]> cvs.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
cc63093eb75f3872bd3f2bda4eccae7e3fe07534
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
20 #include "crapto1.h"
21 #include "mifareutil.h"
22
23 static uint8_t *trace = (uint8_t *) BigBuf;
24 static int traceLen = 0;
25 static int rsamples = 0;
26 static int tracing = TRUE;
27 static uint32_t iso14a_timeout;
28
29 // CARD TO READER
30 // Sequence D: 11110000 modulation with subcarrier during first half
31 // Sequence E: 00001111 modulation with subcarrier during second half
32 // Sequence F: 00000000 no modulation with subcarrier
33 // READER TO CARD
34 // Sequence X: 00001100 drop after half a period
35 // Sequence Y: 00000000 no drop
36 // Sequence Z: 11000000 drop at start
37 #define SEC_D 0xf0
38 #define SEC_E 0x0f
39 #define SEC_F 0x00
40 #define SEC_X 0x0c
41 #define SEC_Y 0x00
42 #define SEC_Z 0xc0
43
44 static const uint8_t OddByteParity[256] = {
45 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
49 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
57 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
61 };
62
63 // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
64 #define RECV_CMD_OFFSET 3032
65 #define RECV_RES_OFFSET 3096
66 #define DMA_BUFFER_OFFSET 3160
67 #define DMA_BUFFER_SIZE 4096
68 #define TRACE_LENGTH 3000
69 // card emulator memory
70 #define CARD_MEMORY 7260
71 #define CARD_MEMORY_LEN 1024
72
73 uint8_t trigger = 0;
74 void iso14a_set_trigger(int enable) {
75 trigger = enable;
76 }
77
78 //-----------------------------------------------------------------------------
79 // Generate the parity value for a byte sequence
80 //
81 //-----------------------------------------------------------------------------
82 byte_t oddparity (const byte_t bt)
83 {
84 return OddByteParity[bt];
85 }
86
87 uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
88 {
89 int i;
90 uint32_t dwPar = 0;
91
92 // Generate the encrypted data
93 for (i = 0; i < iLen; i++) {
94 // Save the encrypted parity bit
95 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
96 }
97 return dwPar;
98 }
99
100 void AppendCrc14443a(uint8_t* data, int len)
101 {
102 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
103 }
104
105 int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
106 {
107 // Return when trace is full
108 if (traceLen >= TRACE_LENGTH) return FALSE;
109
110 // Trace the random, i'm curious
111 rsamples += iSamples;
112 trace[traceLen++] = ((rsamples >> 0) & 0xff);
113 trace[traceLen++] = ((rsamples >> 8) & 0xff);
114 trace[traceLen++] = ((rsamples >> 16) & 0xff);
115 trace[traceLen++] = ((rsamples >> 24) & 0xff);
116 if (!bReader) {
117 trace[traceLen - 1] |= 0x80;
118 }
119 trace[traceLen++] = ((dwParity >> 0) & 0xff);
120 trace[traceLen++] = ((dwParity >> 8) & 0xff);
121 trace[traceLen++] = ((dwParity >> 16) & 0xff);
122 trace[traceLen++] = ((dwParity >> 24) & 0xff);
123 trace[traceLen++] = iLen;
124 memcpy(trace + traceLen, btBytes, iLen);
125 traceLen += iLen;
126 return TRUE;
127 }
128
129 //-----------------------------------------------------------------------------
130 // The software UART that receives commands from the reader, and its state
131 // variables.
132 //-----------------------------------------------------------------------------
133 static struct {
134 enum {
135 STATE_UNSYNCD,
136 STATE_START_OF_COMMUNICATION,
137 STATE_MILLER_X,
138 STATE_MILLER_Y,
139 STATE_MILLER_Z,
140 STATE_ERROR_WAIT
141 } state;
142 uint16_t shiftReg;
143 int bitCnt;
144 int byteCnt;
145 int byteCntMax;
146 int posCnt;
147 int syncBit;
148 int parityBits;
149 int samples;
150 int highCnt;
151 int bitBuffer;
152 enum {
153 DROP_NONE,
154 DROP_FIRST_HALF,
155 DROP_SECOND_HALF
156 } drop;
157 uint8_t *output;
158 } Uart;
159
160 static RAMFUNC int MillerDecoding(int bit)
161 {
162 int error = 0;
163 int bitright;
164
165 if(!Uart.bitBuffer) {
166 Uart.bitBuffer = bit ^ 0xFF0;
167 return FALSE;
168 }
169 else {
170 Uart.bitBuffer <<= 4;
171 Uart.bitBuffer ^= bit;
172 }
173
174 int EOC = FALSE;
175
176 if(Uart.state != STATE_UNSYNCD) {
177 Uart.posCnt++;
178
179 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
180 bit = 0x00;
181 }
182 else {
183 bit = 0x01;
184 }
185 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
186 bitright = 0x00;
187 }
188 else {
189 bitright = 0x01;
190 }
191 if(bit != bitright) { bit = bitright; }
192
193 if(Uart.posCnt == 1) {
194 // measurement first half bitperiod
195 if(!bit) {
196 Uart.drop = DROP_FIRST_HALF;
197 }
198 }
199 else {
200 // measurement second half bitperiod
201 if(!bit & (Uart.drop == DROP_NONE)) {
202 Uart.drop = DROP_SECOND_HALF;
203 }
204 else if(!bit) {
205 // measured a drop in first and second half
206 // which should not be possible
207 Uart.state = STATE_ERROR_WAIT;
208 error = 0x01;
209 }
210
211 Uart.posCnt = 0;
212
213 switch(Uart.state) {
214 case STATE_START_OF_COMMUNICATION:
215 Uart.shiftReg = 0;
216 if(Uart.drop == DROP_SECOND_HALF) {
217 // error, should not happen in SOC
218 Uart.state = STATE_ERROR_WAIT;
219 error = 0x02;
220 }
221 else {
222 // correct SOC
223 Uart.state = STATE_MILLER_Z;
224 }
225 break;
226
227 case STATE_MILLER_Z:
228 Uart.bitCnt++;
229 Uart.shiftReg >>= 1;
230 if(Uart.drop == DROP_NONE) {
231 // logic '0' followed by sequence Y
232 // end of communication
233 Uart.state = STATE_UNSYNCD;
234 EOC = TRUE;
235 }
236 // if(Uart.drop == DROP_FIRST_HALF) {
237 // Uart.state = STATE_MILLER_Z; stay the same
238 // we see a logic '0' }
239 if(Uart.drop == DROP_SECOND_HALF) {
240 // we see a logic '1'
241 Uart.shiftReg |= 0x100;
242 Uart.state = STATE_MILLER_X;
243 }
244 break;
245
246 case STATE_MILLER_X:
247 Uart.shiftReg >>= 1;
248 if(Uart.drop == DROP_NONE) {
249 // sequence Y, we see a '0'
250 Uart.state = STATE_MILLER_Y;
251 Uart.bitCnt++;
252 }
253 if(Uart.drop == DROP_FIRST_HALF) {
254 // Would be STATE_MILLER_Z
255 // but Z does not follow X, so error
256 Uart.state = STATE_ERROR_WAIT;
257 error = 0x03;
258 }
259 if(Uart.drop == DROP_SECOND_HALF) {
260 // We see a '1' and stay in state X
261 Uart.shiftReg |= 0x100;
262 Uart.bitCnt++;
263 }
264 break;
265
266 case STATE_MILLER_Y:
267 Uart.bitCnt++;
268 Uart.shiftReg >>= 1;
269 if(Uart.drop == DROP_NONE) {
270 // logic '0' followed by sequence Y
271 // end of communication
272 Uart.state = STATE_UNSYNCD;
273 EOC = TRUE;
274 }
275 if(Uart.drop == DROP_FIRST_HALF) {
276 // we see a '0'
277 Uart.state = STATE_MILLER_Z;
278 }
279 if(Uart.drop == DROP_SECOND_HALF) {
280 // We see a '1' and go to state X
281 Uart.shiftReg |= 0x100;
282 Uart.state = STATE_MILLER_X;
283 }
284 break;
285
286 case STATE_ERROR_WAIT:
287 // That went wrong. Now wait for at least two bit periods
288 // and try to sync again
289 if(Uart.drop == DROP_NONE) {
290 Uart.highCnt = 6;
291 Uart.state = STATE_UNSYNCD;
292 }
293 break;
294
295 default:
296 Uart.state = STATE_UNSYNCD;
297 Uart.highCnt = 0;
298 break;
299 }
300
301 Uart.drop = DROP_NONE;
302
303 // should have received at least one whole byte...
304 if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
305 return TRUE;
306 }
307
308 if(Uart.bitCnt == 9) {
309 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
310 Uart.byteCnt++;
311
312 Uart.parityBits <<= 1;
313 Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
314
315 if(EOC) {
316 // when End of Communication received and
317 // all data bits processed..
318 return TRUE;
319 }
320 Uart.bitCnt = 0;
321 }
322
323 /*if(error) {
324 Uart.output[Uart.byteCnt] = 0xAA;
325 Uart.byteCnt++;
326 Uart.output[Uart.byteCnt] = error & 0xFF;
327 Uart.byteCnt++;
328 Uart.output[Uart.byteCnt] = 0xAA;
329 Uart.byteCnt++;
330 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
331 Uart.byteCnt++;
332 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
333 Uart.byteCnt++;
334 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
335 Uart.byteCnt++;
336 Uart.output[Uart.byteCnt] = 0xAA;
337 Uart.byteCnt++;
338 return TRUE;
339 }*/
340 }
341
342 }
343 else {
344 bit = Uart.bitBuffer & 0xf0;
345 bit >>= 4;
346 bit ^= 0x0F;
347 if(bit) {
348 // should have been high or at least (4 * 128) / fc
349 // according to ISO this should be at least (9 * 128 + 20) / fc
350 if(Uart.highCnt == 8) {
351 // we went low, so this could be start of communication
352 // it turns out to be safer to choose a less significant
353 // syncbit... so we check whether the neighbour also represents the drop
354 Uart.posCnt = 1; // apparently we are busy with our first half bit period
355 Uart.syncBit = bit & 8;
356 Uart.samples = 3;
357 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
358 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
359 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
360 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
361 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
362 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
363 Uart.syncBit = 8;
364
365 // the first half bit period is expected in next sample
366 Uart.posCnt = 0;
367 Uart.samples = 3;
368 }
369 }
370 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
371
372 Uart.syncBit <<= 4;
373 Uart.state = STATE_START_OF_COMMUNICATION;
374 Uart.drop = DROP_FIRST_HALF;
375 Uart.bitCnt = 0;
376 Uart.byteCnt = 0;
377 Uart.parityBits = 0;
378 error = 0;
379 }
380 else {
381 Uart.highCnt = 0;
382 }
383 }
384 else {
385 if(Uart.highCnt < 8) {
386 Uart.highCnt++;
387 }
388 }
389 }
390
391 return FALSE;
392 }
393
394 //=============================================================================
395 // ISO 14443 Type A - Manchester
396 //=============================================================================
397
398 static struct {
399 enum {
400 DEMOD_UNSYNCD,
401 DEMOD_START_OF_COMMUNICATION,
402 DEMOD_MANCHESTER_D,
403 DEMOD_MANCHESTER_E,
404 DEMOD_MANCHESTER_F,
405 DEMOD_ERROR_WAIT
406 } state;
407 int bitCount;
408 int posCount;
409 int syncBit;
410 int parityBits;
411 uint16_t shiftReg;
412 int buffer;
413 int buff;
414 int samples;
415 int len;
416 enum {
417 SUB_NONE,
418 SUB_FIRST_HALF,
419 SUB_SECOND_HALF
420 } sub;
421 uint8_t *output;
422 } Demod;
423
424 static RAMFUNC int ManchesterDecoding(int v)
425 {
426 int bit;
427 int modulation;
428 int error = 0;
429
430 if(!Demod.buff) {
431 Demod.buff = 1;
432 Demod.buffer = v;
433 return FALSE;
434 }
435 else {
436 bit = Demod.buffer;
437 Demod.buffer = v;
438 }
439
440 if(Demod.state==DEMOD_UNSYNCD) {
441 Demod.output[Demod.len] = 0xfa;
442 Demod.syncBit = 0;
443 //Demod.samples = 0;
444 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
445
446 if(bit & 0x08) {
447 Demod.syncBit = 0x08;
448 }
449
450 if(bit & 0x04) {
451 if(Demod.syncBit) {
452 bit <<= 4;
453 }
454 Demod.syncBit = 0x04;
455 }
456
457 if(bit & 0x02) {
458 if(Demod.syncBit) {
459 bit <<= 2;
460 }
461 Demod.syncBit = 0x02;
462 }
463
464 if(bit & 0x01 && Demod.syncBit) {
465 Demod.syncBit = 0x01;
466 }
467
468 if(Demod.syncBit) {
469 Demod.len = 0;
470 Demod.state = DEMOD_START_OF_COMMUNICATION;
471 Demod.sub = SUB_FIRST_HALF;
472 Demod.bitCount = 0;
473 Demod.shiftReg = 0;
474 Demod.parityBits = 0;
475 Demod.samples = 0;
476 if(Demod.posCount) {
477 if(trigger) LED_A_OFF();
478 switch(Demod.syncBit) {
479 case 0x08: Demod.samples = 3; break;
480 case 0x04: Demod.samples = 2; break;
481 case 0x02: Demod.samples = 1; break;
482 case 0x01: Demod.samples = 0; break;
483 }
484 }
485 error = 0;
486 }
487 }
488 else {
489 //modulation = bit & Demod.syncBit;
490 modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
491
492 Demod.samples += 4;
493
494 if(Demod.posCount==0) {
495 Demod.posCount = 1;
496 if(modulation) {
497 Demod.sub = SUB_FIRST_HALF;
498 }
499 else {
500 Demod.sub = SUB_NONE;
501 }
502 }
503 else {
504 Demod.posCount = 0;
505 if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
506 if(Demod.state!=DEMOD_ERROR_WAIT) {
507 Demod.state = DEMOD_ERROR_WAIT;
508 Demod.output[Demod.len] = 0xaa;
509 error = 0x01;
510 }
511 }
512 else if(modulation) {
513 Demod.sub = SUB_SECOND_HALF;
514 }
515
516 switch(Demod.state) {
517 case DEMOD_START_OF_COMMUNICATION:
518 if(Demod.sub == SUB_FIRST_HALF) {
519 Demod.state = DEMOD_MANCHESTER_D;
520 }
521 else {
522 Demod.output[Demod.len] = 0xab;
523 Demod.state = DEMOD_ERROR_WAIT;
524 error = 0x02;
525 }
526 break;
527
528 case DEMOD_MANCHESTER_D:
529 case DEMOD_MANCHESTER_E:
530 if(Demod.sub == SUB_FIRST_HALF) {
531 Demod.bitCount++;
532 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
533 Demod.state = DEMOD_MANCHESTER_D;
534 }
535 else if(Demod.sub == SUB_SECOND_HALF) {
536 Demod.bitCount++;
537 Demod.shiftReg >>= 1;
538 Demod.state = DEMOD_MANCHESTER_E;
539 }
540 else {
541 Demod.state = DEMOD_MANCHESTER_F;
542 }
543 break;
544
545 case DEMOD_MANCHESTER_F:
546 // Tag response does not need to be a complete byte!
547 if(Demod.len > 0 || Demod.bitCount > 0) {
548 if(Demod.bitCount > 0) {
549 Demod.shiftReg >>= (9 - Demod.bitCount);
550 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
551 Demod.len++;
552 // No parity bit, so just shift a 0
553 Demod.parityBits <<= 1;
554 }
555
556 Demod.state = DEMOD_UNSYNCD;
557 return TRUE;
558 }
559 else {
560 Demod.output[Demod.len] = 0xad;
561 Demod.state = DEMOD_ERROR_WAIT;
562 error = 0x03;
563 }
564 break;
565
566 case DEMOD_ERROR_WAIT:
567 Demod.state = DEMOD_UNSYNCD;
568 break;
569
570 default:
571 Demod.output[Demod.len] = 0xdd;
572 Demod.state = DEMOD_UNSYNCD;
573 break;
574 }
575
576 if(Demod.bitCount>=9) {
577 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
578 Demod.len++;
579
580 Demod.parityBits <<= 1;
581 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
582
583 Demod.bitCount = 0;
584 Demod.shiftReg = 0;
585 }
586
587 /*if(error) {
588 Demod.output[Demod.len] = 0xBB;
589 Demod.len++;
590 Demod.output[Demod.len] = error & 0xFF;
591 Demod.len++;
592 Demod.output[Demod.len] = 0xBB;
593 Demod.len++;
594 Demod.output[Demod.len] = bit & 0xFF;
595 Demod.len++;
596 Demod.output[Demod.len] = Demod.buffer & 0xFF;
597 Demod.len++;
598 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
599 Demod.len++;
600 Demod.output[Demod.len] = 0xBB;
601 Demod.len++;
602 return TRUE;
603 }*/
604
605 }
606
607 } // end (state != UNSYNCED)
608
609 return FALSE;
610 }
611
612 //=============================================================================
613 // Finally, a `sniffer' for ISO 14443 Type A
614 // Both sides of communication!
615 //=============================================================================
616
617 //-----------------------------------------------------------------------------
618 // Record the sequence of commands sent by the reader to the tag, with
619 // triggering so that we start recording at the point that the tag is moved
620 // near the reader.
621 //-----------------------------------------------------------------------------
622 void RAMFUNC SnoopIso14443a(void)
623 {
624 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
625 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
626 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
627 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
628 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
629
630 // We won't start recording the frames that we acquire until we trigger;
631 // a good trigger condition to get started is probably when we see a
632 // response from the tag.
633 int triggered = FALSE; // FALSE to wait first for card
634
635 // The command (reader -> tag) that we're receiving.
636 // The length of a received command will in most cases be no more than 18 bytes.
637 // So 32 should be enough!
638 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
639 // The response (tag -> reader) that we're receiving.
640 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
641
642 // As we receive stuff, we copy it from receivedCmd or receivedResponse
643 // into trace, along with its length and other annotations.
644 //uint8_t *trace = (uint8_t *)BigBuf;
645
646 traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
647
648 // The DMA buffer, used to stream samples from the FPGA
649 int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
650 int lastRxCounter;
651 int8_t *upTo;
652 int smpl;
653 int maxBehindBy = 0;
654
655 // Count of samples received so far, so that we can include timing
656 // information in the trace buffer.
657 int samples = 0;
658 int rsamples = 0;
659
660 memset(trace, 0x44, RECV_CMD_OFFSET);
661
662 // Set up the demodulator for tag -> reader responses.
663 Demod.output = receivedResponse;
664 Demod.len = 0;
665 Demod.state = DEMOD_UNSYNCD;
666
667 // Setup for the DMA.
668 FpgaSetupSsc();
669 upTo = dmaBuf;
670 lastRxCounter = DMA_BUFFER_SIZE;
671 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
672
673 // And the reader -> tag commands
674 memset(&Uart, 0, sizeof(Uart));
675 Uart.output = receivedCmd;
676 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
677 Uart.state = STATE_UNSYNCD;
678
679 // And put the FPGA in the appropriate mode
680 // Signal field is off with the appropriate LED
681 LED_D_OFF();
682 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
683 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
684
685
686 // And now we loop, receiving samples.
687 for(;;) {
688 LED_A_ON();
689 WDT_HIT();
690 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
691 (DMA_BUFFER_SIZE-1);
692 if(behindBy > maxBehindBy) {
693 maxBehindBy = behindBy;
694 if(behindBy > 400) {
695 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
696 goto done;
697 }
698 }
699 if(behindBy < 1) continue;
700
701 LED_A_OFF();
702 smpl = upTo[0];
703 upTo++;
704 lastRxCounter -= 1;
705 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
706 upTo -= DMA_BUFFER_SIZE;
707 lastRxCounter += DMA_BUFFER_SIZE;
708 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
709 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
710 }
711
712 samples += 4;
713 if(MillerDecoding((smpl & 0xF0) >> 4)) {
714 rsamples = samples - Uart.samples;
715 LED_C_ON();
716 if(triggered) {
717 trace[traceLen++] = ((rsamples >> 0) & 0xff);
718 trace[traceLen++] = ((rsamples >> 8) & 0xff);
719 trace[traceLen++] = ((rsamples >> 16) & 0xff);
720 trace[traceLen++] = ((rsamples >> 24) & 0xff);
721 trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
722 trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
723 trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
724 trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
725 trace[traceLen++] = Uart.byteCnt;
726 memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
727 traceLen += Uart.byteCnt;
728 if(traceLen > TRACE_LENGTH) break;
729 }
730 /* And ready to receive another command. */
731 Uart.state = STATE_UNSYNCD;
732 /* And also reset the demod code, which might have been */
733 /* false-triggered by the commands from the reader. */
734 Demod.state = DEMOD_UNSYNCD;
735 LED_B_OFF();
736 }
737
738 if(ManchesterDecoding(smpl & 0x0F)) {
739 rsamples = samples - Demod.samples;
740 LED_B_ON();
741
742 // timestamp, as a count of samples
743 trace[traceLen++] = ((rsamples >> 0) & 0xff);
744 trace[traceLen++] = ((rsamples >> 8) & 0xff);
745 trace[traceLen++] = ((rsamples >> 16) & 0xff);
746 trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
747 trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
748 trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
749 trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
750 trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
751 // length
752 trace[traceLen++] = Demod.len;
753 memcpy(trace+traceLen, receivedResponse, Demod.len);
754 traceLen += Demod.len;
755 if(traceLen > TRACE_LENGTH) break;
756
757 triggered = TRUE;
758
759 // And ready to receive another response.
760 memset(&Demod, 0, sizeof(Demod));
761 Demod.output = receivedResponse;
762 Demod.state = DEMOD_UNSYNCD;
763 LED_C_OFF();
764 }
765
766 if(BUTTON_PRESS()) {
767 DbpString("cancelled_a");
768 goto done;
769 }
770 }
771
772 DbpString("COMMAND FINISHED");
773
774 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
775 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
776
777 done:
778 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
779 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
780 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
781 LED_A_OFF();
782 LED_B_OFF();
783 LED_C_OFF();
784 LED_D_OFF();
785 }
786
787 //-----------------------------------------------------------------------------
788 // Prepare tag messages
789 //-----------------------------------------------------------------------------
790 static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
791 {
792 int i;
793 int oddparity;
794
795 ToSendReset();
796
797 // Correction bit, might be removed when not needed
798 ToSendStuffBit(0);
799 ToSendStuffBit(0);
800 ToSendStuffBit(0);
801 ToSendStuffBit(0);
802 ToSendStuffBit(1); // 1
803 ToSendStuffBit(0);
804 ToSendStuffBit(0);
805 ToSendStuffBit(0);
806
807 // Send startbit
808 ToSend[++ToSendMax] = SEC_D;
809
810 for(i = 0; i < len; i++) {
811 int j;
812 uint8_t b = cmd[i];
813
814 // Data bits
815 oddparity = 0x01;
816 for(j = 0; j < 8; j++) {
817 oddparity ^= (b & 1);
818 if(b & 1) {
819 ToSend[++ToSendMax] = SEC_D;
820 } else {
821 ToSend[++ToSendMax] = SEC_E;
822 }
823 b >>= 1;
824 }
825
826 // Parity bit
827 if(oddparity) {
828 ToSend[++ToSendMax] = SEC_D;
829 } else {
830 ToSend[++ToSendMax] = SEC_E;
831 }
832 }
833
834 // Send stopbit
835 ToSend[++ToSendMax] = SEC_F;
836
837 // Flush the buffer in FPGA!!
838 for(i = 0; i < 5; i++) {
839 ToSend[++ToSendMax] = SEC_F;
840 }
841
842 // Convert from last byte pos to length
843 ToSendMax++;
844
845 // Add a few more for slop
846 ToSend[ToSendMax++] = 0x00;
847 ToSend[ToSendMax++] = 0x00;
848 //ToSendMax += 2;
849 }
850
851 //-----------------------------------------------------------------------------
852 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
853 //-----------------------------------------------------------------------------
854 static void CodeStrangeAnswer()
855 {
856 int i;
857
858 ToSendReset();
859
860 // Correction bit, might be removed when not needed
861 ToSendStuffBit(0);
862 ToSendStuffBit(0);
863 ToSendStuffBit(0);
864 ToSendStuffBit(0);
865 ToSendStuffBit(1); // 1
866 ToSendStuffBit(0);
867 ToSendStuffBit(0);
868 ToSendStuffBit(0);
869
870 // Send startbit
871 ToSend[++ToSendMax] = SEC_D;
872
873 // 0
874 ToSend[++ToSendMax] = SEC_E;
875
876 // 0
877 ToSend[++ToSendMax] = SEC_E;
878
879 // 1
880 ToSend[++ToSendMax] = SEC_D;
881
882 // Send stopbit
883 ToSend[++ToSendMax] = SEC_F;
884
885 // Flush the buffer in FPGA!!
886 for(i = 0; i < 5; i++) {
887 ToSend[++ToSendMax] = SEC_F;
888 }
889
890 // Convert from last byte pos to length
891 ToSendMax++;
892
893 // Add a few more for slop
894 ToSend[ToSendMax++] = 0x00;
895 ToSend[ToSendMax++] = 0x00;
896 //ToSendMax += 2;
897 }
898
899 //-----------------------------------------------------------------------------
900 // Wait for commands from reader
901 // Stop when button is pressed
902 // Or return TRUE when command is captured
903 //-----------------------------------------------------------------------------
904 static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
905 {
906 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
907 // only, since we are receiving, not transmitting).
908 // Signal field is off with the appropriate LED
909 LED_D_OFF();
910 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
911
912 // Now run a `software UART' on the stream of incoming samples.
913 Uart.output = received;
914 Uart.byteCntMax = maxLen;
915 Uart.state = STATE_UNSYNCD;
916
917 for(;;) {
918 WDT_HIT();
919
920 if(BUTTON_PRESS()) return FALSE;
921
922 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
923 AT91C_BASE_SSC->SSC_THR = 0x00;
924 }
925 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
926 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
927 if(MillerDecoding((b & 0xf0) >> 4)) {
928 *len = Uart.byteCnt;
929 return TRUE;
930 }
931 if(MillerDecoding(b & 0x0f)) {
932 *len = Uart.byteCnt;
933 return TRUE;
934 }
935 }
936 }
937 }
938 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
939
940 //-----------------------------------------------------------------------------
941 // Main loop of simulated tag: receive commands from reader, decide what
942 // response to send, and send it.
943 //-----------------------------------------------------------------------------
944 void SimulateIso14443aTag(int tagType, int TagUid)
945 {
946 // This function contains the tag emulation
947
948 // Prepare protocol messages
949 // static const uint8_t cmd1[] = { 0x26 };
950 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
951 //
952 static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
953 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
954
955 // UID response
956 // static const uint8_t cmd2[] = { 0x93, 0x20 };
957 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
958
959 // my desfire
960 static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
961
962
963 // When reader selects us during cascade1 it will send cmd3
964 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
965 uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
966 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
967
968 // send cascade2 2nd half of UID
969 static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
970 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
971
972 // When reader selects us during cascade2 it will send cmd3a
973 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
974 uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
975 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
976
977 static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
978
979 uint8_t *resp;
980 int respLen;
981
982 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
983 // This will need
984 // 144 data bits (18 * 8)
985 // 18 parity bits
986 // 2 Start and stop
987 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
988 // 1 just for the case
989 // ----------- +
990 // 166
991 //
992 // 166 bytes, since every bit that needs to be send costs us a byte
993 //
994
995 // Respond with card type
996 uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
997 int resp1Len;
998
999 // Anticollision cascade1 - respond with uid
1000 uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
1001 int resp2Len;
1002
1003 // Anticollision cascade2 - respond with 2nd half of uid if asked
1004 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1005 uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
1006 int resp2aLen;
1007
1008 // Acknowledge select - cascade 1
1009 uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
1010 int resp3Len;
1011
1012 // Acknowledge select - cascade 2
1013 uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
1014 int resp3aLen;
1015
1016 // Response to a read request - not implemented atm
1017 uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
1018 int resp4Len;
1019
1020 // Authenticate response - nonce
1021 uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
1022 int resp5Len;
1023
1024 uint8_t *receivedCmd = (uint8_t *)BigBuf;
1025 int len;
1026
1027 int i;
1028 int u;
1029 uint8_t b;
1030
1031 // To control where we are in the protocol
1032 int order = 0;
1033 int lastorder;
1034
1035 // Just to allow some checks
1036 int happened = 0;
1037 int happened2 = 0;
1038
1039 int cmdsRecvd = 0;
1040
1041 int fdt_indicator;
1042
1043 memset(receivedCmd, 0x44, 400);
1044
1045 // Prepare the responses of the anticollision phase
1046 // there will be not enough time to do this at the moment the reader sends it REQA
1047
1048 // Answer to request
1049 CodeIso14443aAsTag(response1, sizeof(response1));
1050 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1051
1052 // Send our UID (cascade 1)
1053 CodeIso14443aAsTag(response2, sizeof(response2));
1054 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1055
1056 // Answer to select (cascade1)
1057 CodeIso14443aAsTag(response3, sizeof(response3));
1058 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1059
1060 // Send the cascade 2 2nd part of the uid
1061 CodeIso14443aAsTag(response2a, sizeof(response2a));
1062 memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
1063
1064 // Answer to select (cascade 2)
1065 CodeIso14443aAsTag(response3a, sizeof(response3a));
1066 memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
1067
1068 // Strange answer is an example of rare message size (3 bits)
1069 CodeStrangeAnswer();
1070 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1071
1072 // Authentication answer (random nonce)
1073 CodeIso14443aAsTag(response5, sizeof(response5));
1074 memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
1075
1076 // We need to listen to the high-frequency, peak-detected path.
1077 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1078 FpgaSetupSsc();
1079
1080 cmdsRecvd = 0;
1081
1082 LED_A_ON();
1083 for(;;) {
1084
1085 if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
1086 DbpString("button press");
1087 break;
1088 }
1089 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1090 // Okay, look at the command now.
1091 lastorder = order;
1092 i = 1; // first byte transmitted
1093 if(receivedCmd[0] == 0x26) {
1094 // Received a REQUEST
1095 resp = resp1; respLen = resp1Len; order = 1;
1096 //DbpString("Hello request from reader:");
1097 } else if(receivedCmd[0] == 0x52) {
1098 // Received a WAKEUP
1099 resp = resp1; respLen = resp1Len; order = 6;
1100 // //DbpString("Wakeup request from reader:");
1101
1102 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
1103 // Received request for UID (cascade 1)
1104 resp = resp2; respLen = resp2Len; order = 2;
1105 // DbpString("UID (cascade 1) request from reader:");
1106 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1107
1108
1109 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
1110 // Received request for UID (cascade 2)
1111 resp = resp2a; respLen = resp2aLen; order = 20;
1112 // DbpString("UID (cascade 2) request from reader:");
1113 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1114
1115
1116 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
1117 // Received a SELECT
1118 resp = resp3; respLen = resp3Len; order = 3;
1119 // DbpString("Select (cascade 1) request from reader:");
1120 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1121
1122
1123 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
1124 // Received a SELECT
1125 resp = resp3a; respLen = resp3aLen; order = 30;
1126 // DbpString("Select (cascade 2) request from reader:");
1127 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1128
1129
1130 } else if(receivedCmd[0] == 0x30) {
1131 // Received a READ
1132 resp = resp4; respLen = resp4Len; order = 4; // Do nothing
1133 Dbprintf("Read request from reader: %x %x %x",
1134 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1135
1136
1137 } else if(receivedCmd[0] == 0x50) {
1138 // Received a HALT
1139 resp = resp1; respLen = 0; order = 5; // Do nothing
1140 DbpString("Reader requested we HALT!:");
1141
1142 } else if(receivedCmd[0] == 0x60) {
1143 // Received an authentication request
1144 resp = resp5; respLen = resp5Len; order = 7;
1145 Dbprintf("Authenticate request from reader: %x %x %x",
1146 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1147
1148 } else if(receivedCmd[0] == 0xE0) {
1149 // Received a RATS request
1150 resp = resp1; respLen = 0;order = 70;
1151 Dbprintf("RATS request from reader: %x %x %x",
1152 receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1153 } else {
1154 // Never seen this command before
1155 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1156 len,
1157 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1158 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1159 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1160 // Do not respond
1161 resp = resp1; respLen = 0; order = 0;
1162 }
1163
1164 // Count number of wakeups received after a halt
1165 if(order == 6 && lastorder == 5) { happened++; }
1166
1167 // Count number of other messages after a halt
1168 if(order != 6 && lastorder == 5) { happened2++; }
1169
1170 // Look at last parity bit to determine timing of answer
1171 if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
1172 // 1236, so correction bit needed
1173 i = 0;
1174 }
1175
1176 memset(receivedCmd, 0x44, 32);
1177
1178 if(cmdsRecvd > 999) {
1179 DbpString("1000 commands later...");
1180 break;
1181 }
1182 else {
1183 cmdsRecvd++;
1184 }
1185
1186 if(respLen <= 0) continue;
1187 //----------------------------
1188 u = 0;
1189 b = 0x00;
1190 fdt_indicator = FALSE;
1191
1192 EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
1193 /* // Modulate Manchester
1194 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1195 AT91C_BASE_SSC->SSC_THR = 0x00;
1196 FpgaSetupSsc();
1197
1198 // ### Transmit the response ###
1199 u = 0;
1200 b = 0x00;
1201 fdt_indicator = FALSE;
1202 for(;;) {
1203 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1204 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1205 (void)b;
1206 }
1207 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1208 if(i > respLen) {
1209 b = 0x00;
1210 u++;
1211 } else {
1212 b = resp[i];
1213 i++;
1214 }
1215 AT91C_BASE_SSC->SSC_THR = b;
1216
1217 if(u > 4) {
1218 break;
1219 }
1220 }
1221 if(BUTTON_PRESS()) {
1222 break;
1223 }
1224 }
1225 */
1226 }
1227
1228 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1229 LED_A_OFF();
1230 }
1231
1232 //-----------------------------------------------------------------------------
1233 // Transmit the command (to the tag) that was placed in ToSend[].
1234 //-----------------------------------------------------------------------------
1235 static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
1236 {
1237 int c;
1238
1239 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1240
1241 if (wait)
1242 if(*wait < 10)
1243 *wait = 10;
1244
1245 for(c = 0; c < *wait;) {
1246 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1247 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1248 c++;
1249 }
1250 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1251 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1252 (void)r;
1253 }
1254 WDT_HIT();
1255 }
1256
1257 c = 0;
1258 for(;;) {
1259 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1260 AT91C_BASE_SSC->SSC_THR = cmd[c];
1261 c++;
1262 if(c >= len) {
1263 break;
1264 }
1265 }
1266 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1267 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1268 (void)r;
1269 }
1270 WDT_HIT();
1271 }
1272 if (samples) *samples = (c + *wait) << 3;
1273 }
1274
1275 //-----------------------------------------------------------------------------
1276 // Code a 7-bit command without parity bit
1277 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1278 //-----------------------------------------------------------------------------
1279 void ShortFrameFromReader(const uint8_t bt)
1280 {
1281 int j;
1282 int last;
1283 uint8_t b;
1284
1285 ToSendReset();
1286
1287 // Start of Communication (Seq. Z)
1288 ToSend[++ToSendMax] = SEC_Z;
1289 last = 0;
1290
1291 b = bt;
1292 for(j = 0; j < 7; j++) {
1293 if(b & 1) {
1294 // Sequence X
1295 ToSend[++ToSendMax] = SEC_X;
1296 last = 1;
1297 } else {
1298 if(last == 0) {
1299 // Sequence Z
1300 ToSend[++ToSendMax] = SEC_Z;
1301 }
1302 else {
1303 // Sequence Y
1304 ToSend[++ToSendMax] = SEC_Y;
1305 last = 0;
1306 }
1307 }
1308 b >>= 1;
1309 }
1310
1311 // End of Communication
1312 if(last == 0) {
1313 // Sequence Z
1314 ToSend[++ToSendMax] = SEC_Z;
1315 }
1316 else {
1317 // Sequence Y
1318 ToSend[++ToSendMax] = SEC_Y;
1319 last = 0;
1320 }
1321 // Sequence Y
1322 ToSend[++ToSendMax] = SEC_Y;
1323
1324 // Just to be sure!
1325 ToSend[++ToSendMax] = SEC_Y;
1326 ToSend[++ToSendMax] = SEC_Y;
1327 ToSend[++ToSendMax] = SEC_Y;
1328
1329 // Convert from last character reference to length
1330 ToSendMax++;
1331 }
1332
1333 //-----------------------------------------------------------------------------
1334 // Prepare reader command to send to FPGA
1335 //
1336 //-----------------------------------------------------------------------------
1337 void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1338 {
1339 int i, j;
1340 int last;
1341 uint8_t b;
1342
1343 ToSendReset();
1344
1345 // Start of Communication (Seq. Z)
1346 ToSend[++ToSendMax] = SEC_Z;
1347 last = 0;
1348
1349 // Generate send structure for the data bits
1350 for (i = 0; i < len; i++) {
1351 // Get the current byte to send
1352 b = cmd[i];
1353
1354 for (j = 0; j < 8; j++) {
1355 if (b & 1) {
1356 // Sequence X
1357 ToSend[++ToSendMax] = SEC_X;
1358 last = 1;
1359 } else {
1360 if (last == 0) {
1361 // Sequence Z
1362 ToSend[++ToSendMax] = SEC_Z;
1363 } else {
1364 // Sequence Y
1365 ToSend[++ToSendMax] = SEC_Y;
1366 last = 0;
1367 }
1368 }
1369 b >>= 1;
1370 }
1371
1372 // Get the parity bit
1373 if ((dwParity >> i) & 0x01) {
1374 // Sequence X
1375 ToSend[++ToSendMax] = SEC_X;
1376 last = 1;
1377 } else {
1378 if (last == 0) {
1379 // Sequence Z
1380 ToSend[++ToSendMax] = SEC_Z;
1381 } else {
1382 // Sequence Y
1383 ToSend[++ToSendMax] = SEC_Y;
1384 last = 0;
1385 }
1386 }
1387 }
1388
1389 // End of Communication
1390 if (last == 0) {
1391 // Sequence Z
1392 ToSend[++ToSendMax] = SEC_Z;
1393 } else {
1394 // Sequence Y
1395 ToSend[++ToSendMax] = SEC_Y;
1396 last = 0;
1397 }
1398 // Sequence Y
1399 ToSend[++ToSendMax] = SEC_Y;
1400
1401 // Just to be sure!
1402 ToSend[++ToSendMax] = SEC_Y;
1403 ToSend[++ToSendMax] = SEC_Y;
1404 ToSend[++ToSendMax] = SEC_Y;
1405
1406 // Convert from last character reference to length
1407 ToSendMax++;
1408 }
1409
1410 //-----------------------------------------------------------------------------
1411 // Wait for commands from reader
1412 // Stop when button is pressed (return 1) or field was gone (return 2)
1413 // Or return 0 when command is captured
1414 //-----------------------------------------------------------------------------
1415 static int EmGetCmd(uint8_t *received, int *len, int maxLen)
1416 {
1417 *len = 0;
1418
1419 uint32_t timer = 0, vtime = 0;
1420 int analogCnt = 0;
1421 int analogAVG = 0;
1422
1423 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1424 // only, since we are receiving, not transmitting).
1425 // Signal field is off with the appropriate LED
1426 LED_D_OFF();
1427 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1428
1429 // Set ADC to read field strength
1430 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1431 AT91C_BASE_ADC->ADC_MR =
1432 ADC_MODE_PRESCALE(32) |
1433 ADC_MODE_STARTUP_TIME(16) |
1434 ADC_MODE_SAMPLE_HOLD_TIME(8);
1435 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1436 // start ADC
1437 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1438
1439 // Now run a 'software UART' on the stream of incoming samples.
1440 Uart.output = received;
1441 Uart.byteCntMax = maxLen;
1442 Uart.state = STATE_UNSYNCD;
1443
1444 for(;;) {
1445 WDT_HIT();
1446
1447 if (BUTTON_PRESS()) return 1;
1448
1449 // test if the field exists
1450 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1451 analogCnt++;
1452 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1453 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1454 if (analogCnt >= 32) {
1455 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1456 vtime = GetTickCount();
1457 if (!timer) timer = vtime;
1458 // 50ms no field --> card to idle state
1459 if (vtime - timer > 50) return 2;
1460 } else
1461 if (timer) timer = 0;
1462 analogCnt = 0;
1463 analogAVG = 0;
1464 }
1465 }
1466 // transmit none
1467 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1468 AT91C_BASE_SSC->SSC_THR = 0x00;
1469 }
1470 // receive and test the miller decoding
1471 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1472 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1473 if(MillerDecoding((b & 0xf0) >> 4)) {
1474 *len = Uart.byteCnt;
1475 if (tracing) LogTrace(received, *len, 0, GetParity(received, *len), TRUE);
1476 return 0;
1477 }
1478 if(MillerDecoding(b & 0x0f)) {
1479 *len = Uart.byteCnt;
1480 if (tracing) LogTrace(received, *len, 0, GetParity(received, *len), TRUE);
1481 return 0;
1482 }
1483 }
1484 }
1485 }
1486
1487 static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
1488 {
1489 int i, u = 0;
1490 uint8_t b = 0;
1491
1492 // Modulate Manchester
1493 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1494 AT91C_BASE_SSC->SSC_THR = 0x00;
1495 FpgaSetupSsc();
1496
1497 // include correction bit
1498 i = 1;
1499 if((Uart.parityBits & 0x01) || correctionNeeded) {
1500 // 1236, so correction bit needed
1501 i = 0;
1502 }
1503
1504 // send cycle
1505 for(;;) {
1506 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1507 volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1508 (void)b;
1509 }
1510 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1511 if(i > respLen) {
1512 b = 0x00;
1513 u++;
1514 } else {
1515 b = resp[i];
1516 i++;
1517 }
1518 AT91C_BASE_SSC->SSC_THR = b;
1519
1520 if(u > 4) break;
1521 }
1522 if(BUTTON_PRESS()) {
1523 break;
1524 }
1525 }
1526
1527 return 0;
1528 }
1529
1530 static int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
1531 CodeIso14443aAsTag(resp, respLen);
1532 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1533 if (tracing) LogTrace(resp, respLen, 0, GetParity(resp, respLen), FALSE);
1534 return res;
1535 }
1536
1537 static int EmSendCmd(uint8_t *resp, int respLen){
1538 return EmSendCmdEx(resp, respLen, 0);
1539 }
1540
1541 //-----------------------------------------------------------------------------
1542 // Wait a certain time for tag response
1543 // If a response is captured return TRUE
1544 // If it takes to long return FALSE
1545 //-----------------------------------------------------------------------------
1546 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1547 {
1548 // buffer needs to be 512 bytes
1549 int c;
1550
1551 // Set FPGA mode to "reader listen mode", no modulation (listen
1552 // only, since we are receiving, not transmitting).
1553 // Signal field is on with the appropriate LED
1554 LED_D_ON();
1555 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1556
1557 // Now get the answer from the card
1558 Demod.output = receivedResponse;
1559 Demod.len = 0;
1560 Demod.state = DEMOD_UNSYNCD;
1561
1562 uint8_t b;
1563 if (elapsed) *elapsed = 0;
1564
1565 c = 0;
1566 for(;;) {
1567 WDT_HIT();
1568
1569 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1570 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1571 if (elapsed) (*elapsed)++;
1572 }
1573 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1574 if(c < iso14a_timeout) { c++; } else { return FALSE; }
1575 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1576 if(ManchesterDecoding((b>>4) & 0xf)) {
1577 *samples = ((c - 1) << 3) + 4;
1578 return TRUE;
1579 }
1580 if(ManchesterDecoding(b & 0x0f)) {
1581 *samples = c << 3;
1582 return TRUE;
1583 }
1584 }
1585 }
1586 }
1587
1588 void ReaderTransmitShort(const uint8_t* bt)
1589 {
1590 int wait = 0;
1591 int samples = 0;
1592
1593 ShortFrameFromReader(*bt);
1594
1595 // Select the card
1596 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1597
1598 // Store reader command in buffer
1599 if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
1600 }
1601
1602 void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
1603 {
1604 int wait = 0;
1605 int samples = 0;
1606
1607 // This is tied to other size changes
1608 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1609 CodeIso14443aAsReaderPar(frame,len,par);
1610
1611 // Select the card
1612 TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
1613 if(trigger)
1614 LED_A_ON();
1615
1616 // Store reader command in buffer
1617 if (tracing) LogTrace(frame,len,0,par,TRUE);
1618 }
1619
1620
1621 void ReaderTransmit(uint8_t* frame, int len)
1622 {
1623 // Generate parity and redirect
1624 ReaderTransmitPar(frame,len,GetParity(frame,len));
1625 }
1626
1627 int ReaderReceive(uint8_t* receivedAnswer)
1628 {
1629 int samples = 0;
1630 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1631 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1632 if(samples == 0) return FALSE;
1633 return Demod.len;
1634 }
1635
1636 int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
1637 {
1638 int samples = 0;
1639 if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
1640 if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
1641 *parptr = Demod.parityBits;
1642 if(samples == 0) return FALSE;
1643 return Demod.len;
1644 }
1645
1646 /* performs iso14443a anticolision procedure
1647 * fills the uid pointer unless NULL
1648 * fills resp_data unless NULL */
1649 int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) {
1650 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1651 uint8_t sel_all[] = { 0x93,0x20 };
1652 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1653 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1654
1655 uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1656
1657 uint8_t sak = 0x04; // cascade uid
1658 int cascade_level = 0;
1659
1660 int len;
1661
1662 // clear uid
1663 memset(uid_ptr, 0, 8);
1664
1665 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1666 ReaderTransmitShort(wupa);
1667 // Receive the ATQA
1668 if(!ReaderReceive(resp)) return 0;
1669
1670 if(resp_data)
1671 memcpy(resp_data->atqa, resp, 2);
1672
1673 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1674 // which case we need to make a cascade 2 request and select - this is a long UID
1675 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1676 for(; sak & 0x04; cascade_level++)
1677 {
1678 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1679 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1680
1681 // SELECT_ALL
1682 ReaderTransmit(sel_all,sizeof(sel_all));
1683 if (!ReaderReceive(resp)) return 0;
1684 if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4);
1685
1686 // calculate crypto UID
1687 if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4);
1688
1689 // Construct SELECT UID command
1690 memcpy(sel_uid+2,resp,5);
1691 AppendCrc14443a(sel_uid,7);
1692 ReaderTransmit(sel_uid,sizeof(sel_uid));
1693
1694 // Receive the SAK
1695 if (!ReaderReceive(resp)) return 0;
1696 sak = resp[0];
1697 }
1698 if(resp_data) {
1699 resp_data->sak = sak;
1700 resp_data->ats_len = 0;
1701 }
1702 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1703 if (uid_ptr[0] == 0x88) {
1704 memcpy(uid_ptr, uid_ptr + 1, 7);
1705 uid_ptr[7] = 0;
1706 }
1707
1708 if( (sak & 0x20) == 0)
1709 return 2; // non iso14443a compliant tag
1710
1711 // Request for answer to select
1712 if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1713 AppendCrc14443a(rats, 2);
1714 ReaderTransmit(rats, sizeof(rats));
1715
1716 if (!(len = ReaderReceive(resp))) return 0;
1717
1718 memcpy(resp_data->ats, resp, sizeof(resp_data->ats));
1719 resp_data->ats_len = len;
1720 }
1721
1722 return 1;
1723 }
1724
1725 void iso14443a_setup() {
1726 // Setup SSC
1727 FpgaSetupSsc();
1728 // Start from off (no field generated)
1729 // Signal field is off with the appropriate LED
1730 LED_D_OFF();
1731 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1732 SpinDelay(200);
1733
1734 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1735
1736 // Now give it time to spin up.
1737 // Signal field is on with the appropriate LED
1738 LED_D_ON();
1739 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1740 SpinDelay(200);
1741
1742 iso14a_timeout = 2048; //default
1743 }
1744
1745 int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1746 uint8_t real_cmd[cmd_len+4];
1747 real_cmd[0] = 0x0a; //I-Block
1748 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1749 memcpy(real_cmd+2, cmd, cmd_len);
1750 AppendCrc14443a(real_cmd,cmd_len+2);
1751
1752 ReaderTransmit(real_cmd, cmd_len+4);
1753 size_t len = ReaderReceive(data);
1754 if(!len)
1755 return -1; //DATA LINK ERROR
1756
1757 return len;
1758 }
1759
1760
1761 //-----------------------------------------------------------------------------
1762 // Read an ISO 14443a tag. Send out commands and store answers.
1763 //
1764 //-----------------------------------------------------------------------------
1765 void ReaderIso14443a(UsbCommand * c, UsbCommand * ack)
1766 {
1767 iso14a_command_t param = c->arg[0];
1768 uint8_t * cmd = c->d.asBytes;
1769 size_t len = c->arg[1];
1770
1771 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1);
1772
1773 if(param & ISO14A_CONNECT) {
1774 iso14443a_setup();
1775 ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL);
1776 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1777 }
1778
1779 if(param & ISO14A_SET_TIMEOUT) {
1780 iso14a_timeout = c->arg[2];
1781 }
1782
1783 if(param & ISO14A_SET_TIMEOUT) {
1784 iso14a_timeout = c->arg[2];
1785 }
1786
1787 if(param & ISO14A_APDU) {
1788 ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes);
1789 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1790 }
1791
1792 if(param & ISO14A_RAW) {
1793 if(param & ISO14A_APPEND_CRC) {
1794 AppendCrc14443a(cmd,len);
1795 len += 2;
1796 }
1797 ReaderTransmit(cmd,len);
1798 ack->arg[0] = ReaderReceive(ack->d.asBytes);
1799 UsbSendPacket((void *)ack, sizeof(UsbCommand));
1800 }
1801
1802 if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0);
1803
1804 if(param & ISO14A_NO_DISCONNECT)
1805 return;
1806
1807 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1808 LEDsoff();
1809 }
1810 //-----------------------------------------------------------------------------
1811 // Read an ISO 14443a tag. Send out commands and store answers.
1812 //
1813 //-----------------------------------------------------------------------------
1814 void ReaderMifare(uint32_t parameter)
1815 {
1816 // Mifare AUTH
1817 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1818 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1819
1820 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
1821 traceLen = 0;
1822 tracing = false;
1823
1824 iso14443a_setup();
1825
1826 LED_A_ON();
1827 LED_B_OFF();
1828 LED_C_OFF();
1829
1830 byte_t nt_diff = 0;
1831 LED_A_OFF();
1832 byte_t par = 0;
1833 byte_t par_mask = 0xff;
1834 byte_t par_low = 0;
1835 int led_on = TRUE;
1836 uint8_t uid[8];
1837 uint32_t cuid;
1838
1839 tracing = FALSE;
1840 byte_t nt[4] = {0,0,0,0};
1841 byte_t nt_attacked[4], nt_noattack[4];
1842 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1843 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
1844 num_to_bytes(parameter, 4, nt_noattack);
1845 int isOK = 0, isNULL = 0;
1846
1847 while(TRUE)
1848 {
1849 LED_C_ON();
1850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1851 SpinDelay(200);
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1853 LED_C_OFF();
1854
1855 // Test if the action was cancelled
1856 if(BUTTON_PRESS()) {
1857 break;
1858 }
1859
1860 if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
1861
1862 // Transmit MIFARE_CLASSIC_AUTH
1863 ReaderTransmit(mf_auth, sizeof(mf_auth));
1864
1865 // Receive the (16 bit) "random" nonce
1866 if (!ReaderReceive(receivedAnswer)) continue;
1867 memcpy(nt, receivedAnswer, 4);
1868
1869 // Transmit reader nonce and reader answer
1870 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
1871
1872 // Receive 4 bit answer
1873 if (ReaderReceive(receivedAnswer))
1874 {
1875 if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
1876
1877 isNULL = (nt_attacked[0] = 0) && (nt_attacked[1] = 0) && (nt_attacked[2] = 0) && (nt_attacked[3] = 0);
1878 if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue;
1879
1880 if (nt_diff == 0)
1881 {
1882 LED_A_ON();
1883 memcpy(nt_attacked, nt, 4);
1884 par_mask = 0xf8;
1885 par_low = par & 0x07;
1886 }
1887
1888 led_on = !led_on;
1889 if(led_on) LED_B_ON(); else LED_B_OFF();
1890 par_list[nt_diff] = par;
1891 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
1892
1893 // Test if the information is complete
1894 if (nt_diff == 0x07) {
1895 isOK = 1;
1896 break;
1897 }
1898
1899 nt_diff = (nt_diff + 1) & 0x07;
1900 mf_nr_ar[3] = nt_diff << 5;
1901 par = par_low;
1902 } else {
1903 if (nt_diff == 0)
1904 {
1905 par++;
1906 } else {
1907 par = (((par >> 3) + 1) << 3) | par_low;
1908 }
1909 }
1910 }
1911
1912 LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
1913 LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
1914 LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
1915
1916 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
1917 memcpy(ack.d.asBytes + 0, uid, 4);
1918 memcpy(ack.d.asBytes + 4, nt, 4);
1919 memcpy(ack.d.asBytes + 8, par_list, 8);
1920 memcpy(ack.d.asBytes + 16, ks_list, 8);
1921
1922 LED_B_ON();
1923 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
1924 LED_B_OFF();
1925
1926 // Thats it...
1927 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1928 LEDsoff();
1929 tracing = TRUE;
1930
1931 if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED");
1932 }
1933
1934 //-----------------------------------------------------------------------------
1935 // Select, Authenticaate, Read an MIFARE tag.
1936 // read block
1937 //-----------------------------------------------------------------------------
1938 void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
1939 {
1940 // params
1941 uint8_t blockNo = arg0;
1942 uint8_t keyType = arg1;
1943 uint64_t ui64Key = 0;
1944 ui64Key = bytes_to_num(datain, 6);
1945
1946 // variables
1947 byte_t isOK = 0;
1948 byte_t dataoutbuf[16];
1949 uint8_t uid[8];
1950 uint32_t cuid;
1951 struct Crypto1State mpcs = {0, 0};
1952 struct Crypto1State *pcs;
1953 pcs = &mpcs;
1954
1955 // clear trace
1956 traceLen = 0;
1957 // tracing = false;
1958
1959 iso14443a_setup();
1960
1961 LED_A_ON();
1962 LED_B_OFF();
1963 LED_C_OFF();
1964
1965 while (true) {
1966 if(!iso14443a_select_card(uid, NULL, &cuid)) {
1967 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
1968 break;
1969 };
1970
1971 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
1972 if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
1973 break;
1974 };
1975
1976 if(mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) {
1977 if (MF_DBGLEVEL >= 1) Dbprintf("Read block error");
1978 break;
1979 };
1980
1981 if(mifare_classic_halt(pcs, cuid)) {
1982 if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
1983 break;
1984 };
1985
1986 isOK = 1;
1987 break;
1988 }
1989
1990 // ----------------------------- crypto1 destroy
1991 crypto1_destroy(pcs);
1992
1993 if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED");
1994
1995 // add trace trailer
1996 uid[0] = 0xff;
1997 uid[1] = 0xff;
1998 uid[2] = 0xff;
1999 uid[3] = 0xff;
2000 LogTrace(uid, 4, 0, 0, TRUE);
2001
2002 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2003 memcpy(ack.d.asBytes, dataoutbuf, 16);
2004
2005 LED_B_ON();
2006 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2007 LED_B_OFF();
2008
2009
2010 // Thats it...
2011 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2012 LEDsoff();
2013 // tracing = TRUE;
2014
2015 }
2016
2017 //-----------------------------------------------------------------------------
2018 // Select, Authenticaate, Read an MIFARE tag.
2019 // read sector (data = 4 x 16 bytes = 64 bytes)
2020 //-----------------------------------------------------------------------------
2021 void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2022 {
2023 // params
2024 uint8_t sectorNo = arg0;
2025 uint8_t keyType = arg1;
2026 uint64_t ui64Key = 0;
2027 ui64Key = bytes_to_num(datain, 6);
2028
2029 // variables
2030 byte_t isOK = 0;
2031 byte_t dataoutbuf[16 * 4];
2032 uint8_t uid[8];
2033 uint32_t cuid;
2034 struct Crypto1State mpcs = {0, 0};
2035 struct Crypto1State *pcs;
2036 pcs = &mpcs;
2037
2038 // clear trace
2039 traceLen = 0;
2040 // tracing = false;
2041
2042 iso14443a_setup();
2043
2044 LED_A_ON();
2045 LED_B_OFF();
2046 LED_C_OFF();
2047
2048 while (true) {
2049 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2050 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2051 break;
2052 };
2053
2054 if(mifare_classic_auth(pcs, cuid, sectorNo * 4, keyType, ui64Key, AUTH_FIRST)) {
2055 if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
2056 break;
2057 };
2058
2059 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 0, dataoutbuf + 16 * 0)) {
2060 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 0 error");
2061 break;
2062 };
2063 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 1, dataoutbuf + 16 * 1)) {
2064 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 1 error");
2065 break;
2066 };
2067 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 2, dataoutbuf + 16 * 2)) {
2068 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 2 error");
2069 break;
2070 };
2071 if(mifare_classic_readblock(pcs, cuid, sectorNo * 4 + 3, dataoutbuf + 16 * 3)) {
2072 if (MF_DBGLEVEL >= 1) Dbprintf("Read block 3 error");
2073 break;
2074 };
2075
2076 if(mifare_classic_halt(pcs, cuid)) {
2077 if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
2078 break;
2079 };
2080
2081 isOK = 1;
2082 break;
2083 }
2084
2085 // ----------------------------- crypto1 destroy
2086 crypto1_destroy(pcs);
2087
2088 if (MF_DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED");
2089
2090 // add trace trailer
2091 uid[0] = 0xff;
2092 uid[1] = 0xff;
2093 uid[2] = 0xff;
2094 uid[3] = 0xff;
2095 LogTrace(uid, 4, 0, 0, TRUE);
2096
2097 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2098 memcpy(ack.d.asBytes, dataoutbuf, 16 * 2);
2099
2100 LED_B_ON();
2101 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2102
2103 SpinDelay(100);
2104
2105 memcpy(ack.d.asBytes, dataoutbuf + 16 * 2, 16 * 2);
2106 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2107 LED_B_OFF();
2108
2109 // Thats it...
2110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2111 LEDsoff();
2112 // tracing = TRUE;
2113
2114 }
2115
2116 //-----------------------------------------------------------------------------
2117 // Select, Authenticaate, Read an MIFARE tag.
2118 // read block
2119 //-----------------------------------------------------------------------------
2120 void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2121 {
2122 // params
2123 uint8_t blockNo = arg0;
2124 uint8_t keyType = arg1;
2125 uint64_t ui64Key = 0;
2126 byte_t blockdata[16];
2127
2128 ui64Key = bytes_to_num(datain, 6);
2129 memcpy(blockdata, datain + 10, 16);
2130
2131 // variables
2132 byte_t isOK = 0;
2133 uint8_t uid[8];
2134 uint32_t cuid;
2135 struct Crypto1State mpcs = {0, 0};
2136 struct Crypto1State *pcs;
2137 pcs = &mpcs;
2138
2139 // clear trace
2140 traceLen = 0;
2141 // tracing = false;
2142
2143 iso14443a_setup();
2144
2145 LED_A_ON();
2146 LED_B_OFF();
2147 LED_C_OFF();
2148
2149 while (true) {
2150 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2151 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2152 break;
2153 };
2154
2155 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
2156 if (MF_DBGLEVEL >= 1) Dbprintf("Auth error");
2157 break;
2158 };
2159
2160 if(mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) {
2161 if (MF_DBGLEVEL >= 1) Dbprintf("Write block error");
2162 break;
2163 };
2164
2165 if(mifare_classic_halt(pcs, cuid)) {
2166 if (MF_DBGLEVEL >= 1) Dbprintf("Halt error");
2167 break;
2168 };
2169
2170 isOK = 1;
2171 break;
2172 }
2173
2174 // ----------------------------- crypto1 destroy
2175 crypto1_destroy(pcs);
2176
2177 if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED");
2178
2179 // add trace trailer
2180 uid[0] = 0xff;
2181 uid[1] = 0xff;
2182 uid[2] = 0xff;
2183 uid[3] = 0xff;
2184 LogTrace(uid, 4, 0, 0, TRUE);
2185
2186 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2187
2188 LED_B_ON();
2189 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2190 LED_B_OFF();
2191
2192
2193 // Thats it...
2194 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2195 LEDsoff();
2196 // tracing = TRUE;
2197
2198 }
2199
2200 // Return 1 if the nonce is invalid else return 0
2201 int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, byte_t * parity) {
2202 return ((oddparity((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \
2203 (oddparity((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \
2204 (oddparity((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
2205 }
2206
2207
2208 //-----------------------------------------------------------------------------
2209 // MIFARE nested authentication.
2210 //
2211 //-----------------------------------------------------------------------------
2212 void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
2213 {
2214 // params
2215 uint8_t blockNo = arg0;
2216 uint8_t keyType = arg1;
2217 uint8_t targetBlockNo = arg2 & 0xff;
2218 uint8_t targetKeyType = (arg2 >> 8) & 0xff;
2219 uint64_t ui64Key = 0;
2220
2221 ui64Key = bytes_to_num(datain, 6);
2222
2223 // variables
2224 int rtr, i, j, m, len;
2225 int davg, dmin, dmax;
2226 uint8_t uid[8];
2227 uint32_t cuid, nt1, nt2, nttmp, nttest, par, ks1;
2228 uint8_t par_array[4];
2229 nestedVector nvector[NES_MAX_INFO + 1][10];
2230 int nvectorcount[NES_MAX_INFO + 1];
2231 int ncount = 0;
2232 UsbCommand ack = {CMD_ACK, {0, 0, 0}};
2233 struct Crypto1State mpcs = {0, 0};
2234 struct Crypto1State *pcs;
2235 pcs = &mpcs;
2236 uint8_t* receivedAnswer = mifare_get_bigbufptr();
2237
2238 //init
2239 for (i = 0; i < NES_MAX_INFO + 1; i++) nvectorcount[i] = 11; // 11 - empty block;
2240
2241 // clear trace
2242 traceLen = 0;
2243 tracing = false;
2244
2245 iso14443a_setup();
2246
2247 LED_A_ON();
2248 LED_B_ON();
2249 LED_C_OFF();
2250
2251 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2252 SpinDelay(200);
2253
2254 davg = dmax = 0;
2255 dmin = 2000;
2256
2257 // test nonce distance
2258 for (rtr = 0; rtr < 10; rtr++) {
2259 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2260 SpinDelay(100);
2261 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2262
2263 // Test if the action was cancelled
2264 if(BUTTON_PRESS()) {
2265 break;
2266 }
2267
2268 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2269 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2270 break;
2271 };
2272
2273 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
2274 if (MF_DBGLEVEL >= 1) Dbprintf("Auth1 error");
2275 break;
2276 };
2277
2278 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2)) {
2279 if (MF_DBGLEVEL >= 1) Dbprintf("Auth2 error");
2280 break;
2281 };
2282
2283 nttmp = prng_successor(nt1, 500);
2284 for (i = 501; i < 2000; i++) {
2285 nttmp = prng_successor(nttmp, 1);
2286 if (nttmp == nt2) break;
2287 }
2288
2289 if (i != 2000) {
2290 davg += i;
2291 if (dmin > i) dmin = i;
2292 if (dmax < i) dmax = i;
2293 if (MF_DBGLEVEL >= 4) Dbprintf("r=%d nt1=%08x nt2=%08x distance=%d", rtr, nt1, nt2, i);
2294 }
2295 }
2296
2297 if (rtr == 0) return;
2298
2299 davg = davg / rtr;
2300 if (MF_DBGLEVEL >= 3) Dbprintf("distance: min=%d max=%d avg=%d", dmin, dmax, davg);
2301
2302 LED_B_OFF();
2303
2304 // -------------------------------------------------------------------------------------------------
2305
2306 LED_C_ON();
2307
2308 // get crypted nonces for target sector
2309 for (rtr = 0; rtr < NS_RETRIES_GETNONCE; rtr++) {
2310 if (MF_DBGLEVEL >= 4) Dbprintf("------------------------------");
2311
2312 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2313 SpinDelay(100);
2314 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2315
2316 // Test if the action was cancelled
2317 if(BUTTON_PRESS()) {
2318 break;
2319 }
2320
2321 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2322 if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2323 break;
2324 };
2325
2326 if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
2327 if (MF_DBGLEVEL >= 1) Dbprintf("Auth1 error");
2328 break;
2329 };
2330
2331 // nested authentication
2332 len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, &par);
2333 if (len != 4) {
2334 if (MF_DBGLEVEL >= 1) Dbprintf("Auth2 error len=%d", len);
2335 break;
2336 };
2337
2338 nt2 = bytes_to_num(receivedAnswer, 4);
2339 if (MF_DBGLEVEL >= 4) Dbprintf("r=%d nt1=%08x nt2enc=%08x nt2par=%08x", rtr, nt1, nt2, par);
2340
2341 // Parity validity check
2342 for (i = 0; i < 4; i++) {
2343 par_array[i] = (oddparity(receivedAnswer[i]) != ((par & 0x08) >> 3));
2344 par = par << 1;
2345 }
2346
2347 ncount = 0;
2348 for (m = dmin - NS_TOLERANCE; m < dmax + NS_TOLERANCE; m++) {
2349 nttest = prng_successor(nt1, m);
2350 ks1 = nt2 ^ nttest;
2351
2352 if (valid_nonce(nttest, nt2, ks1, par_array) && (ncount < 11)){
2353
2354 nvector[NES_MAX_INFO][ncount].nt = nttest;
2355 nvector[NES_MAX_INFO][ncount].ks1 = ks1;
2356 ncount++;
2357 nvectorcount[NES_MAX_INFO] = ncount;
2358 if (MF_DBGLEVEL >= 4) Dbprintf("valid m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
2359 }
2360
2361 }
2362
2363 // select vector with length less than got
2364 if (nvectorcount[NES_MAX_INFO] != 0) {
2365 m = NES_MAX_INFO;
2366
2367 for (i = 0; i < NES_MAX_INFO; i++)
2368 if (nvectorcount[i] > 10) {
2369 m = i;
2370 break;
2371 }
2372
2373 if (m == NES_MAX_INFO)
2374 for (i = 0; i < NES_MAX_INFO; i++)
2375 if (nvectorcount[NES_MAX_INFO] < nvectorcount[i]) {
2376 m = i;
2377 break;
2378 }
2379
2380 if (m != NES_MAX_INFO) {
2381 for (i = 0; i < nvectorcount[m]; i++) {
2382 nvector[m][i] = nvector[NES_MAX_INFO][i];
2383 }
2384 nvectorcount[m] = nvectorcount[NES_MAX_INFO];
2385 }
2386 }
2387 }
2388
2389 LED_C_OFF();
2390
2391 // ----------------------------- crypto1 destroy
2392 crypto1_destroy(pcs);
2393
2394 // add trace trailer
2395 uid[0] = 0xff;
2396 uid[1] = 0xff;
2397 uid[2] = 0xff;
2398 uid[3] = 0xff;
2399 LogTrace(uid, 4, 0, 0, TRUE);
2400
2401 for (i = 0; i < NES_MAX_INFO; i++) {
2402 if (nvectorcount[i] > 10) continue;
2403
2404 for (j = 0; j < nvectorcount[i]; j += 5) {
2405 ncount = nvectorcount[i] - j;
2406 if (ncount > 5) ncount = 5;
2407
2408 ack.arg[0] = 0; // isEOF = 0
2409 ack.arg[1] = ncount;
2410 ack.arg[2] = targetBlockNo + (targetKeyType * 0x100);
2411 memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
2412
2413 memcpy(ack.d.asBytes, &cuid, 4);
2414 for (m = 0; m < ncount; m++) {
2415 memcpy(ack.d.asBytes + 8 + m * 8 + 0, &nvector[i][m + j].nt, 4);
2416 memcpy(ack.d.asBytes + 8 + m * 8 + 4, &nvector[i][m + j].ks1, 4);
2417 }
2418
2419 LED_B_ON();
2420 SpinDelay(100);
2421 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2422 LED_B_OFF();
2423 }
2424 }
2425
2426 // finalize list
2427 ack.arg[0] = 1; // isEOF = 1
2428 ack.arg[1] = 0;
2429 ack.arg[2] = 0;
2430 memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
2431
2432 LED_B_ON();
2433 SpinDelay(300);
2434 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2435 LED_B_OFF();
2436
2437 if (MF_DBGLEVEL >= 4) DbpString("NESTED FINISHED");
2438
2439 // Thats it...
2440 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2441 LEDsoff();
2442
2443 tracing = TRUE;
2444 }
2445
2446 //-----------------------------------------------------------------------------
2447 // MIFARE check keys. key count up to 8.
2448 //
2449 //-----------------------------------------------------------------------------
2450 void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2451 {
2452 // params
2453 uint8_t blockNo = arg0;
2454 uint8_t keyType = arg1;
2455 uint8_t keyCount = arg2;
2456 uint64_t ui64Key = 0;
2457
2458 // variables
2459 int i;
2460 byte_t isOK = 0;
2461 uint8_t uid[8];
2462 uint32_t cuid;
2463 struct Crypto1State mpcs = {0, 0};
2464 struct Crypto1State *pcs;
2465 pcs = &mpcs;
2466
2467 // clear debug level
2468 int OLD_MF_DBGLEVEL = MF_DBGLEVEL;
2469 MF_DBGLEVEL = MF_DBG_NONE;
2470
2471 // clear trace
2472 traceLen = 0;
2473 tracing = TRUE;
2474
2475 iso14443a_setup();
2476
2477 LED_A_ON();
2478 LED_B_OFF();
2479 LED_C_OFF();
2480
2481 SpinDelay(300);
2482 for (i = 0; i < keyCount; i++) {
2483 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2484 SpinDelay(100);
2485 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
2486
2487 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2488 if (OLD_MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
2489 break;
2490 };
2491
2492 ui64Key = bytes_to_num(datain + i * 6, 6);
2493 if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
2494 continue;
2495 };
2496
2497 isOK = 1;
2498 break;
2499 }
2500
2501 // ----------------------------- crypto1 destroy
2502 crypto1_destroy(pcs);
2503
2504 // add trace trailer
2505 uid[0] = 0xff;
2506 uid[1] = 0xff;
2507 uid[2] = 0xff;
2508 uid[3] = 0xff;
2509 LogTrace(uid, 4, 0, 0, TRUE);
2510
2511 UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
2512 if (isOK) memcpy(ack.d.asBytes, datain + i * 6, 6);
2513
2514 LED_B_ON();
2515 UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
2516 LED_B_OFF();
2517
2518 // Thats it...
2519 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2520 LEDsoff();
2521
2522 // restore debug level
2523 MF_DBGLEVEL = OLD_MF_DBGLEVEL;
2524 }
2525
2526 //-----------------------------------------------------------------------------
2527 // MIFARE 1K simulate.
2528 //
2529 //-----------------------------------------------------------------------------
2530 void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
2531 {
2532 int cardSTATE = MFEMUL_NOFIELD;
2533 int vHf = 0; // in mV
2534 int res, i;
2535 uint32_t timer = 0;
2536 uint32_t selTimer = 0;
2537 uint32_t authTimer = 0;
2538 uint32_t par = 0;
2539 int len = 0;
2540 uint8_t bt;
2541 uint8_t cardAUTHSC = 0;
2542 uint8_t cardAUTHKEY = 0xff; // no authentication
2543 uint32_t cuid = 0;
2544 struct Crypto1State mpcs = {0, 0};
2545 struct Crypto1State *pcs;
2546 pcs = &mpcs;
2547
2548 uint64_t key64 = 0xffffffffffffULL;
2549
2550 uint8_t* receivedCmd = mifare_get_bigbufptr();
2551
2552 static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k
2553
2554 static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2555 static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2556
2557 static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2558
2559 static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
2560 static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2561 static uint8_t cmdBuf[18];
2562
2563 // clear trace
2564 traceLen = 0;
2565 tracing = true;
2566
2567 // -------------------------------------- test area
2568
2569 // Authenticate response - nonce
2570 uint8_t *resp1 = (((uint8_t *)BigBuf) + CARD_MEMORY);
2571 int resp1Len;
2572 uint8_t *resp2 = (((uint8_t *)BigBuf) + CARD_MEMORY + 200);
2573 int resp2Len;
2574 CodeIso14443aAsTag(rAUTH_NT, sizeof(rAUTH_NT));
2575 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
2576
2577 timer = GetTickCount();
2578 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2579 uint32_t rn_enc = 0x98d76b77; // !!!!!!!!!!!!!!!!!
2580 uint32_t ans = 0;
2581 cuid = bytes_to_num(rUIDBCC1, 4);
2582
2583 crypto1_create(pcs, key64);
2584 crypto1_word(pcs, cuid ^ nonce, 0);
2585 crypto1_word(pcs, rn_enc , 1);
2586 crypto1_word(pcs, 0, 0);
2587 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2588 num_to_bytes(ans, 4, rAUTH_AT);
2589 CodeIso14443aAsTag(rAUTH_AT, sizeof(rAUTH_AT));
2590 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
2591 Dbprintf("crypto auth time: %d", GetTickCount() - timer);
2592
2593 // -------------------------------------- END test area
2594
2595 // We need to listen to the high-frequency, peak-detected path.
2596 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
2597 FpgaSetupSsc();
2598
2599 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2600 SpinDelay(200);
2601
2602 Dbprintf("--> start");
2603 while (true) {
2604 WDT_HIT();
2605
2606 // find reader field
2607 // Vref = 3300mV, and an 10:1 voltage divider on the input
2608 // can measure voltages up to 33000 mV
2609 if (cardSTATE == MFEMUL_NOFIELD) {
2610 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2611 if (vHf > MF_MINFIELDV) {
2612 cardSTATE = MFEMUL_IDLE;
2613 LED_A_ON();
2614 }
2615 }
2616
2617 if (cardSTATE != MFEMUL_NOFIELD) {
2618 res = EmGetCmd(receivedCmd, &len, 100);
2619 if (res == 2) {
2620 cardSTATE = MFEMUL_NOFIELD;
2621 LEDsoff();
2622 continue;
2623 }
2624 if(res) break;
2625 }
2626
2627 if(BUTTON_PRESS()) {
2628 break;
2629 }
2630 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2631
2632 if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
2633 // REQ or WUP request in ANY state and WUP in HALTED state
2634 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2635 selTimer = GetTickCount();
2636 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2637 cardSTATE = MFEMUL_SELECT1;
2638
2639 // init crypto block
2640 LED_B_OFF();
2641 LED_C_OFF();
2642 crypto1_destroy(pcs);
2643 cardAUTHKEY = 0xff;
2644 }
2645 }
2646
2647 switch (cardSTATE) {
2648 case MFEMUL_NOFIELD:{
2649 break;
2650 }
2651 case MFEMUL_HALTED:{
2652 break;
2653 }
2654 case MFEMUL_IDLE:{
2655 break;
2656 }
2657 case MFEMUL_SELECT1:{
2658 // select all
2659 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2660 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2661
2662 if (rUIDBCC1[0] == 0x88) {
2663 cardSTATE = MFEMUL_SELECT2;
2664 }
2665 }
2666
2667 // select card
2668 if (len == 9 &&
2669 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2670 EmSendCmd(rSAK, sizeof(rSAK));
2671
2672 cuid = bytes_to_num(rUIDBCC1, 4);
2673 cardSTATE = MFEMUL_WORK;
2674 LED_B_ON();
2675 Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2676 }
2677
2678 break;
2679 }
2680 case MFEMUL_SELECT2:{
2681 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2682
2683 cuid = bytes_to_num(rUIDBCC2, 4);
2684 cardSTATE = MFEMUL_WORK;
2685 LED_B_ON();
2686 Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - timer);
2687 break;
2688 }
2689 case MFEMUL_AUTH1:{
2690 if (len == 8) {
2691 timer = GetTickCount();
2692 // ---------------------------------
2693 rn_enc = bytes_to_num(receivedCmd, 4);
2694 crypto1_create(pcs, key64);
2695 crypto1_word(pcs, cuid ^ nonce, 0);
2696 crypto1_word(pcs, rn_enc , 1);
2697 crypto1_word(pcs, 0, 0);
2698 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2699 num_to_bytes(ans, 4, rAUTH_AT);
2700 // ---------------------------------
2701 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2702 // EmSendCmd14443aRaw(resp2, resp2Len, 0);
2703 cardSTATE = MFEMUL_AUTH2;
2704 } else {
2705 cardSTATE = MFEMUL_IDLE;
2706 LED_B_OFF();
2707 LED_C_OFF();
2708 }
2709 if (cardSTATE != MFEMUL_AUTH2) break;
2710 }
2711 case MFEMUL_AUTH2:{
2712 // test auth info here...
2713
2714 LED_C_ON();
2715 cardSTATE = MFEMUL_WORK;
2716 Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d a=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer, GetTickCount() - timer);
2717 break;
2718 }
2719 case MFEMUL_WORK:{
2720 // auth
2721 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2722 authTimer = GetTickCount();
2723 // EmSendCmd(rAUTH_NT, sizeof(rAUTH_NT));
2724 //SpinDelayUs(30);
2725 EmSendCmd14443aRaw(resp1, resp1Len, 0);
2726 // crypto1_create(pcs, key64);
2727 // if (cardAUTHKEY == 0xff) { // first auth
2728 // crypto1_word(pcs, cuid ^ bytes_to_num(rAUTH_NT, 4), 0); // uid ^ nonce
2729 // } else { // nested auth
2730 // }
2731
2732 cardAUTHSC = receivedCmd[1] / 4; // received block num
2733 cardAUTHKEY = receivedCmd[0] - 0x60;
2734 cardSTATE = MFEMUL_AUTH1;
2735 break;
2736 }
2737
2738 if (len == 0) break;
2739
2740 // decrypt seqence
2741 if (cardAUTHKEY != 0xff){
2742 if (len != 1) {
2743 for (i = 0; i < len; i++)
2744 receivedCmd[i] = crypto1_byte(pcs, 0x00, 0) ^ receivedCmd[i];
2745 } else {
2746 bt = 0;
2747 for (i = 0; i < 4; i++)
2748 bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedCmd[0], i)) << i;
2749
2750 receivedCmd[0] = bt;
2751 }
2752 }
2753
2754 // read block
2755 if (len == 4 && receivedCmd[0] == 0x30) {
2756 cmdBuf[0] = 0;
2757 par = 0;
2758 /* memcpy(cmdBuf, blockData, 16);
2759 AppendCrc14443a(cmdBuf, 16);
2760
2761 // crypto
2762 par = 0;
2763 for (i = 0; i < 18; i++) {
2764 d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ cmdBuf[pos];
2765 par = (par >> 1) | ( ((filter(pcs->odd) ^ oddparity(cmdBuf[pos])) & 0x01) * 0x20000 );
2766 }
2767 */
2768 //ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par);
2769 Dbprintf("read block: %d", receivedCmd[1]);
2770 break;
2771 }
2772
2773 // write block
2774 if (len == 4 && receivedCmd[0] == 0xA0) {
2775 Dbprintf("write block: %d", receivedCmd[1]);
2776 break;
2777 }
2778
2779 // halt
2780 if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
2781 cardSTATE = MFEMUL_HALTED;
2782 LED_B_OFF();
2783 LED_C_OFF();
2784 Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2785 break;
2786 }
2787 break;
2788 }
2789
2790 }
2791
2792 }
2793
2794 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2795 LEDsoff();
2796
2797 // add trace trailer
2798 LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
2799
2800 DbpString("Emulator stopped.");
2801 }
Impressum, Datenschutz