1 //----------------------------------------------------------------------------- 
   2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch> 
   4 // This code is licensed to you under the terms of the GNU GPL, version 2 or, 
   5 // at your option, any later version. See the LICENSE.txt file for the text of 
   7 //----------------------------------------------------------------------------- 
   8 // LEGIC RF simulation code 
   9 //----------------------------------------------------------------------------- 
  13 static struct legic_frame 
{ 
  24 static crc_t    legic_crc
; 
  25 static int      legic_read_count
; 
  26 static uint32_t legic_prng_bc
; 
  27 static uint32_t legic_prng_iv
; 
  29 static int      legic_phase_drift
; 
  30 static int      legic_frame_drift
; 
  31 static int      legic_reqresp_drift
; 
  39 static void setup_timer(void) { 
  40         // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging 
  41         // this it won't be terribly accurate but should be good enough. 
  43         AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); 
  44         timer = AT91C_BASE_TC1; 
  45         timer->TC_CCR = AT91C_TC_CLKDIS; 
  46         timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; 
  47         timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
  50     // Set up Timer 2 to use for measuring time between frames in  
  51     // tag simulation mode. Runs 4x faster as Timer 1 
  53     AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); 
  54     prng_timer = AT91C_BASE_TC2; 
  55     prng_timer->TC_CCR = AT91C_TC_CLKDIS; 
  56         prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; 
  57     prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; 
  61 // At TIMER_CLOCK3 (MCK/32) 
  62 //#define RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */ 
  63 //#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */ 
  64 //#define RWD_TIME_PAUSE 30  /* 20us */ 
  66 #define RWD_TIME_1 80-4     /* READER_TIME_PAUSE off, 80us on = 100us */ 
  67 #define RWD_TIME_0 40-4      /* READER_TIME_PAUSE off, 40us on = 60us */ 
  68 #define RWD_TIME_PAUSE 20-4  /* 20us */ 
  70 #define TAG_BIT_PERIOD 100-8 // 100us for every bit 
  72 #define RWD_TIME_FUZZ 20   /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */ 
  74 #define TAG_TIME_WAIT 330  // 330us from READER frame end to TAG frame start, experimentally determined  (490) 
  75 #define RDW_TIME_WAIT 258  //  
  78 #define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */ 
  79 #define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */ 
  81 #define OFFSET_LOG 1024 
  83 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) 
  86 //#define LOW(x)         AT91C_BASE_PIOA->PIO_CODR = (x) 
  87 # define SHORT_COIL     LOW(GPIO_SSC_DOUT); 
  90 //#define HIGH(x)        AT91C_BASE_PIOA->PIO_SODR = (x) 
  91 # define OPEN_COIL      HIGH(GPIO_SSC_DOUT); 
  94 uint32_t stop_send_frame_us 
= 0; 
  96 // ~ 258us + 100us*delay 
  97 #define WAIT(delay) SpinDelayCountUs((delay)); 
  98 #define COIL_PULSE(x)  { SHORT_COIL; WAIT(RWD_TIME_PAUSE); OPEN_COIL; WAIT((x)); } 
  99 #define COIL_PULSE_PAUSE  { SHORT_COIL; WAIT(RWD_TIME_PAUSE); OPEN_COIL; } 
 101 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.  
 102 // Historically it used to be FREE_BUFFER_SIZE, which was 2744. 
 103 #define LEGIC_CARD_MEMSIZE 1024 
 104 static uint8_t* cardmem
; 
 106 // Starts Clock and waits until its reset 
 107 static void Reset(AT91PS_TC clock
){ 
 108         clock
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 109         while(clock
->TC_CV 
> 1) ; 
 112 // Starts Clock and waits until its reset 
 113 static void ResetClock(void){ 
 117 static void frame_append_bit(struct legic_frame 
* const f
, int bit
) { 
 118         // Overflow, won't happen 
 119    if (f
->bits 
>= 31) return; 
 121    f
->data 
|= (bit 
<< f
->bits
); 
 125 static void frame_clean(struct legic_frame 
* const f
) { 
 130 // Prng works when waiting in 99.1us cycles. 
 131 // and while sending/receiving in bit frames (100, 60) 
 132 /*static void CalibratePrng( uint32_t time){ 
 133         // Calculate Cycles based on timer 100us 
 134         uint32_t i =  (time - stop_send_frame_us) / 100 ; 
 136         // substract cycles of finished frames 
 137         int k =  i - legic_prng_count()+1;  
 139         // substract current frame length, rewind to beginning 
 141                 legic_prng_forward(k); 
 145 /* Generate Keystream */ 
 146 static uint32_t get_key_stream(int skip
, int count
) 
 151         // Use int to enlarge timer tc to 32bit 
 152         legic_prng_bc 
+= prng_timer
->TC_CV
; 
 154         // reset the prng timer. 
 157         /* If skip == -1, forward prng time based */ 
 159                 i  
= (legic_prng_bc 
+ SIM_SHIFT
)/SIM_DIVISOR
; /* Calculate Cycles based on timer */ 
 160                 i 
-= legic_prng_count(); /* substract cycles of finished frames */ 
 161                 i 
-= count
; /* substract current frame length, rewind to beginning */ 
 162                 legic_prng_forward(i
); 
 164                 legic_prng_forward(skip
); 
 167         i 
= (count 
== 6) ? -1 : legic_read_count
; 
 169         /* Write Time Data into LOG */ 
 170         // uint8_t *BigBuf = BigBuf_get_addr(); 
 171         // BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); 
 172         // BigBuf[OFFSET_LOG+256+i*4]   = (legic_prng_bc >> 0) & 0xff; 
 173         // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; 
 174         // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; 
 175         // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; 
 176         // BigBuf[OFFSET_LOG+384+i] = count; 
 178         /* Generate KeyStream */ 
 179         for(i
=0; i
<count
; i
++) { 
 180                 key 
|= legic_prng_get_bit() << i
; 
 181                 legic_prng_forward(1); 
 186 /* Send a frame in tag mode, the FPGA must have been set up by 
 189 static void frame_send_tag(uint16_t response
, uint8_t bits
, uint8_t crypt
) { 
 190         /* Bitbang the response */ 
 192         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 193         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 195         /* Use time to crypt frame */ 
 197                 legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ 
 198                 response 
^= legic_prng_get_bits(bits
); 
 201         /* Wait for the frame start */ 
 202         WAIT( TAG_TIME_WAIT 
) 
 205         for(int i 
= 0; i 
< bits
; i
++) { 
 220 /* Send a frame in reader mode, the FPGA must have been set up by 
 223 static void frame_sendAsReader(uint32_t data
, uint8_t bits
){ 
 225         uint32_t starttime 
= GetCountUS(); 
 226         uint32_t send 
= data
; 
 227         uint8_t prng1 
= legic_prng_count() ; 
 229         uint16_t lfsr 
= legic_prng_get_bits(bits
); 
 231         // xor the lsfr onto data. 
 234         for (; mask 
< BITMASK(bits
); mask 
<<= 1) {       
 236                          COIL_PULSE(RWD_TIME_1
);  
 238                          COIL_PULSE(RWD_TIME_0
);  
 242         // One final pause to mark the end of the frame 
 245         stop_send_frame_us 
= GetCountUS(); 
 246         uint8_t cmdbytes
[] = { 
 255         LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, stop_send_frame_us
, NULL
, TRUE
); 
 258 /* Receive a frame from the card in reader emulation mode, the FPGA and 
 259  * timer must have been set up by LegicRfReader and frame_sendAsReader. 
 261  * The LEGIC RF protocol from card to reader does not include explicit 
 262  * frame start/stop information or length information. The reader must 
 263  * know beforehand how many bits it wants to receive. (Notably: a card 
 264  * sending a stream of 0-bits is indistinguishable from no card present.) 
 266  * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but 
 267  * I'm not smart enough to use it. Instead I have patched hi_read_tx to output 
 268  * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look 
 269  * for edges. Count the edges in each bit interval. If they are approximately 
 270  * 0 this was a 0-bit, if they are approximately equal to the number of edges 
 271  * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the 
 272  * timer that's still running from frame_sendAsReader in order to get a synchronization 
 273  * with the frame that we just sent. 
 275  * FIXME: Because we're relying on the hysteresis to just do the right thing 
 276  * the range is severely reduced (and you'll probably also need a good antenna). 
 277  * So this should be fixed some time in the future for a proper receiver. 
 279 static void frame_receiveAsReader(struct legic_frame 
* const f
, uint8_t bits
, uint8_t crypt
) { 
 283         uint8_t i 
= 0, edges 
= 0;        
 285         uint32_t the_bit 
= 1, next_bit_at
, data
; 
 286         int old_level 
= 0, level 
= 0; 
 288         if(bits 
> 32) bits 
= 32; 
 290         uint32_t starttime 
= GetCountUS();       
 292         // calibrate the prng.   
 293         legic_prng_forward(2); 
 294         //CalibratePrng( starttime ); 
 296         // precompute the cipher 
 297         uint8_t prng_before 
=  legic_prng_count() ; 
 300                 lsfr 
= legic_prng_get_bits(bits
); 
 304         next_bit_at 
= GetCountUS() + TAG_BIT_PERIOD
; 
 306         //FIXED time between sending frame and now listening frame. 330us 
 307         uint32_t icetime 
= TAG_TIME_WAIT 
- ( GetCountUS() - stop_send_frame_us 
); 
 309         WAIT( icetime 
); // 21.3us inc. 
 311         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 312         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 314         for( i 
= 0; i 
< bits
; i
++) { 
 316                 while  ( GetCountUS() < next_bit_at
) { 
 318                         level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 320                         if (level 
!= old_level
) 
 325                 next_bit_at 
+= TAG_BIT_PERIOD
; 
 327                 // We expect 42 edges  == ONE 
 328                 if(edges 
> 20 && edges 
< 60) 
 339         uint8_t cmdbytes
[] = {  
 348                 (icetime 
>> 8) & 0xFF 
 350         LogTrace(cmdbytes
, sizeof(cmdbytes
), starttime
, GetCountUS(), NULL
, FALSE
); 
 354 // Setup pm3 as a Legic Reader 
 355 static uint32_t perform_setup_phase_rwd(uint8_t iv
) { 
 357         // Switch on carrier and let the tag charge for 1ms 
 367         frame_sendAsReader(iv
, 7); 
 369         // Now both tag and reader has same IV. Prng can start. 
 372         frame_receiveAsReader(¤t_frame
, 6, 1); 
 374         // fixed delay before sending ack. 
 375         WAIT(TAG_BIT_PERIOD
); 
 377         // Send obsfuscated acknowledgment frame. 
 378         // 0x19 = 0x18 MIM22, 0x01 LSB READCMD  
 379         // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD  
 380         switch ( current_frame
.data  
) { 
 382                         frame_sendAsReader(0x19, 6); 
 386                         frame_sendAsReader(0x39, 6); 
 391         return current_frame
.data
; 
 393         // End of Setup Phase. 
 396 static void LegicCommonInit(void) {      
 397         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 398         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX
); 
 399         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 402         /* Bitbang the transmitter */ 
 404         AT91C_BASE_PIOA
->PIO_OER 
= GPIO_SSC_DOUT
; 
 405         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DOUT
; 
 407         // reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier. 
 408         cardmem 
= BigBuf_malloc(LEGIC_CARD_MEMSIZE
); 
 409         memset(cardmem
, 0x00, LEGIC_CARD_MEMSIZE
); 
 414         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 419 /* Switch off carrier, make sure tag is reset */ 
 420 static void switch_off_tag_rwd(void) { 
 427 // calculate crc4 for a legic READ command  
 428 // 5,8,10 address size. 
 429 static uint32_t LegicCRC(uint16_t byte_index
, uint8_t value
, uint8_t cmd_sz
) { 
 430         crc_clear(&legic_crc
);   
 431         uint32_t temp 
=  (value 
<< cmd_sz
) | (byte_index 
<< 1) | LEGIC_READ
; 
 432         crc_update(&legic_crc
, temp
, cmd_sz 
+ 8 ); 
 433         // crc_update(&legic_crc, LEGIC_READ, 1); 
 434         // crc_update(&legic_crc, byte_index, cmd_sz-1); 
 435         // crc_update(&legic_crc, value, 8); 
 436         return crc_finish(&legic_crc
); 
 439 int legic_read_byte(int byte_index
, int cmd_sz
) { 
 441         uint8_t byte 
= 0, crc 
= 0; 
 442         uint32_t calcCrc 
= 0; 
 443         uint32_t cmd 
= (byte_index 
<< 1) | LEGIC_READ
; 
 445         legic_prng_forward(3); 
 448         frame_sendAsReader(cmd
, cmd_sz
); 
 450         frame_receiveAsReader(¤t_frame
, 12, 1); 
 452         byte 
= current_frame
.data 
& 0xFF; 
 454         calcCrc 
= LegicCRC(byte_index
, byte
, cmd_sz
); 
 455         crc 
= (current_frame
.data 
>> 8); 
 457         if( calcCrc 
!= crc 
) { 
 458                 Dbprintf("!!! crc mismatch: expected %x but got %x !!!",  calcCrc
, crc
); 
 466  * - assemble a write_cmd_frame with crc and send it 
 467  * - wait until the tag sends back an ACK ('1' bit unencrypted) 
 468  * - forward the prng based on the timing 
 470 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) { 
 471 int legic_write_byte(int byte
, int addr
, int addr_sz
) { 
 473     //do not write UID, CRC at offset 0-4. 
 474         if(addr 
<= 0x04) return 0; 
 477         crc_clear(&legic_crc
); 
 478         crc_update(&legic_crc
, 0, 1); /* CMD_WRITE */ 
 479         crc_update(&legic_crc
, addr
, addr_sz
); 
 480         crc_update(&legic_crc
, byte
, 8); 
 481         uint32_t crc 
= crc_finish(&legic_crc
); 
 483         // send write command 
 484         uint32_t cmd 
= ((crc     
<<(addr_sz
+1+8)) //CRC 
 485                    |(byte    
<<(addr_sz
+1))   //Data 
 486                    |(addr    
<<1)             //Address 
 487                    |(0x00    <<0));           //CMD = W 
 488     uint32_t cmd_sz 
= addr_sz
+1+8+4;          //crc+data+cmd 
 490     legic_prng_forward(2); /* we wait anyways */ 
 492     while(timer
->TC_CV 
< 387) ; /* ~ 258us */ 
 494         frame_sendAsReader(cmd
, cmd_sz
); 
 496 // wllm-rbnt doesnt have these 
 497 //      AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN; 
 498 //      AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; 
 501     int t
, old_level 
= 0, edges 
= 0; 
 504         while(timer
->TC_CV 
< 387) ; /* ~ 258us */ 
 506     for( t 
= 0; t 
< 80; t
++) { 
 508                 next_bit_at 
+= TAG_BIT_PERIOD
; 
 509         while(timer
->TC_CV 
< next_bit_at
) { 
 510             int level 
= (AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 511             if(level 
!= old_level
) { 
 516         if(edges 
> 20 && edges 
< 60) { /* expected are 42 edges */ 
 517                         int t 
= timer
->TC_CV
; 
 518                         int c 
= t 
/ TAG_BIT_PERIOD
; 
 521                         legic_prng_forward(c
); 
 530 int LegicRfReader(int offset
, int bytes
, int iv
) { 
 532         int byte_index 
= 0, cmd_sz 
= 0, card_sz 
= 0;                                                                
 534         if ( MF_DBGLEVEL 
>= 2) {  
 535                 Dbprintf("setting up legic card,  IV = %x", iv
); 
 537                 Dbprintf("ONE %d  ZERO %d  PAUSE %d", RWD_TIME_1 
, RWD_TIME_0 
, RWD_TIME_PAUSE
); 
 538                 Dbprintf("TAG BIT PERIOD %d  FUZZ %d  TAG WAIT TIME %d",  TAG_BIT_PERIOD
, RWD_TIME_FUZZ
, TAG_TIME_WAIT
); 
 543         uint32_t tag_type 
= perform_setup_phase_rwd(iv
); 
 545          //we lose to mutch time with dprintf 
 546         switch_off_tag_rwd(); 
 550                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM22 card found, reading card ..."); 
 555                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM256 card found, reading card ..."); 
 560                         if ( MF_DBGLEVEL 
>= 2) DbpString("MIM1024 card found, reading card ..."); 
 565                         if ( MF_DBGLEVEL 
>= 1) Dbprintf("Unknown card format: %x",tag_type
); 
 571         if(bytes
+offset 
>= card_sz
) 
 572                 bytes 
= card_sz 
- offset
; 
 574         // Start setup and read bytes. 
 575         perform_setup_phase_rwd(iv
); 
 578         while (byte_index 
< bytes
) { 
 579                 int r 
= legic_read_byte(byte_index
+offset
, cmd_sz
); 
 581                 if (r 
== -1 || BUTTON_PRESS()) {                         
 582                 switch_off_tag_rwd(); 
 584                 if ( MF_DBGLEVEL 
>= 2) DbpString("operation aborted"); 
 585                         cmd_send(CMD_ACK
,0,0,0,0,0);   
 588                 cardmem
[byte_index
] = r
; 
 593         switch_off_tag_rwd(); 
 595         uint8_t len 
= (bytes 
& 0x3FF); 
 596         cmd_send(CMD_ACK
,1,len
,0,0,0);   
 600 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) { 
 604         perform_setup_phase_rwd(iv); 
 605     //legic_prng_forward(2); 
 606         while(byte_index < bytes) { 
 609                 //check if the DCF should be changed 
 610                 if ( (offset == 0x05) && (bytes == 0x02) ) { 
 611                         //write DCF in reverse order (addr 0x06 before 0x05) 
 612                         r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 613                         //legic_prng_forward(1); 
 616                                 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue); 
 618                         //legic_prng_forward(1); 
 621                         r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue); 
 623                 if((r != 0) || BUTTON_PRESS()) { 
 624                         Dbprintf("operation aborted @ 0x%03.3x", byte_index); 
 625         switch_off_tag_rwd(); 
 633         if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF(); 
 637     DbpString("write successful"); 
 641 void LegicRfWriter(int offset
, int bytes
, int iv
) { 
 643         int byte_index 
= 0, addr_sz 
= 0;                                                                   
 647         if ( MF_DBGLEVEL 
>= 2)  DbpString("setting up legic card"); 
 649         uint32_t tag_type 
= perform_setup_phase_rwd(iv
); 
 651         switch_off_tag_rwd(); 
 655                         if(offset
+bytes 
> 22) { 
 656                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset
+bytes
); 
 660                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
); 
 663                         if(offset
+bytes 
> 0x100) { 
 664                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset
+bytes
); 
 668                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset
, offset
+bytes
); 
 671                         if(offset
+bytes 
> 0x400) { 
 672                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset
+bytes
); 
 676                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset
, offset
+bytes
); 
 679                         Dbprintf("No or unknown card found, aborting"); 
 684         perform_setup_phase_rwd(iv
); 
 685         while(byte_index 
< bytes
) { 
 688                 //check if the DCF should be changed 
 689                 if ( ((byte_index
+offset
) == 0x05) && (bytes 
>= 0x02) ) { 
 690                         //write DCF in reverse order (addr 0x06 before 0x05) 
 691                         r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
); 
 693                         // write second byte on success... 
 696                                 r 
= legic_write_byte(cardmem
[(0x06-byte_index
)], (0x06-byte_index
), addr_sz
); 
 700                         r 
= legic_write_byte(cardmem
[byte_index
+offset
], byte_index
+offset
, addr_sz
); 
 703                 if((r 
!= 0) || BUTTON_PRESS()) { 
 704                         Dbprintf("operation aborted @ 0x%03.3x", byte_index
); 
 705                         switch_off_tag_rwd(); 
 714     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 717 void LegicRfRawWriter(int address
, int byte
, int iv
) { 
 719         int byte_index 
= 0, addr_sz 
= 0; 
 723         if ( MF_DBGLEVEL 
>= 2) DbpString("setting up legic card"); 
 725         uint32_t tag_type 
= perform_setup_phase_rwd(iv
); 
 727         switch_off_tag_rwd(); 
 732                                 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address
); 
 736                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 739                         if(address 
> 0x100) { 
 740                                 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address
); 
 744                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address
, byte
); 
 747                         if(address 
> 0x400) { 
 748                         Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address
); 
 752                         if ( MF_DBGLEVEL 
>= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address
, byte
); 
 755                         Dbprintf("No or unknown card found, aborting"); 
 759         Dbprintf("integer value: %d address: %d  addr_sz: %d", byte
, address
, addr_sz
); 
 762         perform_setup_phase_rwd(iv
); 
 763     //legic_prng_forward(2); 
 765         int r 
= legic_write_byte(byte
, address
, addr_sz
); 
 767         if((r 
!= 0) || BUTTON_PRESS()) { 
 768                 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index
, r
); 
 769                 switch_off_tag_rwd(); 
 775     if ( MF_DBGLEVEL 
>= 1) DbpString("write successful"); 
 778 /* Handle (whether to respond) a frame in tag mode 
 779  * Only called when simulating a tag. 
 781 static void frame_handle_tag(struct legic_frame 
const * const f
) 
 783         uint8_t *BigBuf 
= BigBuf_get_addr(); 
 785    /* First Part of Handshake (IV) */ 
 793         legic_prng_init(f
->data
); 
 794         frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */ 
 795         legic_state 
= STATE_IV
; 
 796         legic_read_count 
= 0; 
 798         legic_prng_iv 
= f
->data
; 
 803         //while(timer->TC_CV < 280); 
 809    if(legic_state 
== STATE_IV
) { 
 810       int local_key 
= get_key_stream(3, 6); 
 811       int xored 
= 0x39 ^ local_key
; 
 812       if((f
->bits 
== 6) && (f
->data 
== xored
)) { 
 813          legic_state 
= STATE_CON
; 
 818          //while(timer->TC_CV < 200); 
 823          legic_state 
= STATE_DISCON
; 
 825          Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv
, f
->data
, local_key
, xored
); 
 832       if(legic_state 
== STATE_CON
) { 
 833          int key   
= get_key_stream(2, 11); //legic_phase_drift, 11); 
 834          int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; 
 835          int data 
= BigBuf
[addr
]; 
 836          int hash 
= LegicCRC(addr
, data
, 11) << 8; 
 837          BigBuf
[OFFSET_LOG
+legic_read_count
] = (uint8_t)addr
; 
 840          //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); 
 841          legic_prng_forward(legic_reqresp_drift
); 
 843          frame_send_tag(hash 
| data
, 12, 1); 
 848          legic_prng_forward(2); 
 849          //while(timer->TC_CV < 180); 
 858       int key   
= get_key_stream(-1, 23); //legic_frame_drift, 23); 
 859       int addr  
= f
->data 
^ key
; addr 
= addr 
>> 1; addr 
= addr 
& 0x3ff; 
 860       int data  
= f
->data 
^ key
; data 
= data 
>> 11; data 
= data 
& 0xff; 
 863       legic_state 
= STATE_DISCON
; 
 865       Dbprintf("write - addr: %x, data: %x", addr
, data
); 
 869    if(legic_state 
!= STATE_DISCON
) { 
 870       Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f
->bits
, f
->data
, legic_state
, legic_read_count
); 
 872       Dbprintf("IV: %03.3x", legic_prng_iv
); 
 873       for(i 
= 0; i
<legic_read_count
; i
++) { 
 874          Dbprintf("Read Nb: %u, Addr: %u", i
, BigBuf
[OFFSET_LOG
+i
]); 
 877       for(i 
= -1; i
<legic_read_count
; i
++) { 
 879          t  
= BigBuf
[OFFSET_LOG
+256+i
*4]; 
 880          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+1] << 8; 
 881          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+2] <<16; 
 882          t 
|= BigBuf
[OFFSET_LOG
+256+i
*4+3] <<24; 
 884          Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",  
 885             BigBuf
[OFFSET_LOG
+128+i
], 
 886             BigBuf
[OFFSET_LOG
+384+i
], 
 890    legic_state 
= STATE_DISCON
;  
 891    legic_read_count 
= 0; 
 897 /* Read bit by bit untill full frame is received 
 898  * Call to process frame end answer 
 900 static void emit(int bit
) { 
 904                         frame_append_bit(¤t_frame
, 1); 
 907                         frame_append_bit(¤t_frame
, 0); 
 910                         if(current_frame
.bits 
<= 4) { 
 911                                 frame_clean(¤t_frame
); 
 913                                 frame_handle_tag(¤t_frame
); 
 914                                 frame_clean(¤t_frame
); 
 921 void LegicRfSimulate(int phase
, int frame
, int reqresp
) 
 923   /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,  
 924    * modulation mode set to 212kHz subcarrier. We are getting the incoming raw 
 925    * envelope waveform on DIN and should send our response on DOUT. 
 927    * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll 
 928    * measure the time between two rising edges on DIN, and no encoding on the 
 929    * subcarrier from card to reader, so we'll just shift out our verbatim data 
 930    * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear, 
 931    * seems to be 300us-ish. 
 934         legic_phase_drift 
= phase
; 
 935         legic_frame_drift 
= frame
; 
 936         legic_reqresp_drift 
= reqresp
; 
 938         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
 939         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
 941         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR 
| FPGA_HF_SIMULATOR_MODULATE_212K
); 
 943         /* Bitbang the receiver */ 
 944         AT91C_BASE_PIOA
->PIO_ODR 
= GPIO_SSC_DIN
; 
 945         AT91C_BASE_PIOA
->PIO_PER 
= GPIO_SSC_DIN
; 
 948         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0); 
 952         legic_state 
= STATE_DISCON
; 
 955         DbpString("Starting Legic emulator, press button to end"); 
 957         while(!BUTTON_PRESS() && !usb_poll_validate_length()) { 
 958                 int level 
= !!(AT91C_BASE_PIOA
->PIO_PDSR 
& GPIO_SSC_DIN
); 
 959                 int time 
= timer
->TC_CV
; 
 961                 if(level 
!= old_level
) { 
 963                                 timer
->TC_CCR 
= AT91C_TC_CLKEN 
| AT91C_TC_SWTRG
; 
 965                                 if (FUZZ_EQUAL(time
, RWD_TIME_1
, RWD_TIME_FUZZ
)) { 
 970                                 } else if (FUZZ_EQUAL(time
, RWD_TIME_0
, RWD_TIME_FUZZ
)) { 
 985                 if(time 
>= (RWD_TIME_1
+RWD_TIME_FUZZ
) && active
) { 
 991                 if(time 
>= (20*RWD_TIME_1
) && (timer
->TC_SR 
& AT91C_TC_CLKSTA
)) { 
 992                         timer
->TC_CCR 
= AT91C_TC_CLKDIS
; 
 998         if ( MF_DBGLEVEL 
>= 1) DbpString("Stopped"); 
1002 //----------------------------------------------------------------------------- 
1003 //----------------------------------------------------------------------------- 
1006 //----------------------------------------------------------------------------- 
1007 // Code up a string of octets at layer 2 (including CRC, we don't generate 
1008 // that here) so that they can be transmitted to the reader. Doesn't transmit 
1009 // them yet, just leaves them ready to send in ToSend[]. 
1010 //----------------------------------------------------------------------------- 
1011 // static void CodeLegicAsTag(const uint8_t *cmd, int len) 
1017         // // Transmit a burst of ones, as the initial thing that lets the 
1018         // // reader get phase sync. This (TR1) must be > 80/fs, per spec, 
1019         // // but tag that I've tried (a Paypass) exceeds that by a fair bit, 
1020         // // so I will too. 
1021         // for(i = 0; i < 20; i++) { 
1022                 // ToSendStuffBit(1); 
1023                 // ToSendStuffBit(1); 
1024                 // ToSendStuffBit(1); 
1025                 // ToSendStuffBit(1); 
1029         // for(i = 0; i < 10; i++) { 
1030                 // ToSendStuffBit(0); 
1031                 // ToSendStuffBit(0); 
1032                 // ToSendStuffBit(0); 
1033                 // ToSendStuffBit(0); 
1035         // for(i = 0; i < 2; i++) { 
1036                 // ToSendStuffBit(1); 
1037                 // ToSendStuffBit(1); 
1038                 // ToSendStuffBit(1); 
1039                 // ToSendStuffBit(1); 
1042         // for(i = 0; i < len; i++) { 
1044                 // uint8_t b = cmd[i]; 
1047                 // ToSendStuffBit(0); 
1048                 // ToSendStuffBit(0); 
1049                 // ToSendStuffBit(0); 
1050                 // ToSendStuffBit(0); 
1053                 // for(j = 0; j < 8; j++) { 
1055                                 // ToSendStuffBit(1); 
1056                                 // ToSendStuffBit(1); 
1057                                 // ToSendStuffBit(1); 
1058                                 // ToSendStuffBit(1); 
1060                                 // ToSendStuffBit(0); 
1061                                 // ToSendStuffBit(0); 
1062                                 // ToSendStuffBit(0); 
1063                                 // ToSendStuffBit(0); 
1069                 // ToSendStuffBit(1); 
1070                 // ToSendStuffBit(1); 
1071                 // ToSendStuffBit(1); 
1072                 // ToSendStuffBit(1); 
1076         // for(i = 0; i < 10; i++) { 
1077                 // ToSendStuffBit(0); 
1078                 // ToSendStuffBit(0); 
1079                 // ToSendStuffBit(0); 
1080                 // ToSendStuffBit(0); 
1082         // for(i = 0; i < 2; i++) { 
1083                 // ToSendStuffBit(1); 
1084                 // ToSendStuffBit(1); 
1085                 // ToSendStuffBit(1); 
1086                 // ToSendStuffBit(1); 
1089         // // Convert from last byte pos to length 
1093 //----------------------------------------------------------------------------- 
1094 // The software UART that receives commands from the reader, and its state 
1096 //----------------------------------------------------------------------------- 
1100                 STATE_GOT_FALLING_EDGE_OF_SOF
, 
1101                 STATE_AWAITING_START_BIT
, 
1102                 STATE_RECEIVING_DATA
 
1112 /* Receive & handle a bit coming from the reader. 
1114  * This function is called 4 times per bit (every 2 subcarrier cycles). 
1115  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1118  * LED A -> ON once we have received the SOF and are expecting the rest. 
1119  * LED A -> OFF once we have received EOF or are in error state or unsynced 
1121  * Returns: true if we received a EOF 
1122  *          false if we are still waiting for some more 
1124 // static RAMFUNC int HandleLegicUartBit(uint8_t bit) 
1126         // switch(Uart.state) { 
1127                 // case STATE_UNSYNCD: 
1129                                 // // we went low, so this could be the beginning of an SOF 
1130                                 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF; 
1136                 // case STATE_GOT_FALLING_EDGE_OF_SOF: 
1138                         // if(Uart.posCnt == 2) {       // sample every 4 1/fs in the middle of a bit 
1140                                         // if(Uart.bitCnt > 9) { 
1141                                                 // // we've seen enough consecutive 
1142                                                 // // zeros that it's a valid SOF 
1144                                                 // Uart.byteCnt = 0; 
1145                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1146                                                 // LED_A_ON(); // Indicate we got a valid SOF 
1148                                                 // // didn't stay down long enough 
1149                                                 // // before going high, error 
1150                                                 // Uart.state = STATE_UNSYNCD; 
1153                                         // // do nothing, keep waiting 
1157                         // if(Uart.posCnt >= 4) Uart.posCnt = 0; 
1158                         // if(Uart.bitCnt > 12) { 
1159                                 // // Give up if we see too many zeros without 
1162                                 // Uart.state = STATE_UNSYNCD; 
1166                 // case STATE_AWAITING_START_BIT: 
1169                                 // if(Uart.posCnt > 50/2) {     // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs 
1170                                         // // stayed high for too long between 
1171                                         // // characters, error 
1172                                         // Uart.state = STATE_UNSYNCD; 
1175                                 // // falling edge, this starts the data byte 
1178                                 // Uart.shiftReg = 0; 
1179                                 // Uart.state = STATE_RECEIVING_DATA; 
1183                 // case STATE_RECEIVING_DATA: 
1185                         // if(Uart.posCnt == 2) { 
1186                                 // // time to sample a bit 
1187                                 // Uart.shiftReg >>= 1; 
1189                                         // Uart.shiftReg |= 0x200; 
1193                         // if(Uart.posCnt >= 4) { 
1196                         // if(Uart.bitCnt == 10) { 
1197                                 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) 
1199                                         // // this is a data byte, with correct 
1200                                         // // start and stop bits 
1201                                         // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff; 
1204                                         // if(Uart.byteCnt >= Uart.byteCntMax) { 
1205                                                 // // Buffer overflowed, give up 
1207                                                 // Uart.state = STATE_UNSYNCD; 
1209                                                 // // so get the next byte now 
1211                                                 // Uart.state = STATE_AWAITING_START_BIT; 
1213                                 // } else if (Uart.shiftReg == 0x000) { 
1214                                         // // this is an EOF byte 
1215                                         // LED_A_OFF(); // Finished receiving 
1216                                         // Uart.state = STATE_UNSYNCD; 
1217                                         // if (Uart.byteCnt != 0) { 
1221                                         // // this is an error 
1223                                         // Uart.state = STATE_UNSYNCD; 
1230                         // Uart.state = STATE_UNSYNCD; 
1238 static void UartReset() { 
1239         Uart
.byteCntMax 
= 3; 
1240         Uart
.state 
= STATE_UNSYNCD
; 
1244         memset(Uart
.output
, 0x00, 3); 
1247 // static void UartInit(uint8_t *data) { 
1248         // Uart.output = data; 
1252 //============================================================================= 
1253 // An LEGIC reader. We take layer two commands, code them 
1254 // appropriately, and then send them to the tag. We then listen for the 
1255 // tag's response, which we leave in the buffer to be demodulated on the 
1257 //============================================================================= 
1262                 DEMOD_PHASE_REF_TRAINING
, 
1263                 DEMOD_AWAITING_FALLING_EDGE_OF_SOF
, 
1264                 DEMOD_GOT_FALLING_EDGE_OF_SOF
, 
1265                 DEMOD_AWAITING_START_BIT
, 
1266                 DEMOD_RECEIVING_DATA
 
1279  * Handles reception of a bit from the tag 
1281  * This function is called 2 times per bit (every 4 subcarrier cycles). 
1282  * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us 
1285  * LED C -> ON once we have received the SOF and are expecting the rest. 
1286  * LED C -> OFF once we have received EOF or are unsynced 
1288  * Returns: true if we received a EOF 
1289  *          false if we are still waiting for some more 
1293  #ifndef SUBCARRIER_DETECT_THRESHOLD 
1294  # define SUBCARRIER_DETECT_THRESHOLD   8 
1297  // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) 
1298 #ifndef CHECK_FOR_SUBCARRIER 
1299 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); } 
1302 // The soft decision on the bit uses an estimate of just the 
1303 // quadrant of the reference angle, not the exact angle. 
1304 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq))) 
1305 #define MAKE_SOFT_DECISION() { \ 
1306                 if(Demod.sumI > 0) \ 
1311                 if(Demod.sumQ > 0) \ 
1318 static RAMFUNC 
int HandleLegicSamplesDemod(int ci
, int cq
) 
1323         int halfci 
= (ai 
>> 1); 
1324         int halfcq 
= (aq 
>> 1); 
1326         switch(Demod
.state
) { 
1329                         CHECK_FOR_SUBCARRIER() 
1331                         if(v 
> SUBCARRIER_DETECT_THRESHOLD
) {   // subcarrier detected 
1332                                 Demod
.state 
= DEMOD_PHASE_REF_TRAINING
; 
1339                 case DEMOD_PHASE_REF_TRAINING
: 
1340                         if(Demod
.posCount 
< 8) { 
1342                                 CHECK_FOR_SUBCARRIER() 
1344                                 if (v 
> SUBCARRIER_DETECT_THRESHOLD
) { 
1345                                         // set the reference phase (will code a logic '1') by averaging over 32 1/fs. 
1346                                         // note: synchronization time > 80 1/fs 
1352                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1355                                 Demod
.state 
= DEMOD_AWAITING_FALLING_EDGE_OF_SOF
; 
1359                 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF
: 
1361                         MAKE_SOFT_DECISION() 
1363                         //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq ); 
1364                         // logic '0' detected 
1367                                 Demod
.state 
= DEMOD_GOT_FALLING_EDGE_OF_SOF
; 
1369                                 // start of SOF sequence 
1372                                 // maximum length of TR1 = 200 1/fs 
1373                                 if(Demod
.posCount 
> 25*2) Demod
.state 
= DEMOD_UNSYNCD
; 
1378                 case DEMOD_GOT_FALLING_EDGE_OF_SOF
: 
1381                         MAKE_SOFT_DECISION() 
1384                                 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges 
1385                                 if(Demod
.posCount 
< 10*2) {  
1386                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1388                                         LED_C_ON(); // Got SOF 
1389                                         Demod
.state 
= DEMOD_AWAITING_START_BIT
; 
1394                                 // low phase of SOF too long (> 12 etu) 
1395                                 if(Demod
.posCount 
> 13*2) {  
1396                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1402                 case DEMOD_AWAITING_START_BIT
: 
1405                         MAKE_SOFT_DECISION() 
1408                                 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs 
1409                                 if(Demod
.posCount 
> 3*2) {  
1410                                         Demod
.state 
= DEMOD_UNSYNCD
; 
1414                                 // start bit detected 
1416                                 Demod
.posCount 
= 1;                             // this was the first half 
1419                                 Demod
.state 
= DEMOD_RECEIVING_DATA
; 
1423                 case DEMOD_RECEIVING_DATA
: 
1425                         MAKE_SOFT_DECISION() 
1427                         if(Demod
.posCount 
== 0) { 
1428                                 // first half of bit 
1432                                 // second half of bit 
1434                                 Demod
.shiftReg 
>>= 1; 
1436                                 if(Demod
.thisBit 
> 0)  
1437                                         Demod
.shiftReg 
|= 0x200; 
1441                                 if(Demod
.bitCount 
== 10) { 
1443                                         uint16_t s 
= Demod
.shiftReg
; 
1445                                         if((s 
& 0x200) && !(s 
& 0x001)) {  
1446                                                 // stop bit == '1', start bit == '0' 
1447                                                 uint8_t b 
= (s 
>> 1); 
1448                                                 Demod
.output
[Demod
.len
] = b
; 
1450                                                 Demod
.state 
= DEMOD_AWAITING_START_BIT
; 
1452                                                 Demod
.state 
= DEMOD_UNSYNCD
; 
1456                                                         // This is EOF (start, stop and all data bits == '0' 
1466                         Demod
.state 
= DEMOD_UNSYNCD
; 
1473 // Clear out the state of the "UART" that receives from the tag. 
1474 static void DemodReset() { 
1476         Demod
.state 
= DEMOD_UNSYNCD
; 
1483         memset(Demod
.output
, 0x00, 3); 
1486 static void DemodInit(uint8_t *data
) { 
1487         Demod
.output 
= data
; 
1492  *  Demodulate the samples we received from the tag, also log to tracebuffer 
1493  *  quiet: set to 'TRUE' to disable debug output 
1495  #define LEGIC_DMA_BUFFER_SIZE 256 
1496 static void GetSamplesForLegicDemod(int n
, bool quiet
) 
1499         bool gotFrame 
= FALSE
; 
1500         int lastRxCounter 
= LEGIC_DMA_BUFFER_SIZE
; 
1501         int     ci
, cq
, samples 
= 0; 
1505         // And put the FPGA in the appropriate mode 
1506         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR 
| FPGA_HF_READER_RX_XCORR_QUARTER_FREQ
); 
1508         // The response (tag -> reader) that we're receiving. 
1509         // Set up the demodulator for tag -> reader responses. 
1510         DemodInit(BigBuf_malloc(MAX_FRAME_SIZE
)); 
1512         // The DMA buffer, used to stream samples from the FPGA 
1513         int8_t *dmaBuf 
= (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE
); 
1514         int8_t *upTo 
= dmaBuf
; 
1516         // Setup and start DMA. 
1517         if ( !FpgaSetupSscDma((uint8_t*) dmaBuf
, LEGIC_DMA_BUFFER_SIZE
) ){ 
1518                 if (MF_DBGLEVEL 
> 1) Dbprintf("FpgaSetupSscDma failed. Exiting");  
1522         // Signal field is ON with the appropriate LED: 
1525                 int behindBy 
= lastRxCounter 
- AT91C_BASE_PDC_SSC
->PDC_RCR
; 
1526                 if(behindBy 
> max
) max 
= behindBy
; 
1528                 while(((lastRxCounter
-AT91C_BASE_PDC_SSC
->PDC_RCR
) & (LEGIC_DMA_BUFFER_SIZE
-1)) > 2) { 
1532                         if(upTo 
>= dmaBuf 
+ LEGIC_DMA_BUFFER_SIZE
) { 
1534                                 AT91C_BASE_PDC_SSC
->PDC_RNPR 
= (uint32_t) upTo
; 
1535                                 AT91C_BASE_PDC_SSC
->PDC_RNCR 
= LEGIC_DMA_BUFFER_SIZE
; 
1538                         if(lastRxCounter 
<= 0) 
1539                                 lastRxCounter 
= LEGIC_DMA_BUFFER_SIZE
; 
1543                         gotFrame 
= HandleLegicSamplesDemod(ci 
, cq 
); 
1548                 if(samples 
> n 
|| gotFrame
) 
1552         FpgaDisableSscDma(); 
1554         if (!quiet 
&& Demod
.len 
== 0) { 
1555                 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", 
1566         if (Demod
.len 
> 0) { 
1567                 uint8_t parity
[MAX_PARITY_SIZE
] = {0x00}; 
1568                 LogTrace(Demod
.output
, Demod
.len
, 0, 0, parity
, FALSE
); 
1571 //----------------------------------------------------------------------------- 
1572 // Transmit the command (to the tag) that was placed in ToSend[]. 
1573 //----------------------------------------------------------------------------- 
1574 static void TransmitForLegic(void) 
1580         while(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) 
1581                 AT91C_BASE_SSC
->SSC_THR 
= 0xff; 
1583         // Signal field is ON with the appropriate Red LED 
1586         // Signal we are transmitting with the Green LED 
1588         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX 
| FPGA_HF_READER_TX_SHALLOW_MOD
); 
1590         for(c 
= 0; c 
< 10;) { 
1591                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1592                         AT91C_BASE_SSC
->SSC_THR 
= 0xff; 
1595                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1596                         volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1604                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_TXRDY
)) { 
1605                         AT91C_BASE_SSC
->SSC_THR 
= ToSend
[c
]; 
1606                         legic_prng_forward(1); // forward the lfsr  
1608                         if(c 
>= ToSendMax
) { 
1612                 if(AT91C_BASE_SSC
->SSC_SR 
& (AT91C_SSC_RXRDY
)) { 
1613                         volatile uint32_t r 
= AT91C_BASE_SSC
->SSC_RHR
; 
1622 //----------------------------------------------------------------------------- 
1623 // Code a layer 2 command (string of octets, including CRC) into ToSend[], 
1624 // so that it is ready to transmit to the tag using TransmitForLegic(). 
1625 //----------------------------------------------------------------------------- 
1626 static void CodeLegicBitsAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
) 
1634         for(i 
= 0; i 
< 7; i
++) 
1638         for(i 
= 0; i 
< cmdlen
; i
++) { 
1644                 for(j 
= 0; j 
< bits
; j
++) { 
1654         // Convert from last character reference to length 
1659   Convenience function to encode, transmit and trace Legic comms 
1661 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd
, uint8_t cmdlen
, int bits
) 
1663         CodeLegicBitsAsReader(cmd
, cmdlen
, bits
); 
1666                 uint8_t parity
[1] = {0x00}; 
1667                 LogTrace(cmd
, cmdlen
, 0, 0, parity
, TRUE
); 
1671 int ice_legic_select_card() 
1673         //int cmd_size=0, card_size=0; 
1674         uint8_t wakeup
[] = { 0x7F }; 
1675         uint8_t getid
[] = {0x19}; 
1677         //legic_prng_init(SESSION_IV); 
1679         // first, wake up the tag, 7bits 
1680         CodeAndTransmitLegicAsReader(wakeup
, sizeof(wakeup
), 7); 
1682         GetSamplesForLegicDemod(1000, TRUE
); 
1684         //frame_receiveAsReader(¤t_frame, 6, 1); 
1686         legic_prng_forward(1); /* we wait anyways */ 
1688         //while(timer->TC_CV < 387) ; /* ~ 258us */ 
1689         //frame_sendAsReader(0x19, 6); 
1690         CodeAndTransmitLegicAsReader(getid
, sizeof(getid
), 8); 
1691         GetSamplesForLegicDemod(1000, TRUE
); 
1693         //if (Demod.len < 14) return 2;  
1694         Dbprintf("CARD TYPE: %02x  LEN: %d", Demod
.output
[0], Demod
.len
); 
1696         switch(Demod
.output
[0]) { 
1698                         DbpString("MIM 256 card found"); 
1703                         DbpString("MIM 1024 card found"); 
1705                         // card_size = 1024; 
1712                 // bytes = card_size; 
1714         // if(bytes + offset >= card_size) 
1715                 // bytes = card_size - offset;   
1717         FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); 
1722 // Set up LEGIC communication 
1723 void ice_legic_setup() { 
1726         FpgaDownloadAndGo(FPGA_BITSTREAM_HF
); 
1727         BigBuf_free(); BigBuf_Clear_ext(false); 
1733         // Set up the synchronous serial port 
1736         // connect Demodulated Signal to ADC: 
1737         SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); 
1739         // Signal field is on with the appropriate LED 
1741         FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX 
| FPGA_HF_READER_TX_SHALLOW_MOD
); 
1744         //StartCountSspClk(); 
1747         crc_init(&legic_crc
, 4, 0x19 >> 1, 0x5, 0);