1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
45 #include "iso14443a.h"
46 // Needed for CRC in emulation mode;
47 // same construction as in ISO 14443;
48 // different initial value (CRC_ICLASS)
49 #include "iso14443crc.h"
50 #include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
53 #include "usb_cdc.h" // for usb_poll_validate_length
54 #include "fpgaloader.h"
56 static int timeout
= 4096;
59 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
61 //-----------------------------------------------------------------------------
62 // The software UART that receives commands from the reader, and its state
64 //-----------------------------------------------------------------------------
68 STATE_START_OF_COMMUNICATION
,
88 static RAMFUNC
int OutOfNDecoding(int bit
)
94 Uart
.bitBuffer
= bit
^ 0xFF0;
99 Uart
.bitBuffer
^= bit
;
103 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
106 if(Uart.byteCnt > 15) { return true; }
112 if(Uart
.state
!= STATE_UNSYNCD
) {
115 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
121 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
127 if(bit
!= bitright
) { bit
= bitright
; }
130 // So, now we only have to deal with *bit*, lets see...
131 if(Uart
.posCnt
== 1) {
132 // measurement first half bitperiod
134 // Drop in first half means that we are either seeing
137 if(Uart
.nOutOfCnt
== 1) {
138 // End of Communication
139 Uart
.state
= STATE_UNSYNCD
;
141 if(Uart
.byteCnt
== 0) {
142 // Its not straightforward to show single EOFs
143 // So just leave it and do not return true
144 Uart
.output
[0] = 0xf0;
151 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
152 // When not part of SOF or EOF, it is an error
153 Uart
.state
= STATE_UNSYNCD
;
160 // measurement second half bitperiod
161 // Count the bitslot we are in... (ISO 15693)
165 if(Uart
.dropPosition
) {
166 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
172 // It is an error if we already have seen a drop in current frame
173 Uart
.state
= STATE_UNSYNCD
;
177 Uart
.dropPosition
= Uart
.nOutOfCnt
;
184 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
187 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
188 if(Uart
.dropPosition
== 4) {
189 Uart
.state
= STATE_RECEIVING
;
192 else if(Uart
.dropPosition
== 3) {
193 Uart
.state
= STATE_RECEIVING
;
195 //Uart.output[Uart.byteCnt] = 0xdd;
199 Uart
.state
= STATE_UNSYNCD
;
202 Uart
.dropPosition
= 0;
207 if(!Uart
.dropPosition
) {
208 Uart
.state
= STATE_UNSYNCD
;
217 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
218 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
220 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
222 Uart
.dropPosition
= 0;
224 if(Uart
.bitCnt
== 8) {
225 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
233 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
236 if(!Uart
.dropPosition
) {
237 Uart
.state
= STATE_UNSYNCD
;
243 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
248 Uart
.dropPosition
= 0;
253 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.output[Uart.byteCnt] = error & 0xFF;
257 Uart.output[Uart.byteCnt] = 0xAA;
259 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
261 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
263 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
265 Uart.output[Uart.byteCnt] = 0xAA;
273 bit
= Uart
.bitBuffer
& 0xf0;
275 bit
^= 0x0F; // drops become 1s ;-)
277 // should have been high or at least (4 * 128) / fc
278 // according to ISO this should be at least (9 * 128 + 20) / fc
279 if(Uart
.highCnt
== 8) {
280 // we went low, so this could be start of communication
281 // it turns out to be safer to choose a less significant
282 // syncbit... so we check whether the neighbour also represents the drop
283 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
284 Uart
.syncBit
= bit
& 8;
286 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
287 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
288 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
289 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
290 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
291 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
294 // the first half bit period is expected in next sample
299 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
302 Uart
.state
= STATE_START_OF_COMMUNICATION
;
306 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
307 Uart
.dropPosition
= 0;
316 if(Uart
.highCnt
< 8) {
325 //=============================================================================
327 //=============================================================================
332 DEMOD_START_OF_COMMUNICATION
,
333 DEMOD_START_OF_COMMUNICATION2
,
334 DEMOD_START_OF_COMMUNICATION3
,
338 DEMOD_END_OF_COMMUNICATION
,
339 DEMOD_END_OF_COMMUNICATION2
,
362 static RAMFUNC
int ManchesterDecoding(int v
)
369 Demod
.buffer
= Demod
.buffer2
;
370 Demod
.buffer2
= Demod
.buffer3
;
378 if(Demod
.state
==DEMOD_UNSYNCD
) {
379 Demod
.output
[Demod
.len
] = 0xfa;
382 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
385 Demod
.syncBit
= 0x08;
392 Demod
.syncBit
= 0x04;
399 Demod
.syncBit
= 0x02;
402 if(bit
& 0x01 && Demod
.syncBit
) {
403 Demod
.syncBit
= 0x01;
408 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
409 Demod
.sub
= SUB_FIRST_HALF
;
414 //if(trigger) LED_A_OFF(); // Not useful in this case...
415 switch(Demod
.syncBit
) {
416 case 0x08: Demod
.samples
= 3; break;
417 case 0x04: Demod
.samples
= 2; break;
418 case 0x02: Demod
.samples
= 1; break;
419 case 0x01: Demod
.samples
= 0; break;
421 // SOF must be long burst... otherwise stay unsynced!!!
422 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
423 Demod
.state
= DEMOD_UNSYNCD
;
427 // SOF must be long burst... otherwise stay unsynced!!!
428 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
429 Demod
.state
= DEMOD_UNSYNCD
;
439 modulation
= bit
& Demod
.syncBit
;
440 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
444 if(Demod
.posCount
==0) {
447 Demod
.sub
= SUB_FIRST_HALF
;
450 Demod
.sub
= SUB_NONE
;
455 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
456 if(Demod.state!=DEMOD_ERROR_WAIT) {
457 Demod.state = DEMOD_ERROR_WAIT;
458 Demod.output[Demod.len] = 0xaa;
462 //else if(modulation) {
464 if(Demod
.sub
== SUB_FIRST_HALF
) {
465 Demod
.sub
= SUB_BOTH
;
468 Demod
.sub
= SUB_SECOND_HALF
;
471 else if(Demod
.sub
== SUB_NONE
) {
472 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
473 Demod
.output
[Demod
.len
] = 0x0f;
475 Demod
.state
= DEMOD_UNSYNCD
;
480 Demod
.state
= DEMOD_ERROR_WAIT
;
483 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
484 Demod.state = DEMOD_ERROR_WAIT;
485 Demod.output[Demod.len] = 0xaa;
490 switch(Demod
.state
) {
491 case DEMOD_START_OF_COMMUNICATION
:
492 if(Demod
.sub
== SUB_BOTH
) {
493 //Demod.state = DEMOD_MANCHESTER_D;
494 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
496 Demod
.sub
= SUB_NONE
;
499 Demod
.output
[Demod
.len
] = 0xab;
500 Demod
.state
= DEMOD_ERROR_WAIT
;
504 case DEMOD_START_OF_COMMUNICATION2
:
505 if(Demod
.sub
== SUB_SECOND_HALF
) {
506 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
509 Demod
.output
[Demod
.len
] = 0xab;
510 Demod
.state
= DEMOD_ERROR_WAIT
;
514 case DEMOD_START_OF_COMMUNICATION3
:
515 if(Demod
.sub
== SUB_SECOND_HALF
) {
516 // Demod.state = DEMOD_MANCHESTER_D;
517 Demod
.state
= DEMOD_SOF_COMPLETE
;
518 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
522 Demod
.output
[Demod
.len
] = 0xab;
523 Demod
.state
= DEMOD_ERROR_WAIT
;
527 case DEMOD_SOF_COMPLETE
:
528 case DEMOD_MANCHESTER_D
:
529 case DEMOD_MANCHESTER_E
:
530 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
531 // 00001111 = 1 (0 in 14443)
532 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
534 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
535 Demod
.state
= DEMOD_MANCHESTER_D
;
537 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
539 Demod
.shiftReg
>>= 1;
540 Demod
.state
= DEMOD_MANCHESTER_E
;
542 else if(Demod
.sub
== SUB_BOTH
) {
543 Demod
.state
= DEMOD_MANCHESTER_F
;
546 Demod
.state
= DEMOD_ERROR_WAIT
;
551 case DEMOD_MANCHESTER_F
:
552 // Tag response does not need to be a complete byte!
553 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
554 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
555 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
556 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
560 Demod
.state
= DEMOD_UNSYNCD
;
564 Demod
.output
[Demod
.len
] = 0xad;
565 Demod
.state
= DEMOD_ERROR_WAIT
;
570 case DEMOD_ERROR_WAIT
:
571 Demod
.state
= DEMOD_UNSYNCD
;
575 Demod
.output
[Demod
.len
] = 0xdd;
576 Demod
.state
= DEMOD_UNSYNCD
;
580 /*if(Demod.bitCount>=9) {
581 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
584 Demod.parityBits <<= 1;
585 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
590 if(Demod
.bitCount
>=8) {
591 Demod
.shiftReg
>>= 1;
592 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
599 Demod
.output
[Demod
.len
] = 0xBB;
601 Demod
.output
[Demod
.len
] = error
& 0xFF;
603 Demod
.output
[Demod
.len
] = 0xBB;
605 Demod
.output
[Demod
.len
] = bit
& 0xFF;
607 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
610 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
612 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
614 Demod
.output
[Demod
.len
] = 0xBB;
621 } // end (state != UNSYNCED)
626 //=============================================================================
627 // Finally, a `sniffer' for iClass communication
628 // Both sides of communication!
629 //=============================================================================
631 //-----------------------------------------------------------------------------
632 // Record the sequence of commands sent by the reader to the tag, with
633 // triggering so that we start recording at the point that the tag is moved
635 //-----------------------------------------------------------------------------
636 void RAMFUNC
SnoopIClass(void)
640 // We won't start recording the frames that we acquire until we trigger;
641 // a good trigger condition to get started is probably when we see a
642 // response from the tag.
643 //int triggered = false; // false to wait first for card
645 // The command (reader -> tag) that we're receiving.
646 // The length of a received command will in most cases be no more than 18 bytes.
647 // So 32 should be enough!
648 #define ICLASS_BUFFER_SIZE 32
649 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
650 // The response (tag -> reader) that we're receiving.
651 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
653 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
655 // free all BigBuf memory
657 // The DMA buffer, used to stream samples from the FPGA
658 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
662 iso14a_set_trigger(false);
669 // Count of samples received so far, so that we can include timing
670 // information in the trace buffer.
674 // Set up the demodulator for tag -> reader responses.
675 Demod
.output
= tagToReaderResponse
;
677 Demod
.state
= DEMOD_UNSYNCD
;
679 // Setup for the DMA.
680 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
682 lastRxCounter
= DMA_BUFFER_SIZE
;
683 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
685 // And the reader -> tag commands
686 memset(&Uart
, 0, sizeof(Uart
));
687 Uart
.output
= readerToTagCmd
;
688 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
689 Uart
.state
= STATE_UNSYNCD
;
691 // And put the FPGA in the appropriate mode
692 // Signal field is off with the appropriate LED
694 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
695 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
697 uint32_t time_0
= GetCountSspClk();
698 uint32_t time_start
= 0;
699 uint32_t time_stop
= 0;
706 // And now we loop, receiving samples.
710 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
712 if(behindBy
> maxBehindBy
) {
713 maxBehindBy
= behindBy
;
714 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
715 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
719 if(behindBy
< 1) continue;
725 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
726 upTo
-= DMA_BUFFER_SIZE
;
727 lastRxCounter
+= DMA_BUFFER_SIZE
;
728 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
729 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
736 decbyte
^= (1 << (3 - div
));
739 // FOR READER SIDE COMMUMICATION...
742 decbyter
^= (smpl
& 0x30);
746 if((div
+ 1) % 2 == 0) {
748 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
749 rsamples
= samples
- Uart
.samples
;
750 time_stop
= (GetCountSspClk()-time_0
) << 4;
753 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
754 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
755 uint8_t parity
[MAX_PARITY_SIZE
];
756 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
757 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
759 /* And ready to receive another command. */
760 Uart
.state
= STATE_UNSYNCD
;
761 /* And also reset the demod code, which might have been */
762 /* false-triggered by the commands from the reader. */
763 Demod
.state
= DEMOD_UNSYNCD
;
767 time_start
= (GetCountSspClk()-time_0
) << 4;
774 if(ManchesterDecoding(smpl
& 0x0F)) {
775 time_stop
= (GetCountSspClk()-time_0
) << 4;
777 rsamples
= samples
- Demod
.samples
;
780 uint8_t parity
[MAX_PARITY_SIZE
];
781 GetParity(Demod
.output
, Demod
.len
, parity
);
782 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
784 // And ready to receive another response.
785 memset(&Demod
, 0, sizeof(Demod
));
786 Demod
.output
= tagToReaderResponse
;
787 Demod
.state
= DEMOD_UNSYNCD
;
790 time_start
= (GetCountSspClk()-time_0
) << 4;
799 DbpString("cancelled_a");
804 DbpString("COMMAND FINISHED");
806 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
807 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
810 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
811 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
812 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
819 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
821 for(i
= 0; i
< 8; i
++) {
822 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
826 //-----------------------------------------------------------------------------
827 // Wait for commands from reader
828 // Stop when button is pressed
829 // Or return true when command is captured
830 //-----------------------------------------------------------------------------
831 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
833 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
834 // only, since we are receiving, not transmitting).
835 // Signal field is off with the appropriate LED
837 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
839 // Now run a `software UART' on the stream of incoming samples.
840 Uart
.output
= received
;
841 Uart
.byteCntMax
= maxLen
;
842 Uart
.state
= STATE_UNSYNCD
;
847 if(BUTTON_PRESS()) return false;
849 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
850 AT91C_BASE_SSC
->SSC_THR
= 0x00;
852 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
853 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
855 if(OutOfNDecoding(b
& 0x0f)) {
863 static uint8_t encode4Bits(const uint8_t b
)
866 // OTA, the least significant bits first
868 // 1 - Bit value to send
869 // 2 - Reversed (big-endian)
875 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
876 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
877 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
878 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
879 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
880 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
881 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
882 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
883 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
884 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
885 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
886 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
887 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
888 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
889 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
890 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
895 //-----------------------------------------------------------------------------
896 // Prepare tag messages
897 //-----------------------------------------------------------------------------
898 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
902 * SOF comprises 3 parts;
903 * * An unmodulated time of 56.64 us
904 * * 24 pulses of 423.75 KHz (fc/32)
905 * * A logic 1, which starts with an unmodulated time of 18.88us
906 * followed by 8 pulses of 423.75kHz (fc/32)
909 * EOF comprises 3 parts:
910 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
912 * - 24 pulses of fc/32
913 * - An unmodulated time of 56.64 us
916 * A logic 0 starts with 8 pulses of fc/32
917 * followed by an unmodulated time of 256/fc (~18,88us).
919 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
920 * 8 pulses of fc/32 (also 18.88us)
922 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
924 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
925 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
927 * In this mode the SOF can be written as 00011101 = 0x1D
928 * The EOF can be written as 10111000 = 0xb8
939 ToSend
[++ToSendMax
] = 0x1D;
941 for(i
= 0; i
< len
; i
++) {
943 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
944 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
948 ToSend
[++ToSendMax
] = 0xB8;
949 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
950 // Convert from last byte pos to length
955 static void CodeIClassTagSOF()
957 //So far a dummy implementation, not used
958 //int lastProxToAirDuration =0;
962 ToSend
[++ToSendMax
] = 0x1D;
963 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
965 // Convert from last byte pos to length
968 #define MODE_SIM_CSN 0
969 #define MODE_EXIT_AFTER_MAC 1
970 #define MODE_FULLSIM 2
972 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
);
974 * @brief SimulateIClass simulates an iClass card.
975 * @param arg0 type of simulation
976 * - 0 uses the first 8 bytes in usb data as CSN
977 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
978 * in the usb data. This mode collects MAC from the reader, in order to do an offline
979 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
980 * - Other : Uses the default CSN (031fec8af7ff12e0)
981 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
985 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
987 uint32_t simType
= arg0
;
988 uint32_t numberOfCSNS
= arg1
;
989 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
991 // Enable and clear the trace
994 //Use the emulator memory for SIM
995 uint8_t *emulator
= BigBuf_get_EM_addr();
998 // Use the CSN from commandline
999 memcpy(emulator
, datain
, 8);
1000 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1001 }else if(simType
== 1)
1004 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1005 // Use the CSN from commandline
1006 memcpy(emulator
, csn_crc
, 8);
1007 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1009 else if(simType
== 2)
1012 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1013 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1014 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1015 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1016 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1018 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1020 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1022 memcpy(emulator
, datain
+(i
*8), 8);
1023 if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8))
1025 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1026 return; // Button pressed
1029 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1031 }else if(simType
== 3){
1032 //This is 'full sim' mode, where we use the emulator storage for data.
1033 doIClassSimulation(MODE_FULLSIM
, NULL
);
1036 // We may want a mode here where we hardcode the csns to use (from proxclone).
1037 // That will speed things up a little, but not required just yet.
1038 Dbprintf("The mode is not implemented, reserved for future use");
1040 Dbprintf("Done...");
1043 void AppendCrc(uint8_t* data
, int len
)
1045 ComputeCrc14443(CRC_ICLASS
,data
,len
,data
+len
,data
+len
+1);
1049 * @brief Does the actual simulation
1050 * @param csn - csn to use
1051 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1053 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
)
1055 // free eventually allocated BigBuf memory
1056 BigBuf_free_keep_EM();
1059 // State cipher_state_reserve;
1060 uint8_t *csn
= BigBuf_get_EM_addr();
1061 uint8_t *emulator
= csn
;
1062 uint8_t sof_data
[] = { 0x0F} ;
1063 // CSN followed by two CRC bytes
1064 uint8_t anticoll_data
[10] = { 0 };
1065 uint8_t csn_data
[10] = { 0 };
1066 memcpy(csn_data
,csn
,sizeof(csn_data
));
1067 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1069 // Construct anticollision-CSN
1070 rotateCSN(csn_data
,anticoll_data
);
1072 // Compute CRC on both CSNs
1073 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
1074 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
1076 uint8_t diversified_key
[8] = { 0 };
1078 uint8_t card_challenge_data
[8] = { 0x00 };
1079 if(simulationMode
== MODE_FULLSIM
)
1081 //The diversified key should be stored on block 3
1082 //Get the diversified key from emulator memory
1083 memcpy(diversified_key
, emulator
+(8*3),8);
1085 //Card challenge, a.k.a e-purse is on block 2
1086 memcpy(card_challenge_data
,emulator
+ (8 * 2) , 8);
1087 //Precalculate the cipher state, feeding it the CC
1088 cipher_state
= opt_doTagMAC_1(card_challenge_data
,diversified_key
);
1096 // Tag anticoll. CSN
1097 // Reader 81 anticoll. CSN
1100 uint8_t *modulated_response
;
1101 int modulated_response_size
= 0;
1102 uint8_t* trace_data
= NULL
;
1103 int trace_data_size
= 0;
1106 // Respond SOF -- takes 1 bytes
1107 uint8_t *resp_sof
= BigBuf_malloc(2);
1110 // Anticollision CSN (rotated CSN)
1111 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1112 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1113 int resp_anticoll_len
;
1116 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1117 uint8_t *resp_csn
= BigBuf_malloc(30);
1121 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1122 uint8_t *resp_cc
= BigBuf_malloc(20);
1125 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1128 // Prepare card messages
1131 // First card answer: SOF
1133 memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len
= ToSendMax
;
1135 // Anticollision CSN
1136 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1137 memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len
= ToSendMax
;
1140 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1141 memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len
= ToSendMax
;
1144 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1145 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1147 //This is used for responding to READ-block commands or other data which is dynamically generated
1148 //First the 'trace'-data, not encoded for FPGA
1149 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1150 //Then storage for the modulated data
1151 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1152 uint8_t *data_response
= BigBuf_malloc( (8+2) * 2 + 2);
1154 // Start from off (no field generated)
1155 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1157 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1160 // We need to listen to the high-frequency, peak-detected path.
1161 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1162 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1164 // To control where we are in the protocol
1166 uint32_t time_0
= GetCountSspClk();
1167 uint32_t t2r_time
=0;
1168 uint32_t r2t_time
=0;
1171 bool buttonPressed
= false;
1172 uint8_t response_delay
= 1;
1177 // Can be used to get a trigger for an oscilloscope..
1180 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1181 buttonPressed
= true;
1184 r2t_time
= GetCountSspClk();
1188 // Okay, look at the command now.
1189 if(receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1190 // Reader in anticollission phase
1191 modulated_response
= resp_sof
; modulated_response_size
= resp_sof_Len
; //order = 1;
1192 trace_data
= sof_data
;
1193 trace_data_size
= sizeof(sof_data
);
1194 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1195 // Reader asks for anticollission CSN
1196 modulated_response
= resp_anticoll
; modulated_response_size
= resp_anticoll_len
; //order = 2;
1197 trace_data
= anticoll_data
;
1198 trace_data_size
= sizeof(anticoll_data
);
1199 //DbpString("Reader requests anticollission CSN:");
1200 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1201 // Reader selects anticollission CSN.
1202 // Tag sends the corresponding real CSN
1203 modulated_response
= resp_csn
; modulated_response_size
= resp_csn_len
; //order = 3;
1204 trace_data
= csn_data
;
1205 trace_data_size
= sizeof(csn_data
);
1206 //DbpString("Reader selects anticollission CSN:");
1207 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1208 // Read e-purse (88 02)
1209 modulated_response
= resp_cc
; modulated_response_size
= resp_cc_len
; //order = 4;
1210 trace_data
= card_challenge_data
;
1211 trace_data_size
= sizeof(card_challenge_data
);
1213 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1214 // Reader random and reader MAC!!!
1215 if(simulationMode
== MODE_FULLSIM
)
1217 //NR, from reader, is in receivedCmd +1
1218 opt_doTagMAC_2(cipher_state
,receivedCmd
+1,data_generic_trace
,diversified_key
);
1220 trace_data
= data_generic_trace
;
1221 trace_data_size
= 4;
1222 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1223 memcpy(data_response
, ToSend
, ToSendMax
);
1224 modulated_response
= data_response
;
1225 modulated_response_size
= ToSendMax
;
1226 response_delay
= 0;//We need to hurry here...
1229 { //Not fullsim, we don't respond
1230 // We do not know what to answer, so lets keep quiet
1231 modulated_response
= resp_sof
; modulated_response_size
= 0;
1233 trace_data_size
= 0;
1234 if (simulationMode
== MODE_EXIT_AFTER_MAC
){
1236 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1237 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1238 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1239 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1240 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1241 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1242 if (reader_mac_buf
!= NULL
)
1244 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1250 } else if(receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1251 // Reader ends the session
1252 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1254 trace_data_size
= 0;
1255 } else if(simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4){
1257 uint16_t blk
= receivedCmd
[1];
1259 memcpy(data_generic_trace
, emulator
+(blk
<< 3),8);
1261 AppendCrc(data_generic_trace
, 8);
1262 trace_data
= data_generic_trace
;
1263 trace_data_size
= 10;
1264 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1265 memcpy(data_response
, ToSend
, ToSendMax
);
1266 modulated_response
= data_response
;
1267 modulated_response_size
= ToSendMax
;
1268 }else if(receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== MODE_FULLSIM
)
1269 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1270 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1271 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1272 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1275 memcpy(data_generic_trace
, receivedCmd
+2,8);
1277 AppendCrc(data_generic_trace
, 8);
1278 trace_data
= data_generic_trace
;
1279 trace_data_size
= 10;
1280 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1281 memcpy(data_response
, ToSend
, ToSendMax
);
1282 modulated_response
= data_response
;
1283 modulated_response_size
= ToSendMax
;
1285 else if(receivedCmd
[0] == ICLASS_CMD_PAGESEL
)
1287 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1288 //Chips with a single page will not answer to this command
1289 // It appears we're fine ignoring this.
1290 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1293 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1294 // Never seen this command before
1295 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1297 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1298 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1299 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1301 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1303 trace_data_size
= 0;
1306 if(cmdsRecvd
> 100) {
1307 //DbpString("100 commands later...");
1314 A legit tag has about 380us delay between reader EOT and tag SOF.
1316 if(modulated_response_size
> 0) {
1317 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1318 t2r_time
= GetCountSspClk();
1321 uint8_t parity
[MAX_PARITY_SIZE
];
1322 GetParity(receivedCmd
, len
, parity
);
1323 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, true);
1325 if (trace_data
!= NULL
) {
1326 GetParity(trace_data
, trace_data_size
, parity
);
1327 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, false);
1329 if(!get_tracing()) {
1330 DbpString("Trace full");
1335 //Dbprintf("%x", cmdsRecvd);
1342 DbpString("Button pressed");
1344 return buttonPressed
;
1347 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1349 int i
= 0, d
=0;//, u = 0, d = 0;
1352 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1353 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1355 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1356 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1357 while(!BUTTON_PRESS()) {
1358 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1359 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1361 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1374 AT91C_BASE_SSC
->SSC_THR
= b
;
1377 // if (i > respLen +4) break;
1378 if (i
> respLen
+1) break;
1386 //-----------------------------------------------------------------------------
1387 // Transmit the command (to the tag) that was placed in ToSend[].
1388 //-----------------------------------------------------------------------------
1389 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1392 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1393 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1394 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1398 if(*wait
< 10) *wait
= 10;
1400 for(c
= 0; c
< *wait
;) {
1401 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1402 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1405 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1406 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1416 bool firstpart
= true;
1419 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1421 // DOUBLE THE SAMPLES!
1423 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1426 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1429 if(sendbyte
== 0xff) {
1432 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1433 firstpart
= !firstpart
;
1439 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1440 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1445 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1449 //-----------------------------------------------------------------------------
1450 // Prepare iClass reader command to send to FPGA
1451 //-----------------------------------------------------------------------------
1452 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1459 // Start of Communication: 1 out of 4
1460 ToSend
[++ToSendMax
] = 0xf0;
1461 ToSend
[++ToSendMax
] = 0x00;
1462 ToSend
[++ToSendMax
] = 0x0f;
1463 ToSend
[++ToSendMax
] = 0x00;
1465 // Modulate the bytes
1466 for (i
= 0; i
< len
; i
++) {
1468 for(j
= 0; j
< 4; j
++) {
1469 for(k
= 0; k
< 4; k
++) {
1471 ToSend
[++ToSendMax
] = 0xf0;
1474 ToSend
[++ToSendMax
] = 0x00;
1481 // End of Communication
1482 ToSend
[++ToSendMax
] = 0x00;
1483 ToSend
[++ToSendMax
] = 0x00;
1484 ToSend
[++ToSendMax
] = 0xf0;
1485 ToSend
[++ToSendMax
] = 0x00;
1487 // Convert from last character reference to length
1491 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1496 // This is tied to other size changes
1497 CodeIClassCommand(frame
,len
);
1500 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1504 // Store reader command in buffer
1505 uint8_t par
[MAX_PARITY_SIZE
];
1506 GetParity(frame
, len
, par
);
1507 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1510 //-----------------------------------------------------------------------------
1511 // Wait a certain time for tag response
1512 // If a response is captured return true
1513 // If it takes too long return false
1514 //-----------------------------------------------------------------------------
1515 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1517 // buffer needs to be 512 bytes
1520 // Set FPGA mode to "reader listen mode", no modulation (listen
1521 // only, since we are receiving, not transmitting).
1522 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1524 // Now get the answer from the card
1525 Demod
.output
= receivedResponse
;
1527 Demod
.state
= DEMOD_UNSYNCD
;
1530 if (elapsed
) *elapsed
= 0;
1538 if(BUTTON_PRESS()) return false;
1540 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1541 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1542 if (elapsed
) (*elapsed
)++;
1544 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1545 if(c
< timeout
) { c
++; } else { return false; }
1546 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1550 if(ManchesterDecoding(b
& 0x0f)) {
1558 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1561 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return false;
1562 rsamples
+= samples
;
1563 uint8_t parity
[MAX_PARITY_SIZE
];
1564 GetParity(receivedAnswer
, Demod
.len
, parity
);
1565 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,false);
1566 if(samples
== 0) return false;
1570 void setupIclassReader()
1572 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1573 // Reset trace buffer
1578 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1579 // Start from off (no field generated)
1580 // Signal field is off with the appropriate LED
1582 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1585 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1587 // Now give it time to spin up.
1588 // Signal field is on with the appropriate LED
1589 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1595 bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1597 while(retries
-- > 0)
1599 ReaderTransmitIClass(command
, cmdsize
);
1600 if(expected_size
== ReaderReceiveIClass(resp
)){
1604 return false;//Error
1608 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1609 * @param card_data where the CSN and CC are stored for return
1612 * 2 = Got CSN and CC
1614 uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
)
1616 static uint8_t act_all
[] = { 0x0a };
1617 //static uint8_t identify[] = { 0x0c };
1618 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1619 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1620 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1622 readcheck_cc
[0] = 0x18;
1624 readcheck_cc
[0] = 0x88;
1626 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1628 uint8_t read_status
= 0;
1631 ReaderTransmitIClass(act_all
, 1);
1633 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1635 ReaderTransmitIClass(identify
, 1);
1636 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1637 uint8_t len
= ReaderReceiveIClass(resp
);
1638 if(len
!= 10) return read_status
;//Fail
1640 //Copy the Anti-collision CSN to our select-packet
1641 memcpy(&select
[1],resp
,8);
1643 ReaderTransmitIClass(select
, sizeof(select
));
1644 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1645 len
= ReaderReceiveIClass(resp
);
1646 if(len
!= 10) return read_status
;//Fail
1648 //Success - level 1, we got CSN
1649 //Save CSN in response data
1650 memcpy(card_data
,resp
,8);
1652 //Flag that we got to at least stage 1, read CSN
1655 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1656 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1657 if(ReaderReceiveIClass(resp
) == 8) {
1658 //Save CC (e-purse) in response data
1659 memcpy(card_data
+8,resp
,8);
1665 uint8_t handshakeIclassTag(uint8_t *card_data
) {
1666 return handshakeIclassTag_ext(card_data
, false);
1670 // Reader iClass Anticollission
1671 void ReaderIClass(uint8_t arg0
) {
1673 uint8_t card_data
[6 * 8]={0};
1674 memset(card_data
, 0xFF, sizeof(card_data
));
1675 uint8_t last_csn
[8]={0,0,0,0,0,0,0,0};
1676 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1677 memset(resp
, 0xFF, sizeof(resp
));
1678 //Read conf block CRC(0x01) => 0xfa 0x22
1679 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x01, 0xfa, 0x22};
1680 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1681 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x05, 0xde, 0x64};
1684 uint8_t result_status
= 0;
1685 // flag to read until one tag is found successfully
1686 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1687 // flag to only try 5 times to find one tag then return
1688 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1689 // if neither abort_after_read nor try_once then continue reading until button pressed.
1691 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1692 // test flags for what blocks to be sure to read
1693 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1694 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1695 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1698 setupIclassReader();
1701 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1702 while(!userCancelled
)
1704 // if only looking for one card try 2 times if we missed it the first time
1705 if (try_once
&& tryCnt
> 2) break;
1707 if(!get_tracing()) {
1708 DbpString("Trace full");
1713 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1715 if(read_status
== 0) continue;
1716 if(read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1717 if(read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
|FLAG_ICLASS_READER_CC
;
1719 // handshakeIclass returns CSN|CC, but the actual block
1720 // layout is CSN|CONFIG|CC, so here we reorder the data,
1721 // moving CC forward 8 bytes
1722 memcpy(card_data
+16,card_data
+8, 8);
1723 //Read block 1, config
1724 if(flagReadConfig
) {
1725 if(sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10))
1727 result_status
|= FLAG_ICLASS_READER_CONF
;
1728 memcpy(card_data
+8, resp
, 8);
1730 Dbprintf("Failed to dump config block");
1736 if(sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10))
1738 result_status
|= FLAG_ICLASS_READER_AA
;
1739 memcpy(card_data
+(8*5), resp
, 8);
1741 //Dbprintf("Failed to dump AA block");
1746 // 1 : Configuration
1748 // (3,4 write-only, kc and kd)
1749 // 5 Application issuer area
1751 //Then we can 'ship' back the 8 * 6 bytes of data,
1752 // with 0xFF:s in block 3 and 4.
1755 //Send back to client, but don't bother if we already sent this -
1756 // only useful if looping in arm (not try_once && not abort_after_read)
1757 if(memcmp(last_csn
, card_data
, 8) != 0)
1759 // If caller requires that we get Conf, CC, AA, continue until we got it
1760 if( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1761 cmd_send(CMD_ACK
,result_status
,0,0,card_data
,sizeof(card_data
));
1762 if(abort_after_read
) {
1767 //Save that we already sent this....
1768 memcpy(last_csn
, card_data
, 8);
1773 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1775 if (userCancelled
) {
1776 cmd_send(CMD_ACK
,0xFF,0,0,card_data
, 0);
1778 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1783 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1785 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1786 uint16_t block_crc_LUT
[255] = {0};
1788 {//Generate a lookup table for block crc
1789 for(int block
= 0; block
< 255; block
++){
1791 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1794 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1796 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1797 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1803 static struct memory_t
{
1811 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1813 setupIclassReader();
1816 while(!BUTTON_PRESS()) {
1820 if(!get_tracing()) {
1821 DbpString("Trace full");
1825 uint8_t read_status
= handshakeIclassTag(card_data
);
1826 if(read_status
< 2) continue;
1828 //for now replay captured auth (as cc not updated)
1829 memcpy(check
+5,MAC
,4);
1831 if(!sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1833 Dbprintf("Error: Authentication Fail!");
1837 //first get configuration block (block 1)
1838 crc
= block_crc_LUT
[1];
1841 read
[3] = crc
& 0xff;
1843 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1845 Dbprintf("Dump config (block 1) failed");
1850 memory
.k16
= (mem
& 0x80);
1851 memory
.book
= (mem
& 0x20);
1852 memory
.k2
= (mem
& 0x8);
1853 memory
.lockauth
= (mem
& 0x2);
1854 memory
.keyaccess
= (mem
& 0x1);
1856 cardsize
= memory
.k16
? 255 : 32;
1858 //Set card_data to all zeroes, we'll fill it with data
1859 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1860 uint8_t failedRead
=0;
1861 uint32_t stored_data_length
=0;
1862 //then loop around remaining blocks
1863 for(int block
=0; block
< cardsize
; block
++){
1866 crc
= block_crc_LUT
[block
];
1868 read
[3] = crc
& 0xff;
1870 if(sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1872 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1873 block
, resp
[0], resp
[1], resp
[2],
1874 resp
[3], resp
[4], resp
[5],
1877 //Fill up the buffer
1878 memcpy(card_data
+stored_data_length
,resp
,8);
1879 stored_data_length
+= 8;
1880 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1881 {//Time to send this off and start afresh
1883 stored_data_length
,//data length
1884 failedRead
,//Failed blocks?
1886 card_data
, stored_data_length
);
1888 stored_data_length
= 0;
1894 stored_data_length
+=8;//Otherwise, data becomes misaligned
1895 Dbprintf("Failed to dump block %d", block
);
1899 //Send off any remaining data
1900 if(stored_data_length
> 0)
1903 stored_data_length
,//data length
1904 failedRead
,//Failed blocks?
1906 card_data
, stored_data_length
);
1908 //If we got here, let's break
1911 //Signal end of transmission
1921 void iClass_ReadCheck(uint8_t blockNo
, uint8_t keyType
) {
1922 uint8_t readcheck
[] = { keyType
, blockNo
};
1923 uint8_t resp
[] = {0,0,0,0,0,0,0,0};
1925 isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6);
1926 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1929 void iClass_Authentication(uint8_t *MAC
) {
1930 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1931 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1932 memcpy(check
+5,MAC
,4);
1934 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1935 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1937 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1938 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1940 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1941 readcmd
[2] = rdCrc
>> 8;
1942 readcmd
[3] = rdCrc
& 0xff;
1943 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1946 //readcmd[1] = blockNo;
1947 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1948 memcpy(readdata
, resp
, sizeof(resp
));
1953 void iClass_ReadBlk(uint8_t blockno
) {
1954 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1956 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1957 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1960 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1961 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1966 uint8_t *dataout
= BigBuf_malloc(255*8);
1967 if (dataout
== NULL
){
1968 Dbprintf("out of memory");
1972 memset(dataout
,0xFF,255*8);
1974 for (;blkCnt
< numblks
; blkCnt
++) {
1975 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1976 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1977 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1979 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1983 memcpy(dataout
+(blkCnt
*8),readblockdata
,8);
1985 //return pointer to dump memory in arg3
1986 cmd_send(CMD_ACK
,isOK
,blkCnt
,BigBuf_max_traceLen(),0,0);
1987 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1992 bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1993 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1994 //uint8_t readblockdata[10];
1995 //write[1] = blockNo;
1996 memcpy(write
+2, data
, 12); // data + mac
1997 char *wrCmd
= (char *)(write
+1);
1998 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1999 write
[14] = wrCrc
>> 8;
2000 write
[15] = wrCrc
& 0xff;
2001 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
2004 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2005 if (isOK
) { //if reader responded correctly
2006 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
2007 if (memcmp(write
+2,resp
,8)) { //if response is not equal to write values
2008 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2010 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2018 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
2019 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
2021 Dbprintf("Write block [%02x] successful",blockNo
);
2023 Dbprintf("Write block [%02x] failed",blockNo
);
2025 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
2028 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
2031 int total_block
= (endblock
- startblock
) + 1;
2032 for (i
= 0; i
< total_block
;i
++){
2034 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2035 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2038 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2039 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2042 Dbprintf("Write block [%02x] failed",i
+ startblock
);
2046 if (written
== total_block
)
2047 Dbprintf("Clone complete");
2049 Dbprintf("Clone incomplete");
2051 cmd_send(CMD_ACK
,1,0,0,0,0);
2052 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);