1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
25 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum
= 0;
36 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37 #define REQUEST_GUARD_TIME (7000/16 + 1)
38 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40 // bool LastCommandWasRequest = FALSE;
43 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
45 // When the PM acts as reader and is receiving, it takes
46 // 3 ticks for the A/D conversion
47 // 10 ticks ( 16 on average) delay in the modulation detector.
48 // 6 ticks until the SSC samples the first data
49 // 7*16 ticks to complete the transfer from FPGA to ARM
50 // 8 ticks to the next ssp_clk rising edge
51 // 4*16 ticks until we measure the time
52 // - 8*16 ticks because we measure the time of the previous transfer
53 #define DELAY_AIR2ARM_AS_READER (3 + 10 + 6 + 7*16 + 8 + 4*16 - 8*16)
55 // When the PM acts as a reader and is sending, it takes
56 // 4*16 ticks until we can write data to the sending hold register
57 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
58 // 8 ticks until the first transfer starts
59 // 8 ticks later the FPGA samples the data
60 // 1 tick to assign mod_sig_coil
61 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
63 // When the PM acts as tag and is receiving it takes
64 // 12 ticks delay in the RF part,
65 // 3 ticks for the A/D conversion,
66 // 8 ticks on average until the start of the SSC transfer,
67 // 8 ticks until the SSC samples the first data
68 // 7*16 ticks to complete the transfer from FPGA to ARM
69 // 8 ticks until the next ssp_clk rising edge
70 // 3*16 ticks until we measure the time
71 // - 8*16 ticks because we measure the time of the previous transfer
72 #define DELAY_AIR2ARM_AS_TAG (12 + 3 + 8 + 8 + 7*16 + 8 + 3*16 - 8*16)
74 // The FPGA will report its internal sending delay in
75 uint16_t FpgaSendQueueDelay
;
76 // the 5 first bits are the number of bits buffered in mod_sig_buf
77 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
78 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
80 // When the PM acts as tag and is sending, it takes
81 // 5*16 ticks until we can write data to the sending hold register
82 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
83 // 8 ticks until the first transfer starts
84 // 8 ticks later the FPGA samples the data
85 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
86 // + 1 tick to assign mod_sig_coil
87 #define DELAY_ARM2AIR_AS_TAG (5*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
89 // When the PM acts as sniffer and is receiving tag data, it takes
90 // 3 ticks A/D conversion
91 // 16 ticks delay in the modulation detector (on average).
92 // + 16 ticks until it's result is sampled.
93 // + the delays in transferring data - which is the same for
94 // sniffing reader and tag data and therefore not relevant
95 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 16 + 16)
97 // When the PM acts as sniffer and is receiving tag data, it takes
98 // 12 ticks delay in analogue RF receiver
99 // 3 ticks A/D conversion
100 // 8 ticks on average until we sample the data.
101 // + the delays in transferring data - which is the same for
102 // sniffing reader and tag data and therefore not relevant
103 #define DELAY_READER_AIR2ARM_AS_SNIFFER (12 + 3 + 8)
105 //variables used for timing purposes:
106 //these are in ssp_clk cycles:
107 uint32_t NextTransferTime
;
108 uint32_t LastTimeProxToAirStart
;
109 uint32_t LastProxToAirDuration
;
113 // CARD TO READER - manchester
114 // Sequence D: 11110000 modulation with subcarrier during first half
115 // Sequence E: 00001111 modulation with subcarrier during second half
116 // Sequence F: 00000000 no modulation with subcarrier
117 // READER TO CARD - miller
118 // Sequence X: 00001100 drop after half a period
119 // Sequence Y: 00000000 no drop
120 // Sequence Z: 11000000 drop at start
128 const uint8_t OddByteParity
[256] = {
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
148 void iso14a_set_trigger(bool enable
) {
152 void iso14a_clear_trace() {
153 memset(trace
, 0x44, TRACE_SIZE
);
157 void iso14a_set_tracing(bool enable
) {
161 void iso14a_set_timeout(uint32_t timeout
) {
162 iso14a_timeout
= timeout
;
165 //-----------------------------------------------------------------------------
166 // Generate the parity value for a byte sequence
168 //-----------------------------------------------------------------------------
169 byte_t
oddparity (const byte_t bt
)
171 return OddByteParity
[bt
];
174 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
179 // Generate the parity bits
180 for (i
= 0; i
< iLen
; i
++) {
181 // and save them to a 32Bit word
182 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
187 void AppendCrc14443a(uint8_t* data
, int len
)
189 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
192 // The function LogTrace() is also used by the iClass implementation in iClass.c
193 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool bReader
)
195 // Return when trace is full
196 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
197 tracing
= FALSE
; // don't trace any more
201 // Trace the random, i'm curious
202 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
203 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
204 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
205 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
207 trace
[traceLen
- 1] |= 0x80;
209 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
210 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
211 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
212 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
213 trace
[traceLen
++] = iLen
;
214 if (btBytes
!= NULL
&& iLen
!= 0) {
215 memcpy(trace
+ traceLen
, btBytes
, iLen
);
221 //=============================================================================
222 // ISO 14443 Type A - Miller decoder
223 //=============================================================================
225 // This decoder is used when the PM3 acts as a tag.
226 // The reader will generate "pauses" by temporarily switching of the field.
227 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
228 // The FPGA does a comparison with a threshold and would deliver e.g.:
229 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
230 // The Miller decoder needs to identify the following sequences:
231 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
232 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
233 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
234 // Note 1: the bitstream may start at any time. We therefore need to sync.
235 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
236 //-----------------------------------------------------------------------------
241 Uart
.state
= STATE_UNSYNCD
;
243 Uart
.len
= 0; // number of decoded data bytes
244 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
245 Uart
.parityBits
= 0; //
246 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
252 inline RAMFUNC Modulation_t
MillerModulation(uint8_t b
)
254 // switch (b & 0x88) {
255 // case 0x00: return MILLER_MOD_BOTH_HALVES;
256 // case 0x08: return MILLER_MOD_FIRST_HALF;
257 // case 0x80: return MILLER_MOD_SECOND_HALF;
258 // case 0x88: return MILLER_MOD_NOMOD;
260 // test the second cycle for a pause. For whatever reason the startbit tends to appear earlier than the rest.
262 case 0x00: return MOD_BOTH_HALVES
;
263 case 0x04: return MOD_FIRST_HALF
;
264 case 0x40: return MOD_SECOND_HALF
;
265 default: return MOD_NOMOD
;
269 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
270 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
273 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
275 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
276 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
277 if (Uart
.twoBits
== 0xffff) {
283 Uart
.syncBit
= 0xFFFF; // not set
284 // look for 00xx1111 (the start bit)
285 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
286 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
287 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
288 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
289 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
290 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
291 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
292 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
293 if (Uart
.syncBit
!= 0xFFFF) {
294 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
295 Uart
.startTime
-= Uart
.syncBit
;
296 Uart
.state
= STATE_START_OF_COMMUNICATION
;
302 switch (MillerModulation(Uart
.twoBits
>> Uart
.syncBit
)) {
303 case MOD_FIRST_HALF
: // Sequence Z = 0
304 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
309 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
310 Uart
.state
= STATE_MILLER_Z
;
311 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
312 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
313 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
314 Uart
.parityBits
<<= 1; // make room for the parity bit
315 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
321 case MOD_SECOND_HALF
: // Sequence X = 1
323 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
324 Uart
.state
= STATE_MILLER_X
;
325 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
326 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
327 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
328 Uart
.parityBits
<<= 1; // make room for the new parity bit
329 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
334 case MOD_NOMOD
: // no modulation in both halves - Sequence Y
335 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
336 Uart
.state
= STATE_UNSYNCD
;
337 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
338 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
339 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
340 Uart
.parityBits
<<= 1; // no parity bit - add "0"
341 Uart
.bitCount
--; // last "0" was part of the EOC sequence
345 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
348 } else { // a logic "0"
350 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
351 Uart
.state
= STATE_MILLER_Y
;
352 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
353 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
354 Uart
.parityBits
<<= 1; // make room for the parity bit
355 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
361 case MOD_BOTH_HALVES
: // Error
369 return FALSE
; // not finished yet, need more data
374 //=============================================================================
375 // ISO 14443 Type A - Manchester decoder
376 //=============================================================================
378 // This decoder is used when the PM3 acts as a reader.
379 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
380 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
381 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
382 // The Manchester decoder needs to identify the following sequences:
383 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
384 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
385 // 8 ticks unmodulated: Sequence F = end of communication
386 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
387 // Note 1: the bitstream may start at any time. We therefore need to sync.
388 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
391 const bool Mod_Manchester_LUT
[] = {
392 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
, TRUE
,
393 FALSE
, FALSE
, TRUE
, TRUE
, TRUE
, TRUE
, TRUE
, TRUE
396 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
397 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
402 Demod
.state
= DEMOD_UNSYNCD
;
403 Demod
.len
= 0; // number of decoded data bytes
404 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
405 Demod
.parityBits
= 0; //
406 Demod
.collisionPos
= 0; // Position of collision bit
407 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
413 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
414 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
417 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
419 if (Demod
.state
== DEMOD_UNSYNCD
) {
421 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
422 if (Demod
.twoBits
== 0x0000) {
428 Demod
.syncBit
= 0xFFFF; // not set
429 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
430 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
431 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
432 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
433 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
434 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
435 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
436 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
437 if (Demod
.syncBit
< 8) {
438 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
439 Demod
.startTime
-= Demod
.syncBit
;
440 Demod
.bitCount
= offset
; // number of decoded data bits
441 Demod
.state
= DEMOD_MANCHESTER_DATA
;
447 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
448 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
449 if (!Demod
.collisionPos
) {
450 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
452 } // modulation in first half only - Sequence D = 1
454 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
455 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
456 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
457 Demod
.parityBits
<<= 1; // make room for the parity bit
458 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
462 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
463 } else { // no modulation in first half
464 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
466 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
467 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
468 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
469 Demod
.parityBits
<<= 1; // make room for the new parity bit
470 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
474 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
475 } else { // no modulation in both halves - End of communication
476 if(Demod
.bitCount
> 0) { // if we decoded bits
477 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
478 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
479 // No parity bit, so just shift a 0
480 Demod
.parityBits
<<= 1;
482 Demod
.state
= DEMOD_UNSYNCD
; // start from the beginning
484 return TRUE
; // we are finished with decoding the raw data sequence
490 return FALSE
; // not finished yet, need more data
493 //=============================================================================
494 // Finally, a `sniffer' for ISO 14443 Type A
495 // Both sides of communication!
496 //=============================================================================
498 //-----------------------------------------------------------------------------
499 // Record the sequence of commands sent by the reader to the tag, with
500 // triggering so that we start recording at the point that the tag is moved
502 //-----------------------------------------------------------------------------
503 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
505 // bit 0 - trigger from first card answer
506 // bit 1 - trigger from first reader 7-bit request
510 iso14a_clear_trace();
512 // We won't start recording the frames that we acquire until we trigger;
513 // a good trigger condition to get started is probably when we see a
514 // response from the tag.
515 // triggered == FALSE -- to wait first for card
516 bool triggered
= !(param
& 0x03);
518 // The command (reader -> tag) that we're receiving.
519 // The length of a received command will in most cases be no more than 18 bytes.
520 // So 32 should be enough!
521 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
522 // The response (tag -> reader) that we're receiving.
523 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
525 // As we receive stuff, we copy it from receivedCmd or receivedResponse
526 // into trace, along with its length and other annotations.
527 //uint8_t *trace = (uint8_t *)BigBuf;
529 // The DMA buffer, used to stream samples from the FPGA
530 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
531 uint8_t *data
= dmaBuf
;
532 uint8_t previous_data
= 0;
535 bool TagIsActive
= FALSE
;
536 bool ReaderIsActive
= FALSE
;
538 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
540 // Set up the demodulator for tag -> reader responses.
541 Demod
.output
= receivedResponse
;
543 // Set up the demodulator for the reader -> tag commands
544 Uart
.output
= receivedCmd
;
546 // Setup and start DMA.
547 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
549 // And now we loop, receiving samples.
550 for(uint32_t rsamples
= 0; TRUE
; ) {
553 DbpString("cancelled by button");
560 int register readBufDataP
= data
- dmaBuf
;
561 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
562 if (readBufDataP
<= dmaBufDataP
){
563 dataLen
= dmaBufDataP
- readBufDataP
;
565 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
567 // test for length of buffer
568 if(dataLen
> maxDataLen
) {
569 maxDataLen
= dataLen
;
571 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
575 if(dataLen
< 1) continue;
577 // primary buffer was stopped( <-- we lost data!
578 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
579 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
580 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
581 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
583 // secondary buffer sets as primary, secondary buffer was stopped
584 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
585 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
586 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
591 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
593 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
594 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
595 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
598 // check - if there is a short 7bit request from reader
599 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
602 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
603 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
605 /* And ready to receive another command. */
607 /* And also reset the demod code, which might have been */
608 /* false-triggered by the commands from the reader. */
612 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
615 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
616 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
617 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
620 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
621 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
623 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
625 // And ready to receive another response.
629 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
633 previous_data
= *data
;
636 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
641 DbpString("COMMAND FINISHED");
644 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
645 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
649 //-----------------------------------------------------------------------------
650 // Prepare tag messages
651 //-----------------------------------------------------------------------------
652 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
658 // Correction bit, might be removed when not needed
663 ToSendStuffBit(1); // 1
669 ToSend
[++ToSendMax
] = SEC_D
;
670 LastProxToAirDuration
= 8 * ToSendMax
- 4;
672 for(i
= 0; i
< len
; i
++) {
677 for(j
= 0; j
< 8; j
++) {
679 ToSend
[++ToSendMax
] = SEC_D
;
681 ToSend
[++ToSendMax
] = SEC_E
;
686 // Get the parity bit
687 if ((dwParity
>> i
) & 0x01) {
688 ToSend
[++ToSendMax
] = SEC_D
;
689 LastProxToAirDuration
= 8 * ToSendMax
- 4;
691 ToSend
[++ToSendMax
] = SEC_E
;
692 LastProxToAirDuration
= 8 * ToSendMax
;
697 ToSend
[++ToSendMax
] = SEC_F
;
699 // Convert from last byte pos to length
703 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
704 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
708 static void Code4bitAnswerAsTag(uint8_t cmd
)
714 // Correction bit, might be removed when not needed
719 ToSendStuffBit(1); // 1
725 ToSend
[++ToSendMax
] = SEC_D
;
728 for(i
= 0; i
< 4; i
++) {
730 ToSend
[++ToSendMax
] = SEC_D
;
731 LastProxToAirDuration
= 8 * ToSendMax
- 4;
733 ToSend
[++ToSendMax
] = SEC_E
;
734 LastProxToAirDuration
= 8 * ToSendMax
;
740 ToSend
[++ToSendMax
] = SEC_F
;
742 // Convert from last byte pos to length
746 //-----------------------------------------------------------------------------
747 // Wait for commands from reader
748 // Stop when button is pressed
749 // Or return TRUE when command is captured
750 //-----------------------------------------------------------------------------
751 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
753 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
754 // only, since we are receiving, not transmitting).
755 // Signal field is off with the appropriate LED
757 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
759 // Now run a `software UART' on the stream of incoming samples.
761 Uart
.output
= received
;
764 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
769 if(BUTTON_PRESS()) return FALSE
;
771 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
772 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
773 if(MillerDecoding(b
, 0)) {
781 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
782 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
783 int EmSend4bit(uint8_t resp
);
784 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
785 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
786 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
787 int EmSendCmd(uint8_t *resp
, int respLen
);
788 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
789 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
790 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
792 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
799 uint32_t ProxToAirDuration
;
800 } tag_response_info_t
;
802 void reset_free_buffer() {
803 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
806 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
807 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
808 // This will need the following byte array for a modulation sequence
809 // 144 data bits (18 * 8)
812 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
813 // 1 just for the case
815 // 166 bytes, since every bit that needs to be send costs us a byte
818 // Prepare the tag modulation bits from the message
819 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
821 // Make sure we do not exceed the free buffer space
822 if (ToSendMax
> max_buffer_size
) {
823 Dbprintf("Out of memory, when modulating bits for tag answer:");
824 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
828 // Copy the byte array, used for this modulation to the buffer position
829 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
831 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
832 response_info
->modulation_n
= ToSendMax
;
833 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
838 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
839 // Retrieve and store the current buffer index
840 response_info
->modulation
= free_buffer_pointer
;
842 // Determine the maximum size we can use from our buffer
843 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
845 // Forward the prepare tag modulation function to the inner function
846 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
847 // Update the free buffer offset
848 free_buffer_pointer
+= ToSendMax
;
855 //-----------------------------------------------------------------------------
856 // Main loop of simulated tag: receive commands from reader, decide what
857 // response to send, and send it.
858 //-----------------------------------------------------------------------------
859 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
861 // Enable and clear the trace
862 iso14a_clear_trace();
863 iso14a_set_tracing(TRUE
);
867 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
868 uint8_t response1
[2];
871 case 1: { // MIFARE Classic
872 // Says: I am Mifare 1k - original line
877 case 2: { // MIFARE Ultralight
878 // Says: I am a stupid memory tag, no crypto
883 case 3: { // MIFARE DESFire
884 // Says: I am a DESFire tag, ph33r me
889 case 4: { // ISO/IEC 14443-4
890 // Says: I am a javacard (JCOP)
896 Dbprintf("Error: unkown tagtype (%d)",tagType
);
901 // The second response contains the (mandatory) first 24 bits of the UID
902 uint8_t response2
[5];
904 // Check if the uid uses the (optional) part
905 uint8_t response2a
[5];
908 num_to_bytes(uid_1st
,3,response2
+1);
909 num_to_bytes(uid_2nd
,4,response2a
);
910 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
912 // Configure the ATQA and SAK accordingly
913 response1
[0] |= 0x40;
916 num_to_bytes(uid_1st
,4,response2
);
917 // Configure the ATQA and SAK accordingly
918 response1
[0] &= 0xBF;
922 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
923 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
925 // Prepare the mandatory SAK (for 4 and 7 byte UID)
926 uint8_t response3
[3];
928 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
930 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
931 uint8_t response3a
[3];
932 response3a
[0] = sak
& 0xFB;
933 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
935 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
936 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
937 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
939 #define TAG_RESPONSE_COUNT 7
940 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
941 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
942 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
943 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
944 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
945 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
946 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
947 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
950 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
951 // Such a response is less time critical, so we can prepare them on the fly
952 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
953 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
954 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
955 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
956 tag_response_info_t dynamic_response_info
= {
957 .response
= dynamic_response_buffer
,
959 .modulation
= dynamic_modulation_buffer
,
963 // Reset the offset pointer of the free buffer
966 // Prepare the responses of the anticollision phase
967 // there will be not enough time to do this at the moment the reader sends it REQA
968 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
969 prepare_allocated_tag_modulation(&responses
[i
]);
972 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
975 // To control where we are in the protocol
979 // Just to allow some checks
984 // We need to listen to the high-frequency, peak-detected path.
985 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
988 tag_response_info_t
* p_response
;
992 // Clean receive command buffer
994 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
995 DbpString("Button press");
1001 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1002 // Okay, look at the command now.
1004 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1005 p_response
= &responses
[0]; order
= 1;
1006 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1007 p_response
= &responses
[0]; order
= 6;
1008 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1009 p_response
= &responses
[1]; order
= 2;
1010 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1011 p_response
= &responses
[2]; order
= 20;
1012 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1013 p_response
= &responses
[3]; order
= 3;
1014 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1015 p_response
= &responses
[4]; order
= 30;
1016 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1017 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1018 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1019 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1021 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1022 // DbpString("Reader requested we HALT!:");
1024 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1025 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1028 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1029 p_response
= &responses
[5]; order
= 7;
1030 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1031 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1032 EmSend4bit(CARD_NACK_NA
);
1035 p_response
= &responses
[6]; order
= 70;
1037 } else if (order
== 7 && len
== 8) { // Received authentication request
1039 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1040 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1042 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1043 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1044 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1046 // Check for ISO 14443A-4 compliant commands, look at left nibble
1047 switch (receivedCmd
[0]) {
1050 case 0x0A: { // IBlock (command)
1051 dynamic_response_info
.response
[0] = receivedCmd
[0];
1052 dynamic_response_info
.response
[1] = 0x00;
1053 dynamic_response_info
.response
[2] = 0x90;
1054 dynamic_response_info
.response
[3] = 0x00;
1055 dynamic_response_info
.response_n
= 4;
1059 case 0x1B: { // Chaining command
1060 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1061 dynamic_response_info
.response_n
= 2;
1066 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1067 dynamic_response_info
.response_n
= 2;
1071 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1072 dynamic_response_info
.response_n
= 2;
1076 case 0xC2: { // Readers sends deselect command
1077 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1078 dynamic_response_info
.response_n
= 2;
1082 // Never seen this command before
1084 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1085 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1087 Dbprintf("Received unknown command (len=%d):",len
);
1088 Dbhexdump(len
,receivedCmd
,false);
1090 dynamic_response_info
.response_n
= 0;
1094 if (dynamic_response_info
.response_n
> 0) {
1095 // Copy the CID from the reader query
1096 dynamic_response_info
.response
[1] = receivedCmd
[1];
1098 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1099 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1100 dynamic_response_info
.response_n
+= 2;
1102 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1103 Dbprintf("Error preparing tag response");
1105 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1106 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1110 p_response
= &dynamic_response_info
;
1114 // Count number of wakeups received after a halt
1115 if(order
== 6 && lastorder
== 5) { happened
++; }
1117 // Count number of other messages after a halt
1118 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1120 if(cmdsRecvd
> 999) {
1121 DbpString("1000 commands later...");
1126 if (p_response
!= NULL
) {
1127 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1128 // do the tracing for the previous reader request and this tag answer:
1129 EmLogTrace(Uart
.output
,
1131 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1132 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1134 p_response
->response
,
1135 p_response
->response_n
,
1136 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1137 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1138 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1142 Dbprintf("Trace Full. Simulation stopped.");
1147 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1152 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1153 // of bits specified in the delay parameter.
1154 void PrepareDelayedTransfer(uint16_t delay
)
1156 uint8_t bitmask
= 0;
1157 uint8_t bits_to_shift
= 0;
1158 uint8_t bits_shifted
= 0;
1162 for (uint16_t i
= 0; i
< delay
; i
++) {
1163 bitmask
|= (0x01 << i
);
1165 ToSend
[ToSendMax
++] = 0x00;
1166 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1167 bits_to_shift
= ToSend
[i
] & bitmask
;
1168 ToSend
[i
] = ToSend
[i
] >> delay
;
1169 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1170 bits_shifted
= bits_to_shift
;
1176 //-------------------------------------------------------------------------------------
1177 // Transmit the command (to the tag) that was placed in ToSend[].
1178 // Parameter timing:
1179 // if NULL: transfer at next possible time, taking into account
1180 // request guard time and frame delay time
1181 // if == 0: transfer immediately and return time of transfer
1182 // if != 0: delay transfer until time specified
1183 //-------------------------------------------------------------------------------------
1184 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1189 uint32_t ThisTransferTime
= 0;
1192 if(*timing
== 0) { // Measure time
1193 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1195 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1197 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1198 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1199 LastTimeProxToAirStart
= *timing
;
1201 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1202 while(GetCountSspClk() < ThisTransferTime
);
1203 LastTimeProxToAirStart
= ThisTransferTime
;
1207 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1209 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1210 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1211 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1218 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1219 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1227 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1232 //-----------------------------------------------------------------------------
1233 // Prepare reader command (in bits, support short frames) to send to FPGA
1234 //-----------------------------------------------------------------------------
1235 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1243 // Start of Communication (Seq. Z)
1244 ToSend
[++ToSendMax
] = SEC_Z
;
1245 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1248 size_t bytecount
= nbytes(bits
);
1249 // Generate send structure for the data bits
1250 for (i
= 0; i
< bytecount
; i
++) {
1251 // Get the current byte to send
1253 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1255 for (j
= 0; j
< bitsleft
; j
++) {
1258 ToSend
[++ToSendMax
] = SEC_X
;
1259 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1264 ToSend
[++ToSendMax
] = SEC_Z
;
1265 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1268 ToSend
[++ToSendMax
] = SEC_Y
;
1275 // Only transmit (last) parity bit if we transmitted a complete byte
1277 // Get the parity bit
1278 if ((dwParity
>> i
) & 0x01) {
1280 ToSend
[++ToSendMax
] = SEC_X
;
1281 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1286 ToSend
[++ToSendMax
] = SEC_Z
;
1287 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1290 ToSend
[++ToSendMax
] = SEC_Y
;
1297 // End of Communication: Logic 0 followed by Sequence Y
1300 ToSend
[++ToSendMax
] = SEC_Z
;
1301 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1304 ToSend
[++ToSendMax
] = SEC_Y
;
1307 ToSend
[++ToSendMax
] = SEC_Y
;
1309 // Convert to length of command:
1313 //-----------------------------------------------------------------------------
1314 // Prepare reader command to send to FPGA
1315 //-----------------------------------------------------------------------------
1316 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1318 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1321 //-----------------------------------------------------------------------------
1322 // Wait for commands from reader
1323 // Stop when button is pressed (return 1) or field was gone (return 2)
1324 // Or return 0 when command is captured
1325 //-----------------------------------------------------------------------------
1326 static int EmGetCmd(uint8_t *received
, int *len
)
1330 uint32_t timer
= 0, vtime
= 0;
1334 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1335 // only, since we are receiving, not transmitting).
1336 // Signal field is off with the appropriate LED
1338 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1340 // Set ADC to read field strength
1341 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1342 AT91C_BASE_ADC
->ADC_MR
=
1343 ADC_MODE_PRESCALE(32) |
1344 ADC_MODE_STARTUP_TIME(16) |
1345 ADC_MODE_SAMPLE_HOLD_TIME(8);
1346 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1348 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1350 // Now run a 'software UART' on the stream of incoming samples.
1352 Uart
.output
= received
;
1355 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1360 if (BUTTON_PRESS()) return 1;
1362 // test if the field exists
1363 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1365 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1366 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1367 if (analogCnt
>= 32) {
1368 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1369 vtime
= GetTickCount();
1370 if (!timer
) timer
= vtime
;
1371 // 50ms no field --> card to idle state
1372 if (vtime
- timer
> 50) return 2;
1374 if (timer
) timer
= 0;
1380 // receive and test the miller decoding
1381 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1382 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1383 if(MillerDecoding(b
, 0)) {
1393 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1397 uint32_t ThisTransferTime
;
1399 // Modulate Manchester
1400 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1402 // include correction bit if necessary
1403 if (Uart
.parityBits
& 0x01) {
1404 correctionNeeded
= TRUE
;
1406 if(correctionNeeded
) {
1407 // 1236, so correction bit needed
1413 // clear receiving shift register and holding register
1414 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1415 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1416 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1417 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1419 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1420 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1421 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1422 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1425 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1428 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1431 for(; i
<= respLen
; ) {
1432 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1433 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1434 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1437 if(BUTTON_PRESS()) {
1442 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1443 for (i
= 0; i
< 2 ; ) {
1444 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1445 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1446 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1451 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1456 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1457 Code4bitAnswerAsTag(resp
);
1458 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1459 // do the tracing for the previous reader request and this tag answer:
1460 EmLogTrace(Uart
.output
,
1462 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1463 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1467 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1468 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1469 SwapBits(GetParity(&resp
, 1), 1));
1473 int EmSend4bit(uint8_t resp
){
1474 return EmSend4bitEx(resp
, false);
1477 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1478 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1479 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1480 // do the tracing for the previous reader request and this tag answer:
1481 EmLogTrace(Uart
.output
,
1483 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1484 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1488 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1489 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1490 SwapBits(GetParity(resp
, respLen
), respLen
));
1494 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1495 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1498 int EmSendCmd(uint8_t *resp
, int respLen
){
1499 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1502 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1503 return EmSendCmdExPar(resp
, respLen
, false, par
);
1506 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1507 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1510 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1511 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1512 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1513 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1514 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1515 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1516 reader_EndTime
= tag_StartTime
- exact_fdt
;
1517 reader_StartTime
= reader_EndTime
- reader_modlen
;
1518 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1520 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1522 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1525 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1532 //-----------------------------------------------------------------------------
1533 // Wait a certain time for tag response
1534 // If a response is captured return TRUE
1535 // If it takes too long return FALSE
1536 //-----------------------------------------------------------------------------
1537 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1541 // Set FPGA mode to "reader listen mode", no modulation (listen
1542 // only, since we are receiving, not transmitting).
1543 // Signal field is on with the appropriate LED
1545 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1547 // Now get the answer from the card
1549 Demod
.output
= receivedResponse
;
1552 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1558 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1559 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1560 if(ManchesterDecoding(b
, offset
, 0)) {
1561 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1563 } else if(c
++ > iso14a_timeout
) {
1570 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1573 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1575 // Send command to tag
1576 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1580 // Log reader command in trace buffer
1582 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1583 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1587 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1589 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1592 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1594 // Generate parity and redirect
1595 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1598 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1600 // Generate parity and redirect
1601 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1604 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1606 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1608 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1609 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1614 int ReaderReceive(uint8_t* receivedAnswer
)
1616 return ReaderReceiveOffset(receivedAnswer
, 0);
1619 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1621 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1623 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1624 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1626 *parptr
= Demod
.parityBits
;
1630 /* performs iso14443a anticollision procedure
1631 * fills the uid pointer unless NULL
1632 * fills resp_data unless NULL */
1633 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1634 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1635 uint8_t sel_all
[] = { 0x93,0x20 };
1636 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1637 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1638 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1640 size_t uid_resp_len
;
1642 uint8_t sak
= 0x04; // cascade uid
1643 int cascade_level
= 0;
1646 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1647 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1650 if(!ReaderReceive(resp
)) return 0;
1651 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1654 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1655 p_hi14a_card
->uidlen
= 0;
1656 memset(p_hi14a_card
->uid
,0,10);
1661 memset(uid_ptr
,0,10);
1664 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1665 // which case we need to make a cascade 2 request and select - this is a long UID
1666 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1667 for(; sak
& 0x04; cascade_level
++) {
1668 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1669 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1672 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1673 if (!ReaderReceive(resp
)) return 0;
1675 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1676 memset(uid_resp
, 0, 4);
1677 uint16_t uid_resp_bits
= 0;
1678 uint16_t collision_answer_offset
= 0;
1679 // anti-collision-loop:
1680 while (Demod
.collisionPos
) {
1681 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1682 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1683 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1684 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1686 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1688 // construct anticollosion command:
1689 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1690 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1691 sel_uid
[2+i
] = uid_resp
[i
];
1693 collision_answer_offset
= uid_resp_bits
%8;
1694 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1695 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1697 // finally, add the last bits and BCC of the UID
1698 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1699 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1700 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1703 } else { // no collision, use the response to SELECT_ALL as current uid
1704 memcpy(uid_resp
,resp
,4);
1707 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1709 // calculate crypto UID. Always use last 4 Bytes.
1711 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1714 // Construct SELECT UID command
1715 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1716 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1717 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1718 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1719 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1722 if (!ReaderReceive(resp
)) return 0;
1725 // Test if more parts of the uid are comming
1726 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1727 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1728 // http://www.nxp.com/documents/application_note/AN10927.pdf
1729 memcpy(uid_resp
, uid_resp
+ 1, 3);
1734 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1738 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1739 p_hi14a_card
->uidlen
+= uid_resp_len
;
1744 p_hi14a_card
->sak
= sak
;
1745 p_hi14a_card
->ats_len
= 0;
1748 if( (sak
& 0x20) == 0) {
1749 return 2; // non iso14443a compliant tag
1752 // Request for answer to select
1753 AppendCrc14443a(rats
, 2);
1754 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1756 if (!(len
= ReaderReceive(resp
))) return 0;
1759 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1760 p_hi14a_card
->ats_len
= len
;
1763 // reset the PCB block number
1764 iso14_pcb_blocknum
= 0;
1768 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1769 // Set up the synchronous serial port
1771 // connect Demodulated Signal to ADC:
1772 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1774 // Signal field is on with the appropriate LED
1775 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1776 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1781 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1788 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1789 iso14a_set_timeout(1050); // 10ms default
1792 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1793 uint8_t real_cmd
[cmd_len
+4];
1794 real_cmd
[0] = 0x0a; //I-Block
1795 // put block number into the PCB
1796 real_cmd
[0] |= iso14_pcb_blocknum
;
1797 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1798 memcpy(real_cmd
+2, cmd
, cmd_len
);
1799 AppendCrc14443a(real_cmd
,cmd_len
+2);
1801 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1802 size_t len
= ReaderReceive(data
);
1803 uint8_t * data_bytes
= (uint8_t *) data
;
1805 return 0; //DATA LINK ERROR
1806 // if we received an I- or R(ACK)-Block with a block number equal to the
1807 // current block number, toggle the current block number
1808 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1809 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1810 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1811 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1813 iso14_pcb_blocknum
^= 1;
1819 //-----------------------------------------------------------------------------
1820 // Read an ISO 14443a tag. Send out commands and store answers.
1822 //-----------------------------------------------------------------------------
1823 void ReaderIso14443a(UsbCommand
*c
)
1825 iso14a_command_t param
= c
->arg
[0];
1826 uint8_t *cmd
= c
->d
.asBytes
;
1827 size_t len
= c
->arg
[1];
1828 size_t lenbits
= c
->arg
[2];
1830 byte_t buf
[USB_CMD_DATA_SIZE
];
1832 if(param
& ISO14A_CONNECT
) {
1833 iso14a_clear_trace();
1836 iso14a_set_tracing(TRUE
);
1838 if(param
& ISO14A_REQUEST_TRIGGER
) {
1839 iso14a_set_trigger(TRUE
);
1842 if(param
& ISO14A_CONNECT
) {
1843 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1844 if(!(param
& ISO14A_NO_SELECT
)) {
1845 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1846 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1847 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1851 if(param
& ISO14A_SET_TIMEOUT
) {
1852 iso14a_timeout
= c
->arg
[2];
1855 if(param
& ISO14A_APDU
) {
1856 arg0
= iso14_apdu(cmd
, len
, buf
);
1857 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1860 if(param
& ISO14A_RAW
) {
1861 if(param
& ISO14A_APPEND_CRC
) {
1862 AppendCrc14443a(cmd
,len
);
1866 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1868 ReaderTransmit(cmd
,len
, NULL
);
1870 arg0
= ReaderReceive(buf
);
1871 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1874 if(param
& ISO14A_REQUEST_TRIGGER
) {
1875 iso14a_set_trigger(FALSE
);
1878 if(param
& ISO14A_NO_DISCONNECT
) {
1882 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1887 // Determine the distance between two nonces.
1888 // Assume that the difference is small, but we don't know which is first.
1889 // Therefore try in alternating directions.
1890 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1893 uint32_t nttmp1
, nttmp2
;
1895 if (nt1
== nt2
) return 0;
1900 for (i
= 1; i
< 32768; i
++) {
1901 nttmp1
= prng_successor(nttmp1
, 1);
1902 if (nttmp1
== nt2
) return i
;
1903 nttmp2
= prng_successor(nttmp2
, 1);
1904 if (nttmp2
== nt1
) return -i
;
1907 return(-99999); // either nt1 or nt2 are invalid nonces
1911 //-----------------------------------------------------------------------------
1912 // Recover several bits of the cypher stream. This implements (first stages of)
1913 // the algorithm described in "The Dark Side of Security by Obscurity and
1914 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1915 // (article by Nicolas T. Courtois, 2009)
1916 //-----------------------------------------------------------------------------
1917 void ReaderMifare(bool first_try
)
1920 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1921 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1922 static uint8_t mf_nr_ar3
;
1924 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1926 iso14a_clear_trace();
1927 iso14a_set_tracing(TRUE
);
1931 //byte_t par_mask = 0xff;
1932 static byte_t par_low
= 0;
1937 uint32_t nt
, previous_nt
;
1938 static uint32_t nt_attacked
= 0;
1939 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1940 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1942 static uint32_t sync_time
;
1943 static uint32_t sync_cycles
;
1944 int catch_up_cycles
= 0;
1945 int last_catch_up
= 0;
1946 uint16_t consecutive_resyncs
= 0;
1953 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1954 sync_time
= GetCountSspClk() & 0xfffffff8;
1955 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1961 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1962 // nt_attacked = prng_successor(nt_attacked, 1);
1964 mf_nr_ar
[3] = mf_nr_ar3
;
1973 for(uint16_t i
= 0; TRUE
; i
++) {
1977 // Test if the action was cancelled
1978 if(BUTTON_PRESS()) {
1984 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1985 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1989 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1990 catch_up_cycles
= 0;
1992 // if we missed the sync time already, advance to the next nonce repeat
1993 while(GetCountSspClk() > sync_time
) {
1994 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
1997 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1998 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
2000 // Receive the (4 Byte) "random" nonce
2001 if (!ReaderReceive(receivedAnswer
)) {
2002 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2007 nt
= bytes_to_num(receivedAnswer
, 4);
2009 // Transmit reader nonce with fake par
2010 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2012 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2013 int nt_distance
= dist_nt(previous_nt
, nt
);
2014 if (nt_distance
== 0) {
2018 if (nt_distance
== -99999) { // invalid nonce received, try again
2021 sync_cycles
= (sync_cycles
- nt_distance
);
2022 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2027 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2028 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2029 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2030 catch_up_cycles
= 0;
2033 if (catch_up_cycles
== last_catch_up
) {
2034 consecutive_resyncs
++;
2037 last_catch_up
= catch_up_cycles
;
2038 consecutive_resyncs
= 0;
2040 if (consecutive_resyncs
< 3) {
2041 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2044 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2045 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2050 consecutive_resyncs
= 0;
2052 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2053 if (ReaderReceive(receivedAnswer
))
2055 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2059 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2063 if(led_on
) LED_B_ON(); else LED_B_OFF();
2065 par_list
[nt_diff
] = par
;
2066 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2068 // Test if the information is complete
2069 if (nt_diff
== 0x07) {
2074 nt_diff
= (nt_diff
+ 1) & 0x07;
2075 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2078 if (nt_diff
== 0 && first_try
)
2082 par
= (((par
>> 3) + 1) << 3) | par_low
;
2088 mf_nr_ar
[3] &= 0x1F;
2091 memcpy(buf
+ 0, uid
, 4);
2092 num_to_bytes(nt
, 4, buf
+ 4);
2093 memcpy(buf
+ 8, par_list
, 8);
2094 memcpy(buf
+ 16, ks_list
, 8);
2095 memcpy(buf
+ 24, mf_nr_ar
, 4);
2097 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2100 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2103 iso14a_set_tracing(FALSE
);
2107 *MIFARE 1K simulate.
2110 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2111 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2112 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2113 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2114 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2116 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2118 int cardSTATE
= MFEMUL_NOFIELD
;
2120 int vHf
= 0; // in mV
2122 uint32_t selTimer
= 0;
2123 uint32_t authTimer
= 0;
2126 uint8_t cardWRBL
= 0;
2127 uint8_t cardAUTHSC
= 0;
2128 uint8_t cardAUTHKEY
= 0xff; // no authentication
2129 uint32_t cardRr
= 0;
2131 //uint32_t rn_enc = 0;
2133 uint32_t cardINTREG
= 0;
2134 uint8_t cardINTBLOCK
= 0;
2135 struct Crypto1State mpcs
= {0, 0};
2136 struct Crypto1State
*pcs
;
2138 uint32_t numReads
= 0;//Counts numer of times reader read a block
2139 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2140 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2142 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2143 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2144 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2145 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2146 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2148 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2149 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2151 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2152 // This can be used in a reader-only attack.
2153 // (it can also be retrieved via 'hf 14a list', but hey...
2154 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2155 uint8_t ar_nr_collected
= 0;
2158 iso14a_clear_trace();
2159 iso14a_set_tracing(TRUE
);
2161 // Authenticate response - nonce
2162 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2164 //-- Determine the UID
2165 // Can be set from emulator memory, incoming data
2166 // and can be 7 or 4 bytes long
2167 if (flags
& FLAG_4B_UID_IN_DATA
)
2169 // 4B uid comes from data-portion of packet
2170 memcpy(rUIDBCC1
,datain
,4);
2171 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2173 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2174 // 7B uid comes from data-portion of packet
2175 memcpy(&rUIDBCC1
[1],datain
,3);
2176 memcpy(rUIDBCC2
, datain
+3, 4);
2179 // get UID from emul memory
2180 emlGetMemBt(receivedCmd
, 7, 1);
2181 _7BUID
= !(receivedCmd
[0] == 0x00);
2182 if (!_7BUID
) { // ---------- 4BUID
2183 emlGetMemBt(rUIDBCC1
, 0, 4);
2184 } else { // ---------- 7BUID
2185 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2186 emlGetMemBt(rUIDBCC2
, 3, 4);
2191 * Regardless of what method was used to set the UID, set fifth byte and modify
2192 * the ATQA for 4 or 7-byte UID
2194 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2198 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2201 // We need to listen to the high-frequency, peak-detected path.
2202 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2205 if (MF_DBGLEVEL
>= 1) {
2207 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3]);
2209 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3],rUIDBCC2
[0],rUIDBCC2
[1] ,rUIDBCC2
[2] , rUIDBCC2
[3]);
2213 bool finished
= FALSE
;
2214 while (!BUTTON_PRESS() && !finished
) {
2217 // find reader field
2218 // Vref = 3300mV, and an 10:1 voltage divider on the input
2219 // can measure voltages up to 33000 mV
2220 if (cardSTATE
== MFEMUL_NOFIELD
) {
2221 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2222 if (vHf
> MF_MINFIELDV
) {
2223 cardSTATE_TO_IDLE();
2227 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2231 res
= EmGetCmd(receivedCmd
, &len
);
2232 if (res
== 2) { //Field is off!
2233 cardSTATE
= MFEMUL_NOFIELD
;
2236 } else if (res
== 1) {
2237 break; //return value 1 means button press
2240 // REQ or WUP request in ANY state and WUP in HALTED state
2241 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2242 selTimer
= GetTickCount();
2243 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2244 cardSTATE
= MFEMUL_SELECT1
;
2246 // init crypto block
2249 crypto1_destroy(pcs
);
2254 switch (cardSTATE
) {
2255 case MFEMUL_NOFIELD
:
2258 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2259 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2262 case MFEMUL_SELECT1
:{
2264 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2265 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2266 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2270 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2272 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2276 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2277 EmSendCmd(_7BUID
?rSAK1
:rSAK
, sizeof(_7BUID
?rSAK1
:rSAK
));
2278 cuid
= bytes_to_num(rUIDBCC1
, 4);
2280 cardSTATE
= MFEMUL_WORK
;
2282 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2285 cardSTATE
= MFEMUL_SELECT2
;
2293 cardSTATE_TO_IDLE();
2294 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2295 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2298 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2299 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2302 if(ar_nr_collected
< 2){
2303 if(ar_nr_responses
[2] != ar
)
2304 {// Avoid duplicates... probably not necessary, ar should vary.
2305 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2306 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2307 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2308 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2314 crypto1_word(pcs
, ar
, 1);
2315 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2318 if (cardRr
!= prng_successor(nonce
, 64)){
2319 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr
, prng_successor(nonce
, 64));
2320 // Shouldn't we respond anything here?
2321 // Right now, we don't nack or anything, which causes the
2322 // reader to do a WUPA after a while. /Martin
2323 cardSTATE_TO_IDLE();
2324 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2325 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2329 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2331 num_to_bytes(ans
, 4, rAUTH_AT
);
2333 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2335 cardSTATE
= MFEMUL_WORK
;
2336 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2339 case MFEMUL_SELECT2
:{
2341 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2342 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2345 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2346 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2352 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2353 EmSendCmd(rSAK
, sizeof(rSAK
));
2354 cuid
= bytes_to_num(rUIDBCC2
, 4);
2355 cardSTATE
= MFEMUL_WORK
;
2357 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2361 // i guess there is a command). go into the work state.
2363 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2364 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2367 cardSTATE
= MFEMUL_WORK
;
2369 //intentional fall-through to the next case-stmt
2374 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2375 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2379 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2381 if(encrypted_data
) {
2383 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2386 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2387 authTimer
= GetTickCount();
2388 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2389 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2390 crypto1_destroy(pcs
);//Added by martin
2391 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2393 if (!encrypted_data
) { // first authentication
2394 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2396 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2397 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2398 } else { // nested authentication
2399 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2400 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2401 num_to_bytes(ans
, 4, rAUTH_AT
);
2403 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2404 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2405 cardSTATE
= MFEMUL_AUTH1
;
2409 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2410 // BUT... ACK --> NACK
2411 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2412 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2416 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2417 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2418 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2423 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2424 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2428 if(receivedCmd
[0] == 0x30 // read block
2429 || receivedCmd
[0] == 0xA0 // write block
2430 || receivedCmd
[0] == 0xC0
2431 || receivedCmd
[0] == 0xC1
2432 || receivedCmd
[0] == 0xC2 // inc dec restore
2433 || receivedCmd
[0] == 0xB0) { // transfer
2434 if (receivedCmd
[1] >= 16 * 4) {
2435 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2436 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2440 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2441 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2442 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2447 if (receivedCmd
[0] == 0x30) {
2448 if (MF_DBGLEVEL
>= 2) {
2449 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2451 emlGetMem(response
, receivedCmd
[1], 1);
2452 AppendCrc14443a(response
, 16);
2453 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2454 EmSendCmdPar(response
, 18, par
);
2456 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2457 Dbprintf("%d reads done, exiting", numReads
);
2463 if (receivedCmd
[0] == 0xA0) {
2464 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2465 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2466 cardSTATE
= MFEMUL_WRITEBL2
;
2467 cardWRBL
= receivedCmd
[1];
2470 // increment, decrement, restore
2471 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2472 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2473 if (emlCheckValBl(receivedCmd
[1])) {
2474 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2475 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2478 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2479 if (receivedCmd
[0] == 0xC1)
2480 cardSTATE
= MFEMUL_INTREG_INC
;
2481 if (receivedCmd
[0] == 0xC0)
2482 cardSTATE
= MFEMUL_INTREG_DEC
;
2483 if (receivedCmd
[0] == 0xC2)
2484 cardSTATE
= MFEMUL_INTREG_REST
;
2485 cardWRBL
= receivedCmd
[1];
2489 if (receivedCmd
[0] == 0xB0) {
2490 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2491 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2492 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2494 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2498 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2501 cardSTATE
= MFEMUL_HALTED
;
2502 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2503 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2504 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2508 if (receivedCmd
[0] == 0xe0) {//RATS
2509 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2512 // command not allowed
2513 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2514 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2517 case MFEMUL_WRITEBL2
:{
2519 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2520 emlSetMem(receivedCmd
, cardWRBL
, 1);
2521 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2522 cardSTATE
= MFEMUL_WORK
;
2524 cardSTATE_TO_IDLE();
2525 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2526 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2531 case MFEMUL_INTREG_INC
:{
2532 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2533 memcpy(&ans
, receivedCmd
, 4);
2534 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2535 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2536 cardSTATE_TO_IDLE();
2539 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2540 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2541 cardINTREG
= cardINTREG
+ ans
;
2542 cardSTATE
= MFEMUL_WORK
;
2545 case MFEMUL_INTREG_DEC
:{
2546 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2547 memcpy(&ans
, receivedCmd
, 4);
2548 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2549 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2550 cardSTATE_TO_IDLE();
2553 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2554 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2555 cardINTREG
= cardINTREG
- ans
;
2556 cardSTATE
= MFEMUL_WORK
;
2559 case MFEMUL_INTREG_REST
:{
2560 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2561 memcpy(&ans
, receivedCmd
, 4);
2562 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2563 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2564 cardSTATE_TO_IDLE();
2567 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2568 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2569 cardSTATE
= MFEMUL_WORK
;
2575 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2578 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2580 //May just aswell send the collected ar_nr in the response aswell
2581 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2583 if(flags
& FLAG_NR_AR_ATTACK
)
2585 if(ar_nr_collected
> 1) {
2586 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2587 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x",
2588 ar_nr_responses
[0], // UID
2589 ar_nr_responses
[1], //NT
2590 ar_nr_responses
[2], //AR1
2591 ar_nr_responses
[3], //NR1
2592 ar_nr_responses
[6], //AR2
2593 ar_nr_responses
[7] //NR2
2596 Dbprintf("Failed to obtain two AR/NR pairs!");
2597 if(ar_nr_collected
>0) {
2598 Dbprintf("Only got these: UID=%08d, nonce=%08d, AR1=%08d, NR1=%08d",
2599 ar_nr_responses
[0], // UID
2600 ar_nr_responses
[1], //NT
2601 ar_nr_responses
[2], //AR1
2602 ar_nr_responses
[3] //NR1
2607 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2612 //-----------------------------------------------------------------------------
2615 //-----------------------------------------------------------------------------
2616 void RAMFUNC
SniffMifare(uint8_t param
) {
2618 // bit 0 - trigger from first card answer
2619 // bit 1 - trigger from first reader 7-bit request
2621 // C(red) A(yellow) B(green)
2623 // init trace buffer
2624 iso14a_clear_trace();
2626 // The command (reader -> tag) that we're receiving.
2627 // The length of a received command will in most cases be no more than 18 bytes.
2628 // So 32 should be enough!
2629 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2630 // The response (tag -> reader) that we're receiving.
2631 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2633 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2634 // into trace, along with its length and other annotations.
2635 //uint8_t *trace = (uint8_t *)BigBuf;
2637 // The DMA buffer, used to stream samples from the FPGA
2638 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2639 uint8_t *data
= dmaBuf
;
2640 uint8_t previous_data
= 0;
2643 bool ReaderIsActive
= FALSE
;
2644 bool TagIsActive
= FALSE
;
2646 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2648 // Set up the demodulator for tag -> reader responses.
2649 Demod
.output
= receivedResponse
;
2651 // Set up the demodulator for the reader -> tag commands
2652 Uart
.output
= receivedCmd
;
2654 // Setup for the DMA.
2655 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2662 // And now we loop, receiving samples.
2663 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2665 if(BUTTON_PRESS()) {
2666 DbpString("cancelled by button");
2673 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2674 // check if a transaction is completed (timeout after 2000ms).
2675 // if yes, stop the DMA transfer and send what we have so far to the client
2676 if (MfSniffSend(2000)) {
2677 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2681 ReaderIsActive
= FALSE
;
2682 TagIsActive
= FALSE
;
2683 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2687 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2688 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2689 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2690 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2692 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2694 // test for length of buffer
2695 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2696 maxDataLen
= dataLen
;
2698 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2702 if(dataLen
< 1) continue;
2704 // primary buffer was stopped ( <-- we lost data!
2705 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2706 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2707 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2708 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2710 // secondary buffer sets as primary, secondary buffer was stopped
2711 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2712 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2713 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2718 if (sniffCounter
& 0x01) {
2720 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2721 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2722 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2724 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2726 /* And ready to receive another command. */
2729 /* And also reset the demod code */
2732 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2735 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2736 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2737 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2740 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2742 // And ready to receive another response.
2745 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2749 previous_data
= *data
;
2752 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
2758 DbpString("COMMAND FINISHED");
2760 FpgaDisableSscDma();
2763 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);