 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
1009 static float update_reduction_rate(float last
, bool init
)
1012 static float queue
[QUEUE_LEN
];
1014 for (uint16_t i
= 0; i
< QUEUE_LEN
-1; i
++) {
1016 queue
[i
] = (float)(1LL << 48);
1018 queue
[i
] = queue
[i
+1];
1022 queue
[QUEUE_LEN
-1] = (float)(1LL << 48);
1024 queue
[QUEUE_LEN
-1] = last
;
1027 // linear regression
1030 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1039 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1040 dev_xy
+= (i
- avg_x
)*(queue
[i
] - avg_y
);
1041 dev_x2
+= (i
- avg_x
)*(i
- avg_x
);
1044 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1046 #if defined (DEBUG_REDUCTION)
1047 printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1049 return reduction_rate
;
1053 static bool shrink_key_space(float *brute_forces
)
1055 #if defined(DEBUG_REDUCTION)
1056 printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1058 float brute_forces1
= check_smallest_bitflip_bitarrays();
1059 float brute_forces2
= (float)(1LL << 47);
1060 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1061 brute_forces2
= sort_best_first_bytes();
1063 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1064 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1065 return ((hardnested_stage
& CHECK_2ND_BYTES
)
1066 && reduction_rate
>= 0.0 && reduction_rate
< brute_force_per_second
* sample_period
/ 1000.0);
1070 static void estimate_sum_a8(void)
1072 if (first_byte_num
== 256) {
1073 for (uint16_t i
= 0; i
< 256; i
++) {
1074 if (nonces
[i
].sum_a8_guess_dirty
) {
1075 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++ ) {
1076 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1077 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1079 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1080 nonces
[i
].sum_a8_guess_dirty
= false;
1087 static int read_nonce_file(void)
1089 FILE *fnonces
= NULL
;
1093 uint8_t read_buf
[9];
1094 uint32_t nt_enc1
, nt_enc2
;
1097 num_acquired_nonces
= 0;
1098 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
1099 PrintAndLog("Could not open file nonces.bin");
1103 hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
1104 bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1105 if (bytes_read
!= 6) {
1106 PrintAndLog("File reading error.");
1110 cuid
= bytes_to_num(read_buf
, 4);
1111 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
1112 trgKeyType
= bytes_to_num(read_buf
+5, 1);
1114 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1115 while (bytes_read
== 9) {
1116 nt_enc1
= bytes_to_num(read_buf
, 4);
1117 nt_enc2
= bytes_to_num(read_buf
+4, 4);
1118 par_enc
= bytes_to_num(read_buf
+8, 1);
1119 add_nonce(nt_enc1
, par_enc
>> 4);
1120 add_nonce(nt_enc2
, par_enc
& 0x0f);
1121 num_acquired_nonces
+= 2;
1122 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1126 char progress_string
[80];
1127 sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);
1128 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1129 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B');
1130 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1132 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1133 if (first_byte_Sum
== sums
[i
]) {
1143 noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
)
1145 noncelistentry_t
*p
= nonces
[b1
].first
;
1147 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1156 static bool timeout(void)
1158 return (msclock() > last_sample_clock
+ sample_period
);
1163 #ifdef __has_attribute
1164 #if __has_attribute(force_align_arg_pointer)
1165 __attribute__((force_align_arg_pointer
))
1168 *check_for_BitFlipProperties_thread(void *args
)
1170 uint8_t first_byte
= ((uint8_t *)args
)[0];
1171 uint8_t last_byte
= ((uint8_t *)args
)[1];
1172 uint8_t time_budget
= ((uint8_t *)args
)[2];
1174 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1175 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1176 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1177 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1178 if (time_budget
& timeout()) {
1179 #if defined (DEBUG_REDUCTION)
1180 printf("break at bitflip_idx %d...", bitflip_idx
);
1184 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1185 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1186 && nonces
[i
].first
!= NULL
&& nonces
[i
^(bitflip
&0xff)].first
!= NULL
) {
1187 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1188 uint8_t parity2
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1189 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1190 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1191 nonces
[i
].BitFlips
[bitflip
] = 1;
1192 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1193 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1194 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1195 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1196 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1197 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1199 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1205 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1209 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1211 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1212 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1213 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1214 if (time_budget
& timeout()) {
1215 #if defined (DEBUG_REDUCTION)
1216 printf("break at bitflip_idx %d...", bitflip_idx
);
1220 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1221 // Check for Bit Flip Property of 2nd bytes
1222 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1223 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1224 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1225 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^(bitflip
&0xff));
1226 if (byte1
!= NULL
&& byte2
!= NULL
) {
1227 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1228 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1229 if ((parity1
== parity2
&& !(bitflip
&0x100)) // bitflip
1230 || (parity1
!= parity2
&& (bitflip
&0x100))) { // not bitflip
1231 nonces
[i
].BitFlips
[bitflip
] = 1;
1232 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1233 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1234 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1235 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1236 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1237 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1246 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1247 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1256 static void check_for_BitFlipProperties(bool time_budget
)
1258 // create and run worker threads
1259 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1261 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1262 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;
1263 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1264 args
[i
][0] = i
* bytes_per_thread
;
1265 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255);
1266 args
[i
][2] = time_budget
;
1268 args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255);
1271 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1272 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1275 // wait for threads to terminate:
1276 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1277 pthread_join(thread_id
[i
], NULL
);
1280 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1281 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1282 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1283 if (args
[i
][1] != 0) {
1284 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1289 #if defined (DEBUG_REDUCTION)
1290 if (hardnested_stage
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n");
1295 static void update_nonce_data(bool time_budget
)
1297 check_for_BitFlipProperties(time_budget
);
1298 update_allbitflips_array();
1299 update_sum_bitarrays(EVEN_STATE
);
1300 update_sum_bitarrays(ODD_STATE
);
1306 static void apply_sum_a0(void)
1308 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1309 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1310 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1311 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1313 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1314 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1315 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1316 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1321 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
1323 struct Crypto1State sim_cs
= {0, 0};
1325 // init cryptostate with key:
1326 for(int8_t i
= 47; i
> 0; i
-= 2) {
1327 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1328 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1332 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1333 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1334 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
1335 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1336 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1337 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1338 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1339 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1345 static void simulate_acquire_nonces()
1347 time_t time1
= time(NULL
);
1348 last_sample_clock
= 0;
1349 sample_period
= 1000; // for simulation
1350 hardnested_stage
= CHECK_1ST_BYTES
;
1351 bool acquisition_completed
= false;
1352 uint32_t total_num_nonces
= 0;
1354 bool reported_suma8
= false;
1356 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1357 if (known_target_key
== -1) {
1358 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1361 char progress_text
[80];
1362 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1363 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
1364 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1366 num_acquired_nonces
= 0;
1369 uint32_t nt_enc
= 0;
1370 uint8_t par_enc
= 0;
1372 for (uint16_t i
= 0; i
< 113; i
++) {
1373 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1374 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1378 last_sample_clock
= msclock();
1380 if (first_byte_num
== 256 ) {
1381 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1382 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1383 if (first_byte_Sum
== sums
[i
]) {
1388 hardnested_stage
|= CHECK_2ND_BYTES
;
1391 update_nonce_data(true);
1392 acquisition_completed
= shrink_key_space(&brute_force
);
1393 if (!reported_suma8
) {
1394 char progress_string
[80];
1395 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1396 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1397 reported_suma8
= true;
1399 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1402 update_nonce_data(true);
1403 acquisition_completed
= shrink_key_space(&brute_force
);
1404 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1406 } while (!acquisition_completed
);
1408 time_t end_time
= time(NULL
);
1409 // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1410 // num_acquired_nonces,
1411 // difftime(end_time, time1),
1412 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1415 fprintf(fstats
, "%" PRId32
";%" PRId32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
));
1420 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
1422 last_sample_clock
= msclock();
1423 sample_period
= 2000; // initial rough estimate. Will be refined.
1424 bool initialize
= true;
1425 bool field_off
= false;
1426 hardnested_stage
= CHECK_1ST_BYTES
;
1427 bool acquisition_completed
= false;
1429 uint8_t write_buf
[9];
1430 uint32_t total_num_nonces
= 0;
1432 bool reported_suma8
= false;
1433 FILE *fnonces
= NULL
;
1436 num_acquired_nonces
= 0;
1438 clearCommandBuffer();
1442 flags
|= initialize
? 0x0001 : 0;
1443 flags
|= slow
? 0x0002 : 0;
1444 flags
|= field_off
? 0x0004 : 0;
1445 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
1446 memcpy(c
.d
.asBytes
, key
, 6);
1450 if (field_off
) break;
1453 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
1455 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
1458 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
1459 if (nonce_file_write
&& fnonces
== NULL
) {
1460 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
1461 PrintAndLog("Could not create file nonces.bin");
1464 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
1465 num_to_bytes(cuid
, 4, write_buf
);
1466 fwrite(write_buf
, 1, 4, fnonces
);
1467 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1468 fwrite(&trgKeyType
, 1, 1, fnonces
);
1473 uint32_t nt_enc1
, nt_enc2
;
1475 uint16_t num_sampled_nonces
= resp
.arg
[2];
1476 uint8_t *bufp
= resp
.d
.asBytes
;
1477 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+=2) {
1478 nt_enc1
= bytes_to_num(bufp
, 4);
1479 nt_enc2
= bytes_to_num(bufp
+4, 4);
1480 par_enc
= bytes_to_num(bufp
+8, 1);
1482 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1483 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1484 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1485 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1487 if (nonce_file_write
) {
1488 fwrite(bufp
, 1, 9, fnonces
);
1492 total_num_nonces
+= num_sampled_nonces
;
1494 if (first_byte_num
== 256 ) {
1495 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1496 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1497 if (first_byte_Sum
== sums
[i
]) {
1502 hardnested_stage
|= CHECK_2ND_BYTES
;
1505 update_nonce_data(true);
1506 acquisition_completed
= shrink_key_space(&brute_force
);
1507 if (!reported_suma8
) {
1508 char progress_string
[80];
1509 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1510 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1511 reported_suma8
= true;
1513 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1516 update_nonce_data(true);
1517 acquisition_completed
= shrink_key_space(&brute_force
);
1518 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1522 if (acquisition_completed
) {
1523 field_off
= true; // switch off field with next SendCommand and then finish
1527 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1528 if (nonce_file_write
) {
1534 if (nonce_file_write
) {
1537 return resp
.arg
[0]; // error during nested_hard
1543 if (msclock() - last_sample_clock
< sample_period
) {
1544 sample_period
= msclock() - last_sample_clock
;
1546 last_sample_clock
= msclock();
1548 } while (!acquisition_completed
|| field_off
);
1550 if (nonce_file_write
) {
1554 // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",
1555 // total_num_nonces,
1556 // time(NULL)-time1,
1557 // (float)total_num_nonces*60.0/(time(NULL)-time1));
1563 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1565 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1566 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1567 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1568 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1569 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1570 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1575 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1577 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1578 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1579 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1580 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1581 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1586 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1590 switch (num_common_bits
) {
1591 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1592 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1593 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1594 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1595 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1596 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1597 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1598 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1602 switch (num_common_bits
) {
1603 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1604 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1605 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1606 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1607 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1608 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1609 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1613 return true; // valid state
1617 static pthread_mutex_t statelist_cache_mutex
;
1618 static pthread_mutex_t book_of_work_mutex
;
1627 static struct sl_cache_entry
{
1630 work_status_t cache_status
;
1631 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1634 static void init_statelist_cache(void)
1636 pthread_mutex_lock(&statelist_cache_mutex
);
1637 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1638 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1639 for (uint16_t k
= 0; k
< 2; k
++) {
1640 sl_cache
[i
][j
][k
].sl
= NULL
;
1641 sl_cache
[i
][j
][k
].len
= 0;
1642 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1646 pthread_mutex_unlock(&statelist_cache_mutex
);
1650 static void free_statelist_cache(void)
1652 pthread_mutex_lock(&statelist_cache_mutex
);
1653 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1654 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1655 for (uint16_t k
= 0; k
< 2; k
++) {
1656 free(sl_cache
[i
][j
][k
].sl
);
1660 pthread_mutex_unlock(&statelist_cache_mutex
);
1664 #ifdef DEBUG_KEY_ELIMINATION
1665 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1667 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1670 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1671 bool possible
= test_bit24(bitset
, state
);
1673 #ifdef DEBUG_KEY_ELIMINATION
1674 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1675 printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd");
1676 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd");
1686 static uint_fast8_t reverse(uint_fast8_t byte
)
1688 uint_fast8_t rev_byte
= 0;
1690 for (uint8_t i
= 0; i
< 8; i
++) {
1692 rev_byte
|= (byte
>> i
) & 0x01;
1699 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1701 uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1702 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
1704 for (uint16_t i
= 1; i
< 256; i
++) {
1705 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1706 uint_fast8_t byte2
= byte
^ bytes_diff
;
1707 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1708 uint32_t mask
= masks
[odd_even
][num_common
];
1709 bool found_match
= false;
1710 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1711 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1712 #ifdef DEBUG_KEY_ELIMINATION
1713 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true)) {
1715 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
)) {
1723 #ifdef DEBUG_KEY_ELIMINATION
1724 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1725 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1726 odd_even
==ODD_STATE
?"odd":"even",
1727 test_state
[odd_even
],
1728 byte
, byte2
, num_common
);
1729 if (failstr
[0] == '\0') {
1730 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even");
1742 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
)
1744 uint32_t *p
= state_list
;
1745 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1<<24); state
= next_state(bitarray
, state
)) {
1746 if (all_bitflips_match(byte
, state
, odd_even
)) {
1750 // add End Of List marker
1752 *len
= p
- state_list
;
1756 static void add_cached_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1758 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
;
1759 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
;
1764 static void add_matching_states(statelist_t
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
)
1766 uint32_t worstcase_size
= 1<<20;
1767 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1768 if (candidates
->states
[odd_even
] == NULL
) {
1769 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
1772 uint32_t *candidates_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
1773 if (candidates_bitarray
== NULL
) {
1774 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
1775 free(candidates
->states
[odd_even
]);
1779 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2];
1780 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2];
1781 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1783 // for (uint32_t i = 0; i < (1<<19); i++) {
1784 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
1786 bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1788 bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1789 if (candidates
->len
[odd_even
] == 0) {
1790 free(candidates
->states
[odd_even
]);
1791 candidates
->states
[odd_even
] = NULL
;
1792 } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1793 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1795 free_bitarray(candidates_bitarray
);
1798 pthread_mutex_lock(&statelist_cache_mutex
);
1799 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
= candidates
->states
[odd_even
];
1800 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
= candidates
->len
[odd_even
];
1801 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status
= COMPLETED
;
1802 pthread_mutex_unlock(&statelist_cache_mutex
);
1808 static statelist_t
*add_more_candidates(void)
1810 statelist_t
*new_candidates
= candidates
;
1811 if (candidates
== NULL
) {
1812 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1813 new_candidates
= candidates
;
1815 new_candidates
= candidates
;
1816 while (new_candidates
->next
!= NULL
) {
1817 new_candidates
= new_candidates
->next
;
1819 new_candidates
= new_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1821 new_candidates
->next
= NULL
;
1822 new_candidates
->len
[ODD_STATE
] = 0;
1823 new_candidates
->len
[EVEN_STATE
] = 0;
1824 new_candidates
->states
[ODD_STATE
] = NULL
;
1825 new_candidates
->states
[EVEN_STATE
] = NULL
;
1826 return new_candidates
;
1830 static void add_bitflip_candidates(uint8_t byte
)
1832 statelist_t
*candidates
= add_more_candidates();
1834 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1835 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1836 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1837 if (candidates
->states
[odd_even
] == NULL
) {
1838 PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
1842 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1844 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1845 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1852 static bool TestIfKeyExists(uint64_t key
)
1854 struct Crypto1State
*pcs
;
1855 pcs
= crypto1_create(key
);
1856 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1858 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1859 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1862 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1863 bool found_odd
= false;
1864 bool found_even
= false;
1865 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1866 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1867 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1868 while (*p_odd
!= 0xffffffff) {
1869 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1875 while (*p_even
!= 0xffffffff) {
1876 if ((*p_even
& 0x00ffffff) == state_even
) {
1881 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1883 if (found_odd
&& found_even
) {
1884 num_keys_tested
+= count
;
1885 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1886 crypto1_destroy(pcs
);
1891 num_keys_tested
+= count
;
1892 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1894 crypto1_destroy(pcs
);
1899 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1902 static void init_book_of_work(void)
1904 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1905 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1906 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1907 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1908 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1917 #ifdef __has_attribute
1918 #if __has_attribute(force_align_arg_pointer)
1919 __attribute__((force_align_arg_pointer
))
1922 *generate_candidates_worker_thread(void *args
)
1924 uint16_t *sum_args
= (uint16_t *)args
;
1925 uint16_t sum_a0
= sums
[sum_args
[0]];
1926 uint16_t sum_a8
= sums
[sum_args
[1]];
1927 // uint16_t my_thread_number = sums[2];
1929 bool there_might_be_more_work
= true;
1931 there_might_be_more_work
= false;
1932 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1933 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1934 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
1935 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1936 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1937 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1938 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1939 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
1940 pthread_mutex_lock(&book_of_work_mutex
);
1941 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1942 pthread_mutex_unlock(&book_of_work_mutex
);
1946 pthread_mutex_lock(&statelist_cache_mutex
);
1947 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1948 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1949 pthread_mutex_unlock(&statelist_cache_mutex
);
1950 pthread_mutex_unlock(&book_of_work_mutex
);
1951 there_might_be_more_work
= true;
1955 // we finally can do some work.
1956 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1957 statelist_t
*current_candidates
= add_more_candidates();
1959 // Check for cached results and add them first
1960 bool odd_completed
= false;
1961 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1962 add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1963 odd_completed
= true;
1965 bool even_completed
= false;
1966 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1967 add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1968 even_completed
= true;
1971 bool work_required
= true;
1973 // if there had been two cached results, there is no more work to do
1974 if (even_completed
&& odd_completed
) {
1975 work_required
= false;
1978 // if there had been one cached empty result, there is no need to calculate the other part:
1979 if (work_required
) {
1980 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
1981 current_candidates
->len
[ODD_STATE
] = 0;
1982 current_candidates
->states
[ODD_STATE
] = NULL
;
1983 work_required
= false;
1985 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
1986 current_candidates
->len
[EVEN_STATE
] = 0;
1987 current_candidates
->states
[EVEN_STATE
] = NULL
;
1988 work_required
= false;
1992 if (!work_required
) {
1993 pthread_mutex_unlock(&statelist_cache_mutex
);
1994 pthread_mutex_unlock(&book_of_work_mutex
);
1996 // we really need to calculate something
1997 if (even_completed
) { // we had one cache hit with non-zero even states
1998 // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
1999 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
2000 pthread_mutex_unlock(&statelist_cache_mutex
);
2001 pthread_mutex_unlock(&book_of_work_mutex
);
2002 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
2003 work_required
= false;
2004 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
2005 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
2006 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
2007 pthread_mutex_unlock(&statelist_cache_mutex
);
2008 pthread_mutex_unlock(&book_of_work_mutex
);
2009 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
2010 work_required
= false;
2014 if (work_required
) { // we had no cached result. Need to calculate both odd and even
2015 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
2016 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
2017 pthread_mutex_unlock(&statelist_cache_mutex
);
2018 pthread_mutex_unlock(&book_of_work_mutex
);
2020 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
2021 if(current_candidates
->len
[ODD_STATE
]) {
2022 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
2023 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
2024 } else { // no need to calculate even states yet
2025 pthread_mutex_lock(&statelist_cache_mutex
);
2026 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
2027 pthread_mutex_unlock(&statelist_cache_mutex
);
2028 current_candidates
->len
[EVEN_STATE
] = 0;
2029 current_candidates
->states
[EVEN_STATE
] = NULL
;
2033 // update book of work
2034 pthread_mutex_lock(&book_of_work_mutex
);
2035 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2036 pthread_mutex_unlock(&book_of_work_mutex
);
2038 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2039 // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2040 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2041 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2042 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2043 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2044 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2045 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2046 // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2047 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2048 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");
2058 } while (there_might_be_more_work
);
2064 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
)
2066 // printf("Generating crypto1 state candidates... \n");
2068 // estimate maximum candidate states
2069 // maximum_states = 0;
2070 // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
2071 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
2072 // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
2073 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])
2074 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
2078 // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
2080 init_statelist_cache();
2081 init_book_of_work();
2083 // create mutexes for accessing the statelist cache and our "book of work"
2084 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2085 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2087 // create and run worker threads
2088 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2090 uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3];
2091 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2092 sums
[i
][0] = sum_a0_idx
;
2093 sums
[i
][1] = sum_a8_idx
;
2095 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]);
2098 // wait for threads to terminate:
2099 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2100 pthread_join(thread_id
[i
], NULL
);
2104 pthread_mutex_destroy(&statelist_cache_mutex
);
2107 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2108 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2111 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2112 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2113 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2117 update_expected_brute_force(best_first_bytes
[0]);
2119 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2123 static void free_candidates_memory(statelist_t
*sl
)
2128 free_candidates_memory(sl
->next
);
2134 static void pre_XOR_nonces(void)
2136 // prepare acquired nonces for faster brute forcing.
2138 // XOR the cryptoUID and its parity
2139 for (uint16_t i
= 0; i
< 256; i
++) {
2140 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2141 while (test_nonce
!= NULL
) {
2142 test_nonce
->nonce_enc
^= cuid
;
2143 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2144 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2145 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2146 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2147 test_nonce
= test_nonce
->next
;
2153 static bool brute_force(void)
2155 if (known_target_key
!= -1) {
2156 TestIfKeyExists(known_target_key
);
2158 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
);
2162 static uint16_t SumProperty(struct Crypto1State
*s
)
2164 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2165 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2166 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
2173 /* #define NUM_STATISTICS 100000
2174 uint32_t statistics_odd[17];
2175 uint64_t statistics[257];
2176 uint32_t statistics_even[17];
2177 struct Crypto1State cs;
2178 uint64_t time1 = msclock();
2180 for (uint16_t i = 0; i < 257; i++) {
2183 for (uint16_t i = 0; i < 17; i++) {
2184 statistics_odd[i] = 0;
2185 statistics_even[i] = 0;
2188 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2189 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2190 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2191 uint16_t sum_property = SumProperty(&cs);
2192 statistics[sum_property] += 1;
2193 sum_property = PartialSumProperty(cs.even, EVEN_STATE);
2194 statistics_even[sum_property]++;
2195 sum_property = PartialSumProperty(cs.odd, ODD_STATE);
2196 statistics_odd[sum_property]++;
2197 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2200 printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2201 for (uint16_t i = 0; i < 257; i++) {
2202 if (statistics[i] != 0) {
2203 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
2206 for (uint16_t i = 0; i <= 16; i++) {
2207 if (statistics_odd[i] != 0) {
2208 printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
2211 for (uint16_t i = 0; i <= 16; i++) {
2212 if (statistics_odd[i] != 0) {
2213 printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
2218 /* #define NUM_STATISTICS 100000000LL
2219 uint64_t statistics_a0[257];
2220 uint64_t statistics_a8[257][257];
2221 struct Crypto1State cs;
2222 uint64_t time1 = msclock();
2224 for (uint16_t i = 0; i < 257; i++) {
2225 statistics_a0[i] = 0;
2226 for (uint16_t j = 0; j < 257; j++) {
2227 statistics_a8[i][j] = 0;
2231 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2232 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2233 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2234 uint16_t sum_property_a0 = SumProperty(&cs);
2235 statistics_a0[sum_property_a0]++;
2236 uint8_t first_byte = rand() & 0xff;
2237 crypto1_byte(&cs, first_byte, true);
2238 uint16_t sum_property_a8 = SumProperty(&cs);
2239 statistics_a8[sum_property_a0][sum_property_a8] += 1;
2240 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2243 printf("\nTests: Probability Distribution of a8 depending on a0:\n");
2245 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2246 printf("%7d ", sums[i]);
2248 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2250 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2251 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
2254 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2255 printf("%3d ", sums[i]);
2256 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2257 printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
2261 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2264 /* #define NUM_STATISTICS 100000LL
2265 uint64_t statistics_a8[257];
2266 struct Crypto1State cs;
2267 uint64_t time1 = msclock();
2269 printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
2271 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2272 printf("%7d ", sums[i]);
2274 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2275 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
2276 for (uint16_t i = 0; i < 257; i++) {
2277 statistics_a8[i] = 0;
2279 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2280 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2281 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2282 crypto1_byte(&cs, first_byte, true);
2283 uint16_t sum_property_a8 = SumProperty(&cs);
2284 statistics_a8[sum_property_a8] += 1;
2286 printf("%03x ", first_byte);
2287 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2288 printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
2292 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2295 /* printf("Tests: Sum Probabilities based on Partial Sums\n");
2296 for (uint16_t i = 0; i < 257; i++) {
2299 uint64_t num_states = 0;
2300 for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
2301 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
2302 uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
2303 statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2304 num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2307 printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
2308 for (uint16_t i = 0; i < 257; i++) {
2309 if (statistics[i] != 0) {
2310 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
2315 /* struct Crypto1State *pcs;
2316 pcs = crypto1_create(0xffffffffffff);
2317 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2318 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2319 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2320 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2321 best_first_bytes[0],
2323 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2324 //test_state_odd = pcs->odd & 0x00ffffff;
2325 //test_state_even = pcs->even & 0x00ffffff;
2326 crypto1_destroy(pcs);
2327 pcs = crypto1_create(0xa0a1a2a3a4a5);
2328 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2329 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2330 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2331 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2332 best_first_bytes[0],
2334 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2335 //test_state_odd = pcs->odd & 0x00ffffff;
2336 //test_state_even = pcs->even & 0x00ffffff;
2337 crypto1_destroy(pcs);
2338 pcs = crypto1_create(0xa6b9aa97b955);
2339 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2340 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2341 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2342 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2343 best_first_bytes[0],
2345 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2346 test_state_odd = pcs->odd & 0x00ffffff;
2347 test_state_even = pcs->even & 0x00ffffff;
2348 crypto1_destroy(pcs);
2351 // printf("\nTests: Sorted First Bytes:\n");
2352 // for (uint16_t i = 0; i < 20; i++) {
2353 // uint8_t best_byte = best_first_bytes[i];
2354 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",
2355 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
2356 // for (uint16_t j = 0; j < 3; j++) {
2357 // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
2359 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",
2360 // nonces[best_byte].sum_a8_guess[0].num_states,
2361 // nonces[best_byte].sum_a8_guess[1].num_states,
2362 // nonces[best_byte].sum_a8_guess[2].num_states,
2363 // nonces[best_byte].expected_num_brute_force);
2366 // printf("\nTests: Actual BitFlipProperties of best byte:\n");
2367 // printf("[%02x]:", best_first_bytes[0]);
2368 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2369 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2370 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
2371 // printf(" %03" PRIx16 , bitflip_prop);
2376 // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
2377 // printf("[%02x]:", best_first_byte_smallest_bitarray);
2378 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2379 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2380 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
2381 // printf(" %03" PRIx16 , bitflip_prop);
2386 if (known_target_key
!= -1) {
2387 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2388 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2389 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2390 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2391 odd_even
==EVEN_STATE
?"even":"odd ",
2392 best_first_bytes
[0]);
2397 if (known_target_key
!= -1) {
2398 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2399 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2400 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2401 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2402 odd_even
==EVEN_STATE
?"even":"odd ");
2407 // if (known_target_key != -1) {
2408 // int16_t p = -1, q = -1, r = -1, s = -1;
2410 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
2411 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2412 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2413 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2414 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
2415 // if (test_bit24(bitset, test_state[odd_even])) {
2416 // printf("%d ", i);
2417 // if (odd_even == ODD_STATE) {
2427 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
2428 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2429 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2430 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2431 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
2432 // if (test_bit24(bitset, test_state[odd_even])) {
2433 // printf("%d ", i);
2434 // if (odd_even == ODD_STATE) {
2444 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
2445 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
2448 /* printf("\nTests: parity performance\n");
2449 uint64_t time1p = msclock();
2450 uint32_t par_sum = 0;
2451 for (uint32_t i = 0; i < 100000000; i++) {
2452 par_sum += parity(i);
2454 printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2458 for (uint32_t i = 0; i < 100000000; i++) {
2459 par_sum += evenparity32(i);
2461 printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2467 static void Tests2(void)
2469 if (known_target_key
!= -1) {
2470 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2471 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2472 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2473 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2474 odd_even
==EVEN_STATE
?"even":"odd ",
2475 best_first_byte_smallest_bitarray
);
2480 if (known_target_key
!= -1) {
2481 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2482 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2483 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2484 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2485 odd_even
==EVEN_STATE
?"even":"odd ");
2493 static uint16_t real_sum_a8
= 0;
2495 static void set_test_state(uint8_t byte
)
2497 struct Crypto1State
*pcs
;
2498 pcs
= crypto1_create(known_target_key
);
2499 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2500 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2501 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2502 real_sum_a8
= SumProperty(pcs
);
2503 crypto1_destroy(pcs
);
2507 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
2509 char progress_text
[80];
2511 char instr_set
[12] = {0};
2512 get_SIMD_instruction_set(instr_set
);
2513 PrintAndLog("Using %s SIMD core.", instr_set
);
2515 srand((unsigned) time(NULL
));
2516 brute_force_per_second
= brute_force_benchmark();
2517 write_stats
= false;
2520 // set the correct locale for the stats printing
2522 setlocale(LC_NUMERIC
, "");
2523 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
2524 PrintAndLog("Could not create/open file hardnested_stats.txt");
2527 for (uint32_t i
= 0; i
< tests
; i
++) {
2528 start_time
= msclock();
2529 print_progress_header();
2530 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2531 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2532 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+1);
2533 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2534 if (trgkey
!= NULL
) {
2535 known_target_key
= bytes_to_num(trgkey
, 6);
2537 known_target_key
= -1;
2540 init_bitflip_bitarrays();
2541 init_part_sum_bitarrays();
2542 init_sum_bitarrays();
2543 init_allbitflips_array();
2544 init_nonce_memory();
2545 update_reduction_rate(0.0, true);
2547 simulate_acquire_nonces();
2549 set_test_state(best_first_bytes
[0]);
2552 free_bitflip_bitarrays();
2554 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0));
2555 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0));
2556 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2558 #ifdef DEBUG_KEY_ELIMINATION
2561 bool key_found
= false;
2562 num_keys_tested
= 0;
2563 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2564 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2565 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2566 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2567 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0));
2568 if (expected_brute_force1
< expected_brute_force2
) {
2569 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2570 set_test_state(best_first_byte_smallest_bitarray
);
2571 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2574 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2575 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2577 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2578 // fprintf("fstats, "%" PRIu64 ";", maximum_states);
2579 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2581 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2582 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0);
2583 key_found
= brute_force();
2584 free(candidates
->states
[ODD_STATE
]);
2585 free(candidates
->states
[EVEN_STATE
]);
2586 free_candidates_memory(candidates
);
2590 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2591 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2592 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2593 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2594 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2595 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2596 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2597 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2599 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2600 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2601 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2602 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0);
2603 key_found
= brute_force();
2604 free_statelist_cache();
2605 free_candidates_memory(candidates
);
2608 // update the statistics
2609 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2610 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2611 // and calculate new expected number of brute forces
2612 update_expected_brute_force(best_first_bytes
[0]);
2616 #ifdef DEBUG_KEY_ELIMINATION
2617 fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
);
2619 fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
);
2622 free_nonces_memory();
2623 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2624 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2625 free_sum_bitarrays();
2626 free_part_sum_bitarrays();
2630 start_time
= msclock();
2631 print_progress_header();
2632 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2633 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2634 init_bitflip_bitarrays();
2635 init_part_sum_bitarrays();
2636 init_sum_bitarrays();
2637 init_allbitflips_array();
2638 init_nonce_memory();
2639 update_reduction_rate(0.0, true);
2641 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2642 if (read_nonce_file() != 0) {
2643 free_bitflip_bitarrays();
2644 free_nonces_memory();
2645 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2646 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2647 free_sum_bitarrays();
2648 free_part_sum_bitarrays();
2651 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2652 update_nonce_data(false);
2654 shrink_key_space(&brute_force
);
2655 } else { // acquire nonces.
2656 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
2658 free_bitflip_bitarrays();
2659 free_nonces_memory();
2660 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2661 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2662 free_sum_bitarrays();
2663 free_part_sum_bitarrays();
2668 if (trgkey
!= NULL
) {
2669 known_target_key
= bytes_to_num(trgkey
, 6);
2670 set_test_state(best_first_bytes
[0]);
2672 known_target_key
= -1;
2677 free_bitflip_bitarrays();
2678 bool key_found
= false;
2679 num_keys_tested
= 0;
2680 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2681 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2682 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2683 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2684 if (expected_brute_force1
< expected_brute_force2
) {
2685 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2686 set_test_state(best_first_byte_smallest_bitarray
);
2687 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2690 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2691 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2693 // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2694 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2696 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2697 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0);
2698 key_found
= brute_force();
2699 free(candidates
->states
[ODD_STATE
]);
2700 free(candidates
->states
[EVEN_STATE
]);
2701 free_candidates_memory(candidates
);
2705 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2706 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2707 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2708 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2709 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2710 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2711 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2712 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2714 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2715 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2716 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2717 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0);
2718 key_found
= brute_force();
2719 free_statelist_cache();
2720 free_candidates_memory(candidates
);
2723 // update the statistics
2724 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2725 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2726 // and calculate new expected number of brute forces
2727 update_expected_brute_force(best_first_bytes
[0]);
2733 free_nonces_memory();
2734 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2735 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2736 free_sum_bitarrays();
2737 free_part_sum_bitarrays();